xref: /openbmc/qemu/hw/ppc/ppc.c (revision c71c3e99)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/ppc.h"
26 #include "qemu/timer.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/nvram.h"
29 #include "qemu/log.h"
30 #include "hw/loader.h"
31 #include "sysemu/kvm.h"
32 #include "kvm_ppc.h"
33 
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
36 
37 #ifdef PPC_DEBUG_IRQ
38 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39 #else
40 #  define LOG_IRQ(...) do { } while (0)
41 #endif
42 
43 
44 #ifdef PPC_DEBUG_TB
45 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
46 #else
47 #  define LOG_TB(...) do { } while (0)
48 #endif
49 
50 static void cpu_ppc_tb_stop (CPUPPCState *env);
51 static void cpu_ppc_tb_start (CPUPPCState *env);
52 
53 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
54 {
55     CPUPPCState *env = &cpu->env;
56     unsigned int old_pending = env->pending_interrupts;
57 
58     if (level) {
59         env->pending_interrupts |= 1 << n_IRQ;
60         cpu_interrupt(env, CPU_INTERRUPT_HARD);
61     } else {
62         env->pending_interrupts &= ~(1 << n_IRQ);
63         if (env->pending_interrupts == 0)
64             cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
65     }
66 
67     if (old_pending != env->pending_interrupts) {
68 #ifdef CONFIG_KVM
69         kvmppc_set_interrupt(cpu, n_IRQ, level);
70 #endif
71     }
72 
73     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
74                 "req %08x\n", __func__, env, n_IRQ, level,
75                 env->pending_interrupts, env->interrupt_request);
76 }
77 
78 /* PowerPC 6xx / 7xx internal IRQ controller */
79 static void ppc6xx_set_irq(void *opaque, int pin, int level)
80 {
81     PowerPCCPU *cpu = opaque;
82     CPUPPCState *env = &cpu->env;
83     int cur_level;
84 
85     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
86                 env, pin, level);
87     cur_level = (env->irq_input_state >> pin) & 1;
88     /* Don't generate spurious events */
89     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
90         switch (pin) {
91         case PPC6xx_INPUT_TBEN:
92             /* Level sensitive - active high */
93             LOG_IRQ("%s: %s the time base\n",
94                         __func__, level ? "start" : "stop");
95             if (level) {
96                 cpu_ppc_tb_start(env);
97             } else {
98                 cpu_ppc_tb_stop(env);
99             }
100         case PPC6xx_INPUT_INT:
101             /* Level sensitive - active high */
102             LOG_IRQ("%s: set the external IRQ state to %d\n",
103                         __func__, level);
104             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
105             break;
106         case PPC6xx_INPUT_SMI:
107             /* Level sensitive - active high */
108             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
109                         __func__, level);
110             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
111             break;
112         case PPC6xx_INPUT_MCP:
113             /* Negative edge sensitive */
114             /* XXX: TODO: actual reaction may depends on HID0 status
115              *            603/604/740/750: check HID0[EMCP]
116              */
117             if (cur_level == 1 && level == 0) {
118                 LOG_IRQ("%s: raise machine check state\n",
119                             __func__);
120                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
121             }
122             break;
123         case PPC6xx_INPUT_CKSTP_IN:
124             /* Level sensitive - active low */
125             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
126             /* XXX: Note that the only way to restart the CPU is to reset it */
127             if (level) {
128                 LOG_IRQ("%s: stop the CPU\n", __func__);
129                 env->halted = 1;
130             }
131             break;
132         case PPC6xx_INPUT_HRESET:
133             /* Level sensitive - active low */
134             if (level) {
135                 LOG_IRQ("%s: reset the CPU\n", __func__);
136                 cpu_interrupt(env, CPU_INTERRUPT_RESET);
137             }
138             break;
139         case PPC6xx_INPUT_SRESET:
140             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
141                         __func__, level);
142             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
143             break;
144         default:
145             /* Unknown pin - do nothing */
146             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
147             return;
148         }
149         if (level)
150             env->irq_input_state |= 1 << pin;
151         else
152             env->irq_input_state &= ~(1 << pin);
153     }
154 }
155 
156 void ppc6xx_irq_init(CPUPPCState *env)
157 {
158     PowerPCCPU *cpu = ppc_env_get_cpu(env);
159 
160     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
161                                                   PPC6xx_INPUT_NB);
162 }
163 
164 #if defined(TARGET_PPC64)
165 /* PowerPC 970 internal IRQ controller */
166 static void ppc970_set_irq(void *opaque, int pin, int level)
167 {
168     PowerPCCPU *cpu = opaque;
169     CPUPPCState *env = &cpu->env;
170     int cur_level;
171 
172     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
173                 env, pin, level);
174     cur_level = (env->irq_input_state >> pin) & 1;
175     /* Don't generate spurious events */
176     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
177         switch (pin) {
178         case PPC970_INPUT_INT:
179             /* Level sensitive - active high */
180             LOG_IRQ("%s: set the external IRQ state to %d\n",
181                         __func__, level);
182             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
183             break;
184         case PPC970_INPUT_THINT:
185             /* Level sensitive - active high */
186             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
187                         level);
188             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
189             break;
190         case PPC970_INPUT_MCP:
191             /* Negative edge sensitive */
192             /* XXX: TODO: actual reaction may depends on HID0 status
193              *            603/604/740/750: check HID0[EMCP]
194              */
195             if (cur_level == 1 && level == 0) {
196                 LOG_IRQ("%s: raise machine check state\n",
197                             __func__);
198                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
199             }
200             break;
201         case PPC970_INPUT_CKSTP:
202             /* Level sensitive - active low */
203             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
204             if (level) {
205                 LOG_IRQ("%s: stop the CPU\n", __func__);
206                 env->halted = 1;
207             } else {
208                 LOG_IRQ("%s: restart the CPU\n", __func__);
209                 env->halted = 0;
210                 qemu_cpu_kick(CPU(cpu));
211             }
212             break;
213         case PPC970_INPUT_HRESET:
214             /* Level sensitive - active low */
215             if (level) {
216                 cpu_interrupt(env, CPU_INTERRUPT_RESET);
217             }
218             break;
219         case PPC970_INPUT_SRESET:
220             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
221                         __func__, level);
222             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
223             break;
224         case PPC970_INPUT_TBEN:
225             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
226                         level);
227             /* XXX: TODO */
228             break;
229         default:
230             /* Unknown pin - do nothing */
231             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
232             return;
233         }
234         if (level)
235             env->irq_input_state |= 1 << pin;
236         else
237             env->irq_input_state &= ~(1 << pin);
238     }
239 }
240 
241 void ppc970_irq_init(CPUPPCState *env)
242 {
243     PowerPCCPU *cpu = ppc_env_get_cpu(env);
244 
245     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
246                                                   PPC970_INPUT_NB);
247 }
248 
249 /* POWER7 internal IRQ controller */
250 static void power7_set_irq(void *opaque, int pin, int level)
251 {
252     PowerPCCPU *cpu = opaque;
253     CPUPPCState *env = &cpu->env;
254 
255     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
256                 env, pin, level);
257 
258     switch (pin) {
259     case POWER7_INPUT_INT:
260         /* Level sensitive - active high */
261         LOG_IRQ("%s: set the external IRQ state to %d\n",
262                 __func__, level);
263         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
264         break;
265     default:
266         /* Unknown pin - do nothing */
267         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
268         return;
269     }
270     if (level) {
271         env->irq_input_state |= 1 << pin;
272     } else {
273         env->irq_input_state &= ~(1 << pin);
274     }
275 }
276 
277 void ppcPOWER7_irq_init(CPUPPCState *env)
278 {
279     PowerPCCPU *cpu = ppc_env_get_cpu(env);
280 
281     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
282                                                   POWER7_INPUT_NB);
283 }
284 #endif /* defined(TARGET_PPC64) */
285 
286 /* PowerPC 40x internal IRQ controller */
287 static void ppc40x_set_irq(void *opaque, int pin, int level)
288 {
289     PowerPCCPU *cpu = opaque;
290     CPUPPCState *env = &cpu->env;
291     int cur_level;
292 
293     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
294                 env, pin, level);
295     cur_level = (env->irq_input_state >> pin) & 1;
296     /* Don't generate spurious events */
297     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
298         switch (pin) {
299         case PPC40x_INPUT_RESET_SYS:
300             if (level) {
301                 LOG_IRQ("%s: reset the PowerPC system\n",
302                             __func__);
303                 ppc40x_system_reset(cpu);
304             }
305             break;
306         case PPC40x_INPUT_RESET_CHIP:
307             if (level) {
308                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
309                 ppc40x_chip_reset(cpu);
310             }
311             break;
312         case PPC40x_INPUT_RESET_CORE:
313             /* XXX: TODO: update DBSR[MRR] */
314             if (level) {
315                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
316                 ppc40x_core_reset(cpu);
317             }
318             break;
319         case PPC40x_INPUT_CINT:
320             /* Level sensitive - active high */
321             LOG_IRQ("%s: set the critical IRQ state to %d\n",
322                         __func__, level);
323             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
324             break;
325         case PPC40x_INPUT_INT:
326             /* Level sensitive - active high */
327             LOG_IRQ("%s: set the external IRQ state to %d\n",
328                         __func__, level);
329             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
330             break;
331         case PPC40x_INPUT_HALT:
332             /* Level sensitive - active low */
333             if (level) {
334                 LOG_IRQ("%s: stop the CPU\n", __func__);
335                 env->halted = 1;
336             } else {
337                 LOG_IRQ("%s: restart the CPU\n", __func__);
338                 env->halted = 0;
339                 qemu_cpu_kick(CPU(cpu));
340             }
341             break;
342         case PPC40x_INPUT_DEBUG:
343             /* Level sensitive - active high */
344             LOG_IRQ("%s: set the debug pin state to %d\n",
345                         __func__, level);
346             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
347             break;
348         default:
349             /* Unknown pin - do nothing */
350             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
351             return;
352         }
353         if (level)
354             env->irq_input_state |= 1 << pin;
355         else
356             env->irq_input_state &= ~(1 << pin);
357     }
358 }
359 
360 void ppc40x_irq_init(CPUPPCState *env)
361 {
362     PowerPCCPU *cpu = ppc_env_get_cpu(env);
363 
364     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
365                                                   cpu, PPC40x_INPUT_NB);
366 }
367 
368 /* PowerPC E500 internal IRQ controller */
369 static void ppce500_set_irq(void *opaque, int pin, int level)
370 {
371     PowerPCCPU *cpu = opaque;
372     CPUPPCState *env = &cpu->env;
373     int cur_level;
374 
375     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
376                 env, pin, level);
377     cur_level = (env->irq_input_state >> pin) & 1;
378     /* Don't generate spurious events */
379     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
380         switch (pin) {
381         case PPCE500_INPUT_MCK:
382             if (level) {
383                 LOG_IRQ("%s: reset the PowerPC system\n",
384                             __func__);
385                 qemu_system_reset_request();
386             }
387             break;
388         case PPCE500_INPUT_RESET_CORE:
389             if (level) {
390                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
391                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
392             }
393             break;
394         case PPCE500_INPUT_CINT:
395             /* Level sensitive - active high */
396             LOG_IRQ("%s: set the critical IRQ state to %d\n",
397                         __func__, level);
398             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
399             break;
400         case PPCE500_INPUT_INT:
401             /* Level sensitive - active high */
402             LOG_IRQ("%s: set the core IRQ state to %d\n",
403                         __func__, level);
404             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
405             break;
406         case PPCE500_INPUT_DEBUG:
407             /* Level sensitive - active high */
408             LOG_IRQ("%s: set the debug pin state to %d\n",
409                         __func__, level);
410             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
411             break;
412         default:
413             /* Unknown pin - do nothing */
414             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
415             return;
416         }
417         if (level)
418             env->irq_input_state |= 1 << pin;
419         else
420             env->irq_input_state &= ~(1 << pin);
421     }
422 }
423 
424 void ppce500_irq_init(CPUPPCState *env)
425 {
426     PowerPCCPU *cpu = ppc_env_get_cpu(env);
427 
428     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
429                                                   cpu, PPCE500_INPUT_NB);
430 }
431 
432 /* Enable or Disable the E500 EPR capability */
433 void ppce500_set_mpic_proxy(bool enabled)
434 {
435     CPUPPCState *env;
436 
437     for (env = first_cpu; env != NULL; env = env->next_cpu) {
438         PowerPCCPU *cpu = ppc_env_get_cpu(env);
439         CPUState *cs = CPU(cpu);
440 
441         env->mpic_proxy = enabled;
442         if (kvm_enabled()) {
443             kvmppc_set_mpic_proxy(POWERPC_CPU(cs), enabled);
444         }
445     }
446 }
447 
448 /*****************************************************************************/
449 /* PowerPC time base and decrementer emulation */
450 
451 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
452 {
453     /* TB time in tb periods */
454     return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
455 }
456 
457 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
458 {
459     ppc_tb_t *tb_env = env->tb_env;
460     uint64_t tb;
461 
462     if (kvm_enabled()) {
463         return env->spr[SPR_TBL];
464     }
465 
466     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
467     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
468 
469     return tb;
470 }
471 
472 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
473 {
474     ppc_tb_t *tb_env = env->tb_env;
475     uint64_t tb;
476 
477     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
478     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
479 
480     return tb >> 32;
481 }
482 
483 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
484 {
485     if (kvm_enabled()) {
486         return env->spr[SPR_TBU];
487     }
488 
489     return _cpu_ppc_load_tbu(env);
490 }
491 
492 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
493                                     int64_t *tb_offsetp, uint64_t value)
494 {
495     *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
496     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
497                 __func__, value, *tb_offsetp);
498 }
499 
500 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
501 {
502     ppc_tb_t *tb_env = env->tb_env;
503     uint64_t tb;
504 
505     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
506     tb &= 0xFFFFFFFF00000000ULL;
507     cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
508                      &tb_env->tb_offset, tb | (uint64_t)value);
509 }
510 
511 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
512 {
513     ppc_tb_t *tb_env = env->tb_env;
514     uint64_t tb;
515 
516     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
517     tb &= 0x00000000FFFFFFFFULL;
518     cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
519                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
520 }
521 
522 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
523 {
524     _cpu_ppc_store_tbu(env, value);
525 }
526 
527 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
528 {
529     ppc_tb_t *tb_env = env->tb_env;
530     uint64_t tb;
531 
532     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
533     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
534 
535     return tb;
536 }
537 
538 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
539 {
540     ppc_tb_t *tb_env = env->tb_env;
541     uint64_t tb;
542 
543     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
544     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
545 
546     return tb >> 32;
547 }
548 
549 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
550 {
551     ppc_tb_t *tb_env = env->tb_env;
552     uint64_t tb;
553 
554     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
555     tb &= 0xFFFFFFFF00000000ULL;
556     cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
557                      &tb_env->atb_offset, tb | (uint64_t)value);
558 }
559 
560 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
561 {
562     ppc_tb_t *tb_env = env->tb_env;
563     uint64_t tb;
564 
565     tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
566     tb &= 0x00000000FFFFFFFFULL;
567     cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
568                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
569 }
570 
571 static void cpu_ppc_tb_stop (CPUPPCState *env)
572 {
573     ppc_tb_t *tb_env = env->tb_env;
574     uint64_t tb, atb, vmclk;
575 
576     /* If the time base is already frozen, do nothing */
577     if (tb_env->tb_freq != 0) {
578         vmclk = qemu_get_clock_ns(vm_clock);
579         /* Get the time base */
580         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
581         /* Get the alternate time base */
582         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
583         /* Store the time base value (ie compute the current offset) */
584         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
585         /* Store the alternate time base value (compute the current offset) */
586         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
587         /* Set the time base frequency to zero */
588         tb_env->tb_freq = 0;
589         /* Now, the time bases are frozen to tb_offset / atb_offset value */
590     }
591 }
592 
593 static void cpu_ppc_tb_start (CPUPPCState *env)
594 {
595     ppc_tb_t *tb_env = env->tb_env;
596     uint64_t tb, atb, vmclk;
597 
598     /* If the time base is not frozen, do nothing */
599     if (tb_env->tb_freq == 0) {
600         vmclk = qemu_get_clock_ns(vm_clock);
601         /* Get the time base from tb_offset */
602         tb = tb_env->tb_offset;
603         /* Get the alternate time base from atb_offset */
604         atb = tb_env->atb_offset;
605         /* Restore the tb frequency from the decrementer frequency */
606         tb_env->tb_freq = tb_env->decr_freq;
607         /* Store the time base value */
608         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
609         /* Store the alternate time base value */
610         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
611     }
612 }
613 
614 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
615 {
616     ppc_tb_t *tb_env = env->tb_env;
617     uint32_t decr;
618     int64_t diff;
619 
620     diff = next - qemu_get_clock_ns(vm_clock);
621     if (diff >= 0) {
622         decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
623     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
624         decr = 0;
625     }  else {
626         decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
627     }
628     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
629 
630     return decr;
631 }
632 
633 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
634 {
635     ppc_tb_t *tb_env = env->tb_env;
636 
637     if (kvm_enabled()) {
638         return env->spr[SPR_DECR];
639     }
640 
641     return _cpu_ppc_load_decr(env, tb_env->decr_next);
642 }
643 
644 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
645 {
646     ppc_tb_t *tb_env = env->tb_env;
647 
648     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
649 }
650 
651 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
652 {
653     ppc_tb_t *tb_env = env->tb_env;
654     uint64_t diff;
655 
656     diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
657 
658     return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
659 }
660 
661 /* When decrementer expires,
662  * all we need to do is generate or queue a CPU exception
663  */
664 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
665 {
666     /* Raise it */
667     LOG_TB("raise decrementer exception\n");
668     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
669 }
670 
671 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
672 {
673     /* Raise it */
674     LOG_TB("raise decrementer exception\n");
675     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
676 }
677 
678 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
679                                  struct QEMUTimer *timer,
680                                  void (*raise_excp)(PowerPCCPU *),
681                                  uint32_t decr, uint32_t value,
682                                  int is_excp)
683 {
684     CPUPPCState *env = &cpu->env;
685     ppc_tb_t *tb_env = env->tb_env;
686     uint64_t now, next;
687 
688     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
689                 decr, value);
690 
691     if (kvm_enabled()) {
692         /* KVM handles decrementer exceptions, we don't need our own timer */
693         return;
694     }
695 
696     now = qemu_get_clock_ns(vm_clock);
697     next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
698     if (is_excp) {
699         next += *nextp - now;
700     }
701     if (next == now) {
702         next++;
703     }
704     *nextp = next;
705     /* Adjust timer */
706     qemu_mod_timer(timer, next);
707 
708     /* If we set a negative value and the decrementer was positive, raise an
709      * exception.
710      */
711     if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
712         && (value & 0x80000000)
713         && !(decr & 0x80000000)) {
714         (*raise_excp)(cpu);
715     }
716 }
717 
718 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
719                                        uint32_t value, int is_excp)
720 {
721     ppc_tb_t *tb_env = cpu->env.tb_env;
722 
723     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
724                          &cpu_ppc_decr_excp, decr, value, is_excp);
725 }
726 
727 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
728 {
729     PowerPCCPU *cpu = ppc_env_get_cpu(env);
730 
731     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
732 }
733 
734 static void cpu_ppc_decr_cb(void *opaque)
735 {
736     PowerPCCPU *cpu = opaque;
737 
738     _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
739 }
740 
741 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
742                                         uint32_t value, int is_excp)
743 {
744     ppc_tb_t *tb_env = cpu->env.tb_env;
745 
746     if (tb_env->hdecr_timer != NULL) {
747         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
748                              &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
749     }
750 }
751 
752 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
753 {
754     PowerPCCPU *cpu = ppc_env_get_cpu(env);
755 
756     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
757 }
758 
759 static void cpu_ppc_hdecr_cb(void *opaque)
760 {
761     PowerPCCPU *cpu = opaque;
762 
763     _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
764 }
765 
766 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
767 {
768     ppc_tb_t *tb_env = cpu->env.tb_env;
769 
770     tb_env->purr_load = value;
771     tb_env->purr_start = qemu_get_clock_ns(vm_clock);
772 }
773 
774 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
775 {
776     CPUPPCState *env = opaque;
777     PowerPCCPU *cpu = ppc_env_get_cpu(env);
778     ppc_tb_t *tb_env = env->tb_env;
779 
780     tb_env->tb_freq = freq;
781     tb_env->decr_freq = freq;
782     /* There is a bug in Linux 2.4 kernels:
783      * if a decrementer exception is pending when it enables msr_ee at startup,
784      * it's not ready to handle it...
785      */
786     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
787     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
788     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
789 }
790 
791 /* Set up (once) timebase frequency (in Hz) */
792 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
793 {
794     PowerPCCPU *cpu = ppc_env_get_cpu(env);
795     ppc_tb_t *tb_env;
796 
797     tb_env = g_malloc0(sizeof(ppc_tb_t));
798     env->tb_env = tb_env;
799     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
800     /* Create new timer */
801     tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, cpu);
802     if (0) {
803         /* XXX: find a suitable condition to enable the hypervisor decrementer
804          */
805         tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb,
806                                                 cpu);
807     } else {
808         tb_env->hdecr_timer = NULL;
809     }
810     cpu_ppc_set_tb_clk(env, freq);
811 
812     return &cpu_ppc_set_tb_clk;
813 }
814 
815 /* Specific helpers for POWER & PowerPC 601 RTC */
816 #if 0
817 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
818 {
819     return cpu_ppc_tb_init(env, 7812500);
820 }
821 #endif
822 
823 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
824 {
825     _cpu_ppc_store_tbu(env, value);
826 }
827 
828 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
829 {
830     return _cpu_ppc_load_tbu(env);
831 }
832 
833 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
834 {
835     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
836 }
837 
838 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
839 {
840     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
841 }
842 
843 /*****************************************************************************/
844 /* PowerPC 40x timers */
845 
846 /* PIT, FIT & WDT */
847 typedef struct ppc40x_timer_t ppc40x_timer_t;
848 struct ppc40x_timer_t {
849     uint64_t pit_reload;  /* PIT auto-reload value        */
850     uint64_t fit_next;    /* Tick for next FIT interrupt  */
851     struct QEMUTimer *fit_timer;
852     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
853     struct QEMUTimer *wdt_timer;
854 
855     /* 405 have the PIT, 440 have a DECR.  */
856     unsigned int decr_excp;
857 };
858 
859 /* Fixed interval timer */
860 static void cpu_4xx_fit_cb (void *opaque)
861 {
862     PowerPCCPU *cpu;
863     CPUPPCState *env;
864     ppc_tb_t *tb_env;
865     ppc40x_timer_t *ppc40x_timer;
866     uint64_t now, next;
867 
868     env = opaque;
869     cpu = ppc_env_get_cpu(env);
870     tb_env = env->tb_env;
871     ppc40x_timer = tb_env->opaque;
872     now = qemu_get_clock_ns(vm_clock);
873     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
874     case 0:
875         next = 1 << 9;
876         break;
877     case 1:
878         next = 1 << 13;
879         break;
880     case 2:
881         next = 1 << 17;
882         break;
883     case 3:
884         next = 1 << 21;
885         break;
886     default:
887         /* Cannot occur, but makes gcc happy */
888         return;
889     }
890     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
891     if (next == now)
892         next++;
893     qemu_mod_timer(ppc40x_timer->fit_timer, next);
894     env->spr[SPR_40x_TSR] |= 1 << 26;
895     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
896         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
897     }
898     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
899            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
900            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
901 }
902 
903 /* Programmable interval timer */
904 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
905 {
906     ppc40x_timer_t *ppc40x_timer;
907     uint64_t now, next;
908 
909     ppc40x_timer = tb_env->opaque;
910     if (ppc40x_timer->pit_reload <= 1 ||
911         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
912         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
913         /* Stop PIT */
914         LOG_TB("%s: stop PIT\n", __func__);
915         qemu_del_timer(tb_env->decr_timer);
916     } else {
917         LOG_TB("%s: start PIT %016" PRIx64 "\n",
918                     __func__, ppc40x_timer->pit_reload);
919         now = qemu_get_clock_ns(vm_clock);
920         next = now + muldiv64(ppc40x_timer->pit_reload,
921                               get_ticks_per_sec(), tb_env->decr_freq);
922         if (is_excp)
923             next += tb_env->decr_next - now;
924         if (next == now)
925             next++;
926         qemu_mod_timer(tb_env->decr_timer, next);
927         tb_env->decr_next = next;
928     }
929 }
930 
931 static void cpu_4xx_pit_cb (void *opaque)
932 {
933     PowerPCCPU *cpu;
934     CPUPPCState *env;
935     ppc_tb_t *tb_env;
936     ppc40x_timer_t *ppc40x_timer;
937 
938     env = opaque;
939     cpu = ppc_env_get_cpu(env);
940     tb_env = env->tb_env;
941     ppc40x_timer = tb_env->opaque;
942     env->spr[SPR_40x_TSR] |= 1 << 27;
943     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
944         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
945     }
946     start_stop_pit(env, tb_env, 1);
947     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
948            "%016" PRIx64 "\n", __func__,
949            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
950            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
951            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
952            ppc40x_timer->pit_reload);
953 }
954 
955 /* Watchdog timer */
956 static void cpu_4xx_wdt_cb (void *opaque)
957 {
958     PowerPCCPU *cpu;
959     CPUPPCState *env;
960     ppc_tb_t *tb_env;
961     ppc40x_timer_t *ppc40x_timer;
962     uint64_t now, next;
963 
964     env = opaque;
965     cpu = ppc_env_get_cpu(env);
966     tb_env = env->tb_env;
967     ppc40x_timer = tb_env->opaque;
968     now = qemu_get_clock_ns(vm_clock);
969     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
970     case 0:
971         next = 1 << 17;
972         break;
973     case 1:
974         next = 1 << 21;
975         break;
976     case 2:
977         next = 1 << 25;
978         break;
979     case 3:
980         next = 1 << 29;
981         break;
982     default:
983         /* Cannot occur, but makes gcc happy */
984         return;
985     }
986     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
987     if (next == now)
988         next++;
989     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
990            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
991     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
992     case 0x0:
993     case 0x1:
994         qemu_mod_timer(ppc40x_timer->wdt_timer, next);
995         ppc40x_timer->wdt_next = next;
996         env->spr[SPR_40x_TSR] |= 1 << 31;
997         break;
998     case 0x2:
999         qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1000         ppc40x_timer->wdt_next = next;
1001         env->spr[SPR_40x_TSR] |= 1 << 30;
1002         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1003             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1004         }
1005         break;
1006     case 0x3:
1007         env->spr[SPR_40x_TSR] &= ~0x30000000;
1008         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1009         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1010         case 0x0:
1011             /* No reset */
1012             break;
1013         case 0x1: /* Core reset */
1014             ppc40x_core_reset(cpu);
1015             break;
1016         case 0x2: /* Chip reset */
1017             ppc40x_chip_reset(cpu);
1018             break;
1019         case 0x3: /* System reset */
1020             ppc40x_system_reset(cpu);
1021             break;
1022         }
1023     }
1024 }
1025 
1026 void store_40x_pit (CPUPPCState *env, target_ulong val)
1027 {
1028     ppc_tb_t *tb_env;
1029     ppc40x_timer_t *ppc40x_timer;
1030 
1031     tb_env = env->tb_env;
1032     ppc40x_timer = tb_env->opaque;
1033     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1034     ppc40x_timer->pit_reload = val;
1035     start_stop_pit(env, tb_env, 0);
1036 }
1037 
1038 target_ulong load_40x_pit (CPUPPCState *env)
1039 {
1040     return cpu_ppc_load_decr(env);
1041 }
1042 
1043 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1044 {
1045     CPUPPCState *env = opaque;
1046     ppc_tb_t *tb_env = env->tb_env;
1047 
1048     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1049                 freq);
1050     tb_env->tb_freq = freq;
1051     tb_env->decr_freq = freq;
1052     /* XXX: we should also update all timers */
1053 }
1054 
1055 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1056                                   unsigned int decr_excp)
1057 {
1058     ppc_tb_t *tb_env;
1059     ppc40x_timer_t *ppc40x_timer;
1060 
1061     tb_env = g_malloc0(sizeof(ppc_tb_t));
1062     env->tb_env = tb_env;
1063     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1064     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1065     tb_env->tb_freq = freq;
1066     tb_env->decr_freq = freq;
1067     tb_env->opaque = ppc40x_timer;
1068     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1069     if (ppc40x_timer != NULL) {
1070         /* We use decr timer for PIT */
1071         tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1072         ppc40x_timer->fit_timer =
1073             qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1074         ppc40x_timer->wdt_timer =
1075             qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1076         ppc40x_timer->decr_excp = decr_excp;
1077     }
1078 
1079     return &ppc_40x_set_tb_clk;
1080 }
1081 
1082 /*****************************************************************************/
1083 /* Embedded PowerPC Device Control Registers */
1084 typedef struct ppc_dcrn_t ppc_dcrn_t;
1085 struct ppc_dcrn_t {
1086     dcr_read_cb dcr_read;
1087     dcr_write_cb dcr_write;
1088     void *opaque;
1089 };
1090 
1091 /* XXX: on 460, DCR addresses are 32 bits wide,
1092  *      using DCRIPR to get the 22 upper bits of the DCR address
1093  */
1094 #define DCRN_NB 1024
1095 struct ppc_dcr_t {
1096     ppc_dcrn_t dcrn[DCRN_NB];
1097     int (*read_error)(int dcrn);
1098     int (*write_error)(int dcrn);
1099 };
1100 
1101 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1102 {
1103     ppc_dcrn_t *dcr;
1104 
1105     if (dcrn < 0 || dcrn >= DCRN_NB)
1106         goto error;
1107     dcr = &dcr_env->dcrn[dcrn];
1108     if (dcr->dcr_read == NULL)
1109         goto error;
1110     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1111 
1112     return 0;
1113 
1114  error:
1115     if (dcr_env->read_error != NULL)
1116         return (*dcr_env->read_error)(dcrn);
1117 
1118     return -1;
1119 }
1120 
1121 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1122 {
1123     ppc_dcrn_t *dcr;
1124 
1125     if (dcrn < 0 || dcrn >= DCRN_NB)
1126         goto error;
1127     dcr = &dcr_env->dcrn[dcrn];
1128     if (dcr->dcr_write == NULL)
1129         goto error;
1130     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1131 
1132     return 0;
1133 
1134  error:
1135     if (dcr_env->write_error != NULL)
1136         return (*dcr_env->write_error)(dcrn);
1137 
1138     return -1;
1139 }
1140 
1141 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1142                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1143 {
1144     ppc_dcr_t *dcr_env;
1145     ppc_dcrn_t *dcr;
1146 
1147     dcr_env = env->dcr_env;
1148     if (dcr_env == NULL)
1149         return -1;
1150     if (dcrn < 0 || dcrn >= DCRN_NB)
1151         return -1;
1152     dcr = &dcr_env->dcrn[dcrn];
1153     if (dcr->opaque != NULL ||
1154         dcr->dcr_read != NULL ||
1155         dcr->dcr_write != NULL)
1156         return -1;
1157     dcr->opaque = opaque;
1158     dcr->dcr_read = dcr_read;
1159     dcr->dcr_write = dcr_write;
1160 
1161     return 0;
1162 }
1163 
1164 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1165                   int (*write_error)(int dcrn))
1166 {
1167     ppc_dcr_t *dcr_env;
1168 
1169     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1170     dcr_env->read_error = read_error;
1171     dcr_env->write_error = write_error;
1172     env->dcr_env = dcr_env;
1173 
1174     return 0;
1175 }
1176 
1177 /*****************************************************************************/
1178 /* Debug port */
1179 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1180 {
1181     addr &= 0xF;
1182     switch (addr) {
1183     case 0:
1184         printf("%c", val);
1185         break;
1186     case 1:
1187         printf("\n");
1188         fflush(stdout);
1189         break;
1190     case 2:
1191         printf("Set loglevel to %04" PRIx32 "\n", val);
1192         qemu_set_log(val | 0x100);
1193         break;
1194     }
1195 }
1196 
1197 /*****************************************************************************/
1198 /* NVRAM helpers */
1199 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1200 {
1201     return (*nvram->read_fn)(nvram->opaque, addr);
1202 }
1203 
1204 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1205 {
1206     (*nvram->write_fn)(nvram->opaque, addr, val);
1207 }
1208 
1209 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1210 {
1211     nvram_write(nvram, addr, value);
1212 }
1213 
1214 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1215 {
1216     return nvram_read(nvram, addr);
1217 }
1218 
1219 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1220 {
1221     nvram_write(nvram, addr, value >> 8);
1222     nvram_write(nvram, addr + 1, value & 0xFF);
1223 }
1224 
1225 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1226 {
1227     uint16_t tmp;
1228 
1229     tmp = nvram_read(nvram, addr) << 8;
1230     tmp |= nvram_read(nvram, addr + 1);
1231 
1232     return tmp;
1233 }
1234 
1235 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1236 {
1237     nvram_write(nvram, addr, value >> 24);
1238     nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1239     nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1240     nvram_write(nvram, addr + 3, value & 0xFF);
1241 }
1242 
1243 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1244 {
1245     uint32_t tmp;
1246 
1247     tmp = nvram_read(nvram, addr) << 24;
1248     tmp |= nvram_read(nvram, addr + 1) << 16;
1249     tmp |= nvram_read(nvram, addr + 2) << 8;
1250     tmp |= nvram_read(nvram, addr + 3);
1251 
1252     return tmp;
1253 }
1254 
1255 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1256                              uint32_t max)
1257 {
1258     int i;
1259 
1260     for (i = 0; i < max && str[i] != '\0'; i++) {
1261         nvram_write(nvram, addr + i, str[i]);
1262     }
1263     nvram_write(nvram, addr + i, str[i]);
1264     nvram_write(nvram, addr + max - 1, '\0');
1265 }
1266 
1267 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1268 {
1269     int i;
1270 
1271     memset(dst, 0, max);
1272     for (i = 0; i < max; i++) {
1273         dst[i] = NVRAM_get_byte(nvram, addr + i);
1274         if (dst[i] == '\0')
1275             break;
1276     }
1277 
1278     return i;
1279 }
1280 
1281 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1282 {
1283     uint16_t tmp;
1284     uint16_t pd, pd1, pd2;
1285 
1286     tmp = prev >> 8;
1287     pd = prev ^ value;
1288     pd1 = pd & 0x000F;
1289     pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1290     tmp ^= (pd1 << 3) | (pd1 << 8);
1291     tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1292 
1293     return tmp;
1294 }
1295 
1296 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1297 {
1298     uint32_t i;
1299     uint16_t crc = 0xFFFF;
1300     int odd;
1301 
1302     odd = count & 1;
1303     count &= ~1;
1304     for (i = 0; i != count; i++) {
1305         crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1306     }
1307     if (odd) {
1308         crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1309     }
1310 
1311     return crc;
1312 }
1313 
1314 #define CMDLINE_ADDR 0x017ff000
1315 
1316 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1317                           const char *arch,
1318                           uint32_t RAM_size, int boot_device,
1319                           uint32_t kernel_image, uint32_t kernel_size,
1320                           const char *cmdline,
1321                           uint32_t initrd_image, uint32_t initrd_size,
1322                           uint32_t NVRAM_image,
1323                           int width, int height, int depth)
1324 {
1325     uint16_t crc;
1326 
1327     /* Set parameters for Open Hack'Ware BIOS */
1328     NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1329     NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1330     NVRAM_set_word(nvram,   0x14, NVRAM_size);
1331     NVRAM_set_string(nvram, 0x20, arch, 16);
1332     NVRAM_set_lword(nvram,  0x30, RAM_size);
1333     NVRAM_set_byte(nvram,   0x34, boot_device);
1334     NVRAM_set_lword(nvram,  0x38, kernel_image);
1335     NVRAM_set_lword(nvram,  0x3C, kernel_size);
1336     if (cmdline) {
1337         /* XXX: put the cmdline in NVRAM too ? */
1338         pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1339         NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1340         NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1341     } else {
1342         NVRAM_set_lword(nvram,  0x40, 0);
1343         NVRAM_set_lword(nvram,  0x44, 0);
1344     }
1345     NVRAM_set_lword(nvram,  0x48, initrd_image);
1346     NVRAM_set_lword(nvram,  0x4C, initrd_size);
1347     NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1348 
1349     NVRAM_set_word(nvram,   0x54, width);
1350     NVRAM_set_word(nvram,   0x56, height);
1351     NVRAM_set_word(nvram,   0x58, depth);
1352     crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1353     NVRAM_set_word(nvram,   0xFC, crc);
1354 
1355     return 0;
1356 }
1357