xref: /openbmc/qemu/hw/ppc/ppc.c (revision c5b4ee5b)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
42 
43 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
44 {
45     CPUState *cs = CPU(cpu);
46     CPUPPCState *env = &cpu->env;
47     unsigned int old_pending;
48     bool locked = false;
49 
50     /* We may already have the BQL if coming from the reset path */
51     if (!qemu_mutex_iothread_locked()) {
52         locked = true;
53         qemu_mutex_lock_iothread();
54     }
55 
56     old_pending = env->pending_interrupts;
57 
58     if (level) {
59         env->pending_interrupts |= 1 << n_IRQ;
60         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
61     } else {
62         env->pending_interrupts &= ~(1 << n_IRQ);
63         if (env->pending_interrupts == 0) {
64             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
65         }
66     }
67 
68     if (old_pending != env->pending_interrupts) {
69         kvmppc_set_interrupt(cpu, n_IRQ, level);
70     }
71 
72 
73     trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts,
74                            CPU(cpu)->interrupt_request);
75 
76     if (locked) {
77         qemu_mutex_unlock_iothread();
78     }
79 }
80 
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque, int pin, int level)
83 {
84     PowerPCCPU *cpu = opaque;
85     CPUPPCState *env = &cpu->env;
86     int cur_level;
87 
88     trace_ppc_irq_set(env, pin, level);
89 
90     cur_level = (env->irq_input_state >> pin) & 1;
91     /* Don't generate spurious events */
92     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
93         CPUState *cs = CPU(cpu);
94 
95         switch (pin) {
96         case PPC6xx_INPUT_TBEN:
97             /* Level sensitive - active high */
98             trace_ppc_irq_set_state("time base", level);
99             if (level) {
100                 cpu_ppc_tb_start(env);
101             } else {
102                 cpu_ppc_tb_stop(env);
103             }
104             break;
105         case PPC6xx_INPUT_INT:
106             /* Level sensitive - active high */
107             trace_ppc_irq_set_state("external IRQ", level);
108             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
109             break;
110         case PPC6xx_INPUT_SMI:
111             /* Level sensitive - active high */
112             trace_ppc_irq_set_state("SMI IRQ", level);
113             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
114             break;
115         case PPC6xx_INPUT_MCP:
116             /* Negative edge sensitive */
117             /* XXX: TODO: actual reaction may depends on HID0 status
118              *            603/604/740/750: check HID0[EMCP]
119              */
120             if (cur_level == 1 && level == 0) {
121                 trace_ppc_irq_set_state("machine check", 1);
122                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
123             }
124             break;
125         case PPC6xx_INPUT_CKSTP_IN:
126             /* Level sensitive - active low */
127             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128             /* XXX: Note that the only way to restart the CPU is to reset it */
129             if (level) {
130                 trace_ppc_irq_cpu("stop");
131                 cs->halted = 1;
132             }
133             break;
134         case PPC6xx_INPUT_HRESET:
135             /* Level sensitive - active low */
136             if (level) {
137                 trace_ppc_irq_reset("CPU");
138                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
139             }
140             break;
141         case PPC6xx_INPUT_SRESET:
142             trace_ppc_irq_set_state("RESET IRQ", level);
143             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
144             break;
145         default:
146             g_assert_not_reached();
147         }
148         if (level)
149             env->irq_input_state |= 1 << pin;
150         else
151             env->irq_input_state &= ~(1 << pin);
152     }
153 }
154 
155 void ppc6xx_irq_init(PowerPCCPU *cpu)
156 {
157     CPUPPCState *env = &cpu->env;
158 
159     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
160                                                   PPC6xx_INPUT_NB);
161 }
162 
163 #if defined(TARGET_PPC64)
164 /* PowerPC 970 internal IRQ controller */
165 static void ppc970_set_irq(void *opaque, int pin, int level)
166 {
167     PowerPCCPU *cpu = opaque;
168     CPUPPCState *env = &cpu->env;
169     int cur_level;
170 
171     trace_ppc_irq_set(env, pin, level);
172 
173     cur_level = (env->irq_input_state >> pin) & 1;
174     /* Don't generate spurious events */
175     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
176         CPUState *cs = CPU(cpu);
177 
178         switch (pin) {
179         case PPC970_INPUT_INT:
180             /* Level sensitive - active high */
181             trace_ppc_irq_set_state("external IRQ", level);
182             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
183             break;
184         case PPC970_INPUT_THINT:
185             /* Level sensitive - active high */
186             trace_ppc_irq_set_state("SMI IRQ", level);
187             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
188             break;
189         case PPC970_INPUT_MCP:
190             /* Negative edge sensitive */
191             /* XXX: TODO: actual reaction may depends on HID0 status
192              *            603/604/740/750: check HID0[EMCP]
193              */
194             if (cur_level == 1 && level == 0) {
195                 trace_ppc_irq_set_state("machine check", 1);
196                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
197             }
198             break;
199         case PPC970_INPUT_CKSTP:
200             /* Level sensitive - active low */
201             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
202             if (level) {
203                 trace_ppc_irq_cpu("stop");
204                 cs->halted = 1;
205             } else {
206                 trace_ppc_irq_cpu("restart");
207                 cs->halted = 0;
208                 qemu_cpu_kick(cs);
209             }
210             break;
211         case PPC970_INPUT_HRESET:
212             /* Level sensitive - active low */
213             if (level) {
214                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
215             }
216             break;
217         case PPC970_INPUT_SRESET:
218             trace_ppc_irq_set_state("RESET IRQ", level);
219             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
220             break;
221         case PPC970_INPUT_TBEN:
222             trace_ppc_irq_set_state("TBEN IRQ", level);
223             /* XXX: TODO */
224             break;
225         default:
226             g_assert_not_reached();
227         }
228         if (level)
229             env->irq_input_state |= 1 << pin;
230         else
231             env->irq_input_state &= ~(1 << pin);
232     }
233 }
234 
235 void ppc970_irq_init(PowerPCCPU *cpu)
236 {
237     CPUPPCState *env = &cpu->env;
238 
239     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
240                                                   PPC970_INPUT_NB);
241 }
242 
243 /* POWER7 internal IRQ controller */
244 static void power7_set_irq(void *opaque, int pin, int level)
245 {
246     PowerPCCPU *cpu = opaque;
247 
248     trace_ppc_irq_set(&cpu->env, pin, level);
249 
250     switch (pin) {
251     case POWER7_INPUT_INT:
252         /* Level sensitive - active high */
253         trace_ppc_irq_set_state("external IRQ", level);
254         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
255         break;
256     default:
257         g_assert_not_reached();
258     }
259 }
260 
261 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
262 {
263     CPUPPCState *env = &cpu->env;
264 
265     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
266                                                   POWER7_INPUT_NB);
267 }
268 
269 /* POWER9 internal IRQ controller */
270 static void power9_set_irq(void *opaque, int pin, int level)
271 {
272     PowerPCCPU *cpu = opaque;
273 
274     trace_ppc_irq_set(&cpu->env, pin, level);
275 
276     switch (pin) {
277     case POWER9_INPUT_INT:
278         /* Level sensitive - active high */
279         trace_ppc_irq_set_state("external IRQ", level);
280         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
281         break;
282     case POWER9_INPUT_HINT:
283         /* Level sensitive - active high */
284         trace_ppc_irq_set_state("HV external IRQ", level);
285         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
286         break;
287     default:
288         g_assert_not_reached();
289         return;
290     }
291 }
292 
293 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
294 {
295     CPUPPCState *env = &cpu->env;
296 
297     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
298                                                   POWER9_INPUT_NB);
299 }
300 #endif /* defined(TARGET_PPC64) */
301 
302 void ppc40x_core_reset(PowerPCCPU *cpu)
303 {
304     CPUPPCState *env = &cpu->env;
305     target_ulong dbsr;
306 
307     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
308     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
309     dbsr = env->spr[SPR_40x_DBSR];
310     dbsr &= ~0x00000300;
311     dbsr |= 0x00000100;
312     env->spr[SPR_40x_DBSR] = dbsr;
313 }
314 
315 void ppc40x_chip_reset(PowerPCCPU *cpu)
316 {
317     CPUPPCState *env = &cpu->env;
318     target_ulong dbsr;
319 
320     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
321     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
322     /* XXX: TODO reset all internal peripherals */
323     dbsr = env->spr[SPR_40x_DBSR];
324     dbsr &= ~0x00000300;
325     dbsr |= 0x00000200;
326     env->spr[SPR_40x_DBSR] = dbsr;
327 }
328 
329 void ppc40x_system_reset(PowerPCCPU *cpu)
330 {
331     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
332     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
333 }
334 
335 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
336 {
337     PowerPCCPU *cpu = env_archcpu(env);
338 
339     switch ((val >> 28) & 0x3) {
340     case 0x0:
341         /* No action */
342         break;
343     case 0x1:
344         /* Core reset */
345         ppc40x_core_reset(cpu);
346         break;
347     case 0x2:
348         /* Chip reset */
349         ppc40x_chip_reset(cpu);
350         break;
351     case 0x3:
352         /* System reset */
353         ppc40x_system_reset(cpu);
354         break;
355     }
356 }
357 
358 /* PowerPC 40x internal IRQ controller */
359 static void ppc40x_set_irq(void *opaque, int pin, int level)
360 {
361     PowerPCCPU *cpu = opaque;
362     CPUPPCState *env = &cpu->env;
363     int cur_level;
364 
365     trace_ppc_irq_set(env, pin, level);
366 
367     cur_level = (env->irq_input_state >> pin) & 1;
368     /* Don't generate spurious events */
369     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
370         CPUState *cs = CPU(cpu);
371 
372         switch (pin) {
373         case PPC40x_INPUT_RESET_SYS:
374             if (level) {
375                 trace_ppc_irq_reset("system");
376                 ppc40x_system_reset(cpu);
377             }
378             break;
379         case PPC40x_INPUT_RESET_CHIP:
380             if (level) {
381                 trace_ppc_irq_reset("chip");
382                 ppc40x_chip_reset(cpu);
383             }
384             break;
385         case PPC40x_INPUT_RESET_CORE:
386             /* XXX: TODO: update DBSR[MRR] */
387             if (level) {
388                 trace_ppc_irq_reset("core");
389                 ppc40x_core_reset(cpu);
390             }
391             break;
392         case PPC40x_INPUT_CINT:
393             /* Level sensitive - active high */
394             trace_ppc_irq_set_state("critical IRQ", level);
395             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
396             break;
397         case PPC40x_INPUT_INT:
398             /* Level sensitive - active high */
399             trace_ppc_irq_set_state("external IRQ", level);
400             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
401             break;
402         case PPC40x_INPUT_HALT:
403             /* Level sensitive - active low */
404             if (level) {
405                 trace_ppc_irq_cpu("stop");
406                 cs->halted = 1;
407             } else {
408                 trace_ppc_irq_cpu("restart");
409                 cs->halted = 0;
410                 qemu_cpu_kick(cs);
411             }
412             break;
413         case PPC40x_INPUT_DEBUG:
414             /* Level sensitive - active high */
415             trace_ppc_irq_set_state("debug pin", level);
416             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
417             break;
418         default:
419             g_assert_not_reached();
420         }
421         if (level)
422             env->irq_input_state |= 1 << pin;
423         else
424             env->irq_input_state &= ~(1 << pin);
425     }
426 }
427 
428 void ppc40x_irq_init(PowerPCCPU *cpu)
429 {
430     CPUPPCState *env = &cpu->env;
431 
432     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
433                                                   cpu, PPC40x_INPUT_NB);
434 }
435 
436 /* PowerPC E500 internal IRQ controller */
437 static void ppce500_set_irq(void *opaque, int pin, int level)
438 {
439     PowerPCCPU *cpu = opaque;
440     CPUPPCState *env = &cpu->env;
441     int cur_level;
442 
443     trace_ppc_irq_set(env, pin, level);
444 
445     cur_level = (env->irq_input_state >> pin) & 1;
446     /* Don't generate spurious events */
447     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
448         switch (pin) {
449         case PPCE500_INPUT_MCK:
450             if (level) {
451                 trace_ppc_irq_reset("system");
452                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
453             }
454             break;
455         case PPCE500_INPUT_RESET_CORE:
456             if (level) {
457                 trace_ppc_irq_reset("core");
458                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
459             }
460             break;
461         case PPCE500_INPUT_CINT:
462             /* Level sensitive - active high */
463             trace_ppc_irq_set_state("critical IRQ", level);
464             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
465             break;
466         case PPCE500_INPUT_INT:
467             /* Level sensitive - active high */
468             trace_ppc_irq_set_state("core IRQ", level);
469             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
470             break;
471         case PPCE500_INPUT_DEBUG:
472             /* Level sensitive - active high */
473             trace_ppc_irq_set_state("debug pin", level);
474             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
475             break;
476         default:
477             g_assert_not_reached();
478         }
479         if (level)
480             env->irq_input_state |= 1 << pin;
481         else
482             env->irq_input_state &= ~(1 << pin);
483     }
484 }
485 
486 void ppce500_irq_init(PowerPCCPU *cpu)
487 {
488     CPUPPCState *env = &cpu->env;
489 
490     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
491                                                   cpu, PPCE500_INPUT_NB);
492 }
493 
494 /* Enable or Disable the E500 EPR capability */
495 void ppce500_set_mpic_proxy(bool enabled)
496 {
497     CPUState *cs;
498 
499     CPU_FOREACH(cs) {
500         PowerPCCPU *cpu = POWERPC_CPU(cs);
501 
502         cpu->env.mpic_proxy = enabled;
503         if (kvm_enabled()) {
504             kvmppc_set_mpic_proxy(cpu, enabled);
505         }
506     }
507 }
508 
509 /*****************************************************************************/
510 /* PowerPC time base and decrementer emulation */
511 
512 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
513 {
514     /* TB time in tb periods */
515     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
516 }
517 
518 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
519 {
520     ppc_tb_t *tb_env = env->tb_env;
521     uint64_t tb;
522 
523     if (kvm_enabled()) {
524         return env->spr[SPR_TBL];
525     }
526 
527     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
528     trace_ppc_tb_load(tb);
529 
530     return tb;
531 }
532 
533 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
534 {
535     ppc_tb_t *tb_env = env->tb_env;
536     uint64_t tb;
537 
538     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
539     trace_ppc_tb_load(tb);
540 
541     return tb >> 32;
542 }
543 
544 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
545 {
546     if (kvm_enabled()) {
547         return env->spr[SPR_TBU];
548     }
549 
550     return _cpu_ppc_load_tbu(env);
551 }
552 
553 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
554                                     int64_t *tb_offsetp, uint64_t value)
555 {
556     *tb_offsetp = value -
557         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
558 
559     trace_ppc_tb_store(value, *tb_offsetp);
560 }
561 
562 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
563 {
564     ppc_tb_t *tb_env = env->tb_env;
565     uint64_t tb;
566 
567     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
568     tb &= 0xFFFFFFFF00000000ULL;
569     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
570                      &tb_env->tb_offset, tb | (uint64_t)value);
571 }
572 
573 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
574 {
575     ppc_tb_t *tb_env = env->tb_env;
576     uint64_t tb;
577 
578     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579     tb &= 0x00000000FFFFFFFFULL;
580     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
581                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
582 }
583 
584 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
585 {
586     _cpu_ppc_store_tbu(env, value);
587 }
588 
589 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
590 {
591     ppc_tb_t *tb_env = env->tb_env;
592     uint64_t tb;
593 
594     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
595     trace_ppc_tb_load(tb);
596 
597     return tb;
598 }
599 
600 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
601 {
602     ppc_tb_t *tb_env = env->tb_env;
603     uint64_t tb;
604 
605     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
606     trace_ppc_tb_load(tb);
607 
608     return tb >> 32;
609 }
610 
611 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
612 {
613     ppc_tb_t *tb_env = env->tb_env;
614     uint64_t tb;
615 
616     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
617     tb &= 0xFFFFFFFF00000000ULL;
618     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
619                      &tb_env->atb_offset, tb | (uint64_t)value);
620 }
621 
622 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
623 {
624     ppc_tb_t *tb_env = env->tb_env;
625     uint64_t tb;
626 
627     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
628     tb &= 0x00000000FFFFFFFFULL;
629     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
630                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
631 }
632 
633 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
634 {
635     ppc_tb_t *tb_env = env->tb_env;
636 
637     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
638                           tb_env->vtb_offset);
639 }
640 
641 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
642 {
643     ppc_tb_t *tb_env = env->tb_env;
644 
645     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
646                      &tb_env->vtb_offset, value);
647 }
648 
649 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
650 {
651     ppc_tb_t *tb_env = env->tb_env;
652     uint64_t tb;
653 
654     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
655                         tb_env->tb_offset);
656     tb &= 0xFFFFFFUL;
657     tb |= (value & ~0xFFFFFFUL);
658     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
659                      &tb_env->tb_offset, tb);
660 }
661 
662 static void cpu_ppc_tb_stop (CPUPPCState *env)
663 {
664     ppc_tb_t *tb_env = env->tb_env;
665     uint64_t tb, atb, vmclk;
666 
667     /* If the time base is already frozen, do nothing */
668     if (tb_env->tb_freq != 0) {
669         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
670         /* Get the time base */
671         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
672         /* Get the alternate time base */
673         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
674         /* Store the time base value (ie compute the current offset) */
675         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
676         /* Store the alternate time base value (compute the current offset) */
677         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
678         /* Set the time base frequency to zero */
679         tb_env->tb_freq = 0;
680         /* Now, the time bases are frozen to tb_offset / atb_offset value */
681     }
682 }
683 
684 static void cpu_ppc_tb_start (CPUPPCState *env)
685 {
686     ppc_tb_t *tb_env = env->tb_env;
687     uint64_t tb, atb, vmclk;
688 
689     /* If the time base is not frozen, do nothing */
690     if (tb_env->tb_freq == 0) {
691         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
692         /* Get the time base from tb_offset */
693         tb = tb_env->tb_offset;
694         /* Get the alternate time base from atb_offset */
695         atb = tb_env->atb_offset;
696         /* Restore the tb frequency from the decrementer frequency */
697         tb_env->tb_freq = tb_env->decr_freq;
698         /* Store the time base value */
699         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
700         /* Store the alternate time base value */
701         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
702     }
703 }
704 
705 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
706 {
707     ppc_tb_t *tb_env = env->tb_env;
708     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
709     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
710 }
711 
712 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
713 {
714     ppc_tb_t *tb_env = env->tb_env;
715     int64_t decr, diff;
716 
717     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
718     if (diff >= 0) {
719         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
720     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
721         decr = 0;
722     }  else {
723         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
724     }
725     trace_ppc_decr_load(decr);
726 
727     return decr;
728 }
729 
730 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
731 {
732     ppc_tb_t *tb_env = env->tb_env;
733     uint64_t decr;
734 
735     if (kvm_enabled()) {
736         return env->spr[SPR_DECR];
737     }
738 
739     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
740 
741     /*
742      * If large decrementer is enabled then the decrementer is signed extened
743      * to 64 bits, otherwise it is a 32 bit value.
744      */
745     if (env->spr[SPR_LPCR] & LPCR_LD) {
746         return decr;
747     }
748     return (uint32_t) decr;
749 }
750 
751 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
752 {
753     PowerPCCPU *cpu = env_archcpu(env);
754     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
755     ppc_tb_t *tb_env = env->tb_env;
756     uint64_t hdecr;
757 
758     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
759 
760     /*
761      * If we have a large decrementer (POWER9 or later) then hdecr is sign
762      * extended to 64 bits, otherwise it is 32 bits.
763      */
764     if (pcc->lrg_decr_bits > 32) {
765         return hdecr;
766     }
767     return (uint32_t) hdecr;
768 }
769 
770 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
771 {
772     ppc_tb_t *tb_env = env->tb_env;
773 
774     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
775                           tb_env->purr_offset);
776 }
777 
778 /* When decrementer expires,
779  * all we need to do is generate or queue a CPU exception
780  */
781 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
782 {
783     /* Raise it */
784     trace_ppc_decr_excp("raise");
785     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
786 }
787 
788 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
789 {
790     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
791 }
792 
793 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
794 {
795     CPUPPCState *env = &cpu->env;
796 
797     /* Raise it */
798     trace_ppc_decr_excp("raise HV");
799 
800     /* The architecture specifies that we don't deliver HDEC
801      * interrupts in a PM state. Not only they don't cause a
802      * wakeup but they also get effectively discarded.
803      */
804     if (!env->resume_as_sreset) {
805         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
806     }
807 }
808 
809 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
810 {
811     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
812 }
813 
814 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
815                                  QEMUTimer *timer,
816                                  void (*raise_excp)(void *),
817                                  void (*lower_excp)(PowerPCCPU *),
818                                  target_ulong decr, target_ulong value,
819                                  int nr_bits)
820 {
821     CPUPPCState *env = &cpu->env;
822     ppc_tb_t *tb_env = env->tb_env;
823     uint64_t now, next;
824     int64_t signed_value;
825     int64_t signed_decr;
826 
827     /* Truncate value to decr_width and sign extend for simplicity */
828     signed_value = sextract64(value, 0, nr_bits);
829     signed_decr = sextract64(decr, 0, nr_bits);
830 
831     trace_ppc_decr_store(nr_bits, decr, value);
832 
833     if (kvm_enabled()) {
834         /* KVM handles decrementer exceptions, we don't need our own timer */
835         return;
836     }
837 
838     /*
839      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
840      * interrupt.
841      *
842      * If we get a really small DEC value, we can assume that by the time we
843      * handled it we should inject an interrupt already.
844      *
845      * On MSB level based DEC implementations the MSB always means the interrupt
846      * is pending, so raise it on those.
847      *
848      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
849      * an edge interrupt, so raise it here too.
850      */
851     if ((signed_value < 3) ||
852         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
853         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
854           && signed_decr >= 0)) {
855         (*raise_excp)(cpu);
856         return;
857     }
858 
859     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
860     if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
861         (*lower_excp)(cpu);
862     }
863 
864     /* Calculate the next timer event */
865     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
866     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
867     *nextp = next;
868 
869     /* Adjust timer */
870     timer_mod(timer, next);
871 }
872 
873 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
874                                        target_ulong value, int nr_bits)
875 {
876     ppc_tb_t *tb_env = cpu->env.tb_env;
877 
878     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
879                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
880                          value, nr_bits);
881 }
882 
883 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
884 {
885     PowerPCCPU *cpu = env_archcpu(env);
886     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
887     int nr_bits = 32;
888 
889     if (env->spr[SPR_LPCR] & LPCR_LD) {
890         nr_bits = pcc->lrg_decr_bits;
891     }
892 
893     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
894 }
895 
896 static void cpu_ppc_decr_cb(void *opaque)
897 {
898     PowerPCCPU *cpu = opaque;
899 
900     cpu_ppc_decr_excp(cpu);
901 }
902 
903 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
904                                         target_ulong value, int nr_bits)
905 {
906     ppc_tb_t *tb_env = cpu->env.tb_env;
907 
908     if (tb_env->hdecr_timer != NULL) {
909         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
910                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
911                              hdecr, value, nr_bits);
912     }
913 }
914 
915 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
916 {
917     PowerPCCPU *cpu = env_archcpu(env);
918     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
919 
920     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
921                          pcc->lrg_decr_bits);
922 }
923 
924 static void cpu_ppc_hdecr_cb(void *opaque)
925 {
926     PowerPCCPU *cpu = opaque;
927 
928     cpu_ppc_hdecr_excp(cpu);
929 }
930 
931 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
932 {
933     ppc_tb_t *tb_env = env->tb_env;
934 
935     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
936                      &tb_env->purr_offset, value);
937 }
938 
939 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
940 {
941     CPUPPCState *env = opaque;
942     PowerPCCPU *cpu = env_archcpu(env);
943     ppc_tb_t *tb_env = env->tb_env;
944 
945     tb_env->tb_freq = freq;
946     tb_env->decr_freq = freq;
947     /* There is a bug in Linux 2.4 kernels:
948      * if a decrementer exception is pending when it enables msr_ee at startup,
949      * it's not ready to handle it...
950      */
951     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
952     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
953     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
954 }
955 
956 static void timebase_save(PPCTimebase *tb)
957 {
958     uint64_t ticks = cpu_get_host_ticks();
959     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
960 
961     if (!first_ppc_cpu->env.tb_env) {
962         error_report("No timebase object");
963         return;
964     }
965 
966     /* not used anymore, we keep it for compatibility */
967     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
968     /*
969      * tb_offset is only expected to be changed by QEMU so
970      * there is no need to update it from KVM here
971      */
972     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
973 
974     tb->runstate_paused =
975         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
976 }
977 
978 static void timebase_load(PPCTimebase *tb)
979 {
980     CPUState *cpu;
981     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
982     int64_t tb_off_adj, tb_off;
983     unsigned long freq;
984 
985     if (!first_ppc_cpu->env.tb_env) {
986         error_report("No timebase object");
987         return;
988     }
989 
990     freq = first_ppc_cpu->env.tb_env->tb_freq;
991 
992     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
993 
994     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
995     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
996                         (tb_off_adj - tb_off) / freq);
997 
998     /* Set new offset to all CPUs */
999     CPU_FOREACH(cpu) {
1000         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1001         pcpu->env.tb_env->tb_offset = tb_off_adj;
1002         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1003     }
1004 }
1005 
1006 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1007                                    RunState state)
1008 {
1009     PPCTimebase *tb = opaque;
1010 
1011     if (running) {
1012         timebase_load(tb);
1013     } else {
1014         timebase_save(tb);
1015     }
1016 }
1017 
1018 /*
1019  * When migrating a running guest, read the clock just
1020  * before migration, so that the guest clock counts
1021  * during the events between:
1022  *
1023  *  * vm_stop()
1024  *  *
1025  *  * pre_save()
1026  *
1027  *  This reduces clock difference on migration from 5s
1028  *  to 0.1s (when max_downtime == 5s), because sending the
1029  *  final pages of memory (which happens between vm_stop()
1030  *  and pre_save()) takes max_downtime.
1031  */
1032 static int timebase_pre_save(void *opaque)
1033 {
1034     PPCTimebase *tb = opaque;
1035 
1036     /* guest_timebase won't be overridden in case of paused guest or savevm */
1037     if (!tb->runstate_paused) {
1038         timebase_save(tb);
1039     }
1040 
1041     return 0;
1042 }
1043 
1044 const VMStateDescription vmstate_ppc_timebase = {
1045     .name = "timebase",
1046     .version_id = 1,
1047     .minimum_version_id = 1,
1048     .minimum_version_id_old = 1,
1049     .pre_save = timebase_pre_save,
1050     .fields      = (VMStateField []) {
1051         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1052         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1053         VMSTATE_END_OF_LIST()
1054     },
1055 };
1056 
1057 /* Set up (once) timebase frequency (in Hz) */
1058 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1059 {
1060     PowerPCCPU *cpu = env_archcpu(env);
1061     ppc_tb_t *tb_env;
1062 
1063     tb_env = g_malloc0(sizeof(ppc_tb_t));
1064     env->tb_env = tb_env;
1065     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1066     if (is_book3s_arch2x(env)) {
1067         /* All Book3S 64bit CPUs implement level based DEC logic */
1068         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1069     }
1070     /* Create new timer */
1071     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1072     if (env->has_hv_mode) {
1073         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1074                                                 cpu);
1075     } else {
1076         tb_env->hdecr_timer = NULL;
1077     }
1078     cpu_ppc_set_tb_clk(env, freq);
1079 
1080     return &cpu_ppc_set_tb_clk;
1081 }
1082 
1083 /* Specific helpers for POWER & PowerPC 601 RTC */
1084 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1085 {
1086     _cpu_ppc_store_tbu(env, value);
1087 }
1088 
1089 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1090 {
1091     return _cpu_ppc_load_tbu(env);
1092 }
1093 
1094 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1095 {
1096     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1097 }
1098 
1099 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1100 {
1101     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1102 }
1103 
1104 /*****************************************************************************/
1105 /* PowerPC 40x timers */
1106 
1107 /* PIT, FIT & WDT */
1108 typedef struct ppc40x_timer_t ppc40x_timer_t;
1109 struct ppc40x_timer_t {
1110     uint64_t pit_reload;  /* PIT auto-reload value        */
1111     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1112     QEMUTimer *fit_timer;
1113     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1114     QEMUTimer *wdt_timer;
1115 
1116     /* 405 have the PIT, 440 have a DECR.  */
1117     unsigned int decr_excp;
1118 };
1119 
1120 /* Fixed interval timer */
1121 static void cpu_4xx_fit_cb (void *opaque)
1122 {
1123     PowerPCCPU *cpu;
1124     CPUPPCState *env;
1125     ppc_tb_t *tb_env;
1126     ppc40x_timer_t *ppc40x_timer;
1127     uint64_t now, next;
1128 
1129     env = opaque;
1130     cpu = env_archcpu(env);
1131     tb_env = env->tb_env;
1132     ppc40x_timer = tb_env->opaque;
1133     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1134     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1135     case 0:
1136         next = 1 << 9;
1137         break;
1138     case 1:
1139         next = 1 << 13;
1140         break;
1141     case 2:
1142         next = 1 << 17;
1143         break;
1144     case 3:
1145         next = 1 << 21;
1146         break;
1147     default:
1148         /* Cannot occur, but makes gcc happy */
1149         return;
1150     }
1151     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1152     if (next == now)
1153         next++;
1154     timer_mod(ppc40x_timer->fit_timer, next);
1155     env->spr[SPR_40x_TSR] |= 1 << 26;
1156     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1157         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1158     }
1159     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1160                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1161 }
1162 
1163 /* Programmable interval timer */
1164 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1165 {
1166     ppc40x_timer_t *ppc40x_timer;
1167     uint64_t now, next;
1168 
1169     ppc40x_timer = tb_env->opaque;
1170     if (ppc40x_timer->pit_reload <= 1 ||
1171         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1172         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1173         /* Stop PIT */
1174         trace_ppc4xx_pit_stop();
1175         timer_del(tb_env->decr_timer);
1176     } else {
1177         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1178         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1179         next = now + muldiv64(ppc40x_timer->pit_reload,
1180                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1181         if (is_excp)
1182             next += tb_env->decr_next - now;
1183         if (next == now)
1184             next++;
1185         timer_mod(tb_env->decr_timer, next);
1186         tb_env->decr_next = next;
1187     }
1188 }
1189 
1190 static void cpu_4xx_pit_cb (void *opaque)
1191 {
1192     PowerPCCPU *cpu;
1193     CPUPPCState *env;
1194     ppc_tb_t *tb_env;
1195     ppc40x_timer_t *ppc40x_timer;
1196 
1197     env = opaque;
1198     cpu = env_archcpu(env);
1199     tb_env = env->tb_env;
1200     ppc40x_timer = tb_env->opaque;
1201     env->spr[SPR_40x_TSR] |= 1 << 27;
1202     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1203         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1204     }
1205     start_stop_pit(env, tb_env, 1);
1206     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1207            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1208            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1209            ppc40x_timer->pit_reload);
1210 }
1211 
1212 /* Watchdog timer */
1213 static void cpu_4xx_wdt_cb (void *opaque)
1214 {
1215     PowerPCCPU *cpu;
1216     CPUPPCState *env;
1217     ppc_tb_t *tb_env;
1218     ppc40x_timer_t *ppc40x_timer;
1219     uint64_t now, next;
1220 
1221     env = opaque;
1222     cpu = env_archcpu(env);
1223     tb_env = env->tb_env;
1224     ppc40x_timer = tb_env->opaque;
1225     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1226     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1227     case 0:
1228         next = 1 << 17;
1229         break;
1230     case 1:
1231         next = 1 << 21;
1232         break;
1233     case 2:
1234         next = 1 << 25;
1235         break;
1236     case 3:
1237         next = 1 << 29;
1238         break;
1239     default:
1240         /* Cannot occur, but makes gcc happy */
1241         return;
1242     }
1243     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1244     if (next == now)
1245         next++;
1246     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1247     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1248     case 0x0:
1249     case 0x1:
1250         timer_mod(ppc40x_timer->wdt_timer, next);
1251         ppc40x_timer->wdt_next = next;
1252         env->spr[SPR_40x_TSR] |= 1U << 31;
1253         break;
1254     case 0x2:
1255         timer_mod(ppc40x_timer->wdt_timer, next);
1256         ppc40x_timer->wdt_next = next;
1257         env->spr[SPR_40x_TSR] |= 1 << 30;
1258         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1259             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1260         }
1261         break;
1262     case 0x3:
1263         env->spr[SPR_40x_TSR] &= ~0x30000000;
1264         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1265         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1266         case 0x0:
1267             /* No reset */
1268             break;
1269         case 0x1: /* Core reset */
1270             ppc40x_core_reset(cpu);
1271             break;
1272         case 0x2: /* Chip reset */
1273             ppc40x_chip_reset(cpu);
1274             break;
1275         case 0x3: /* System reset */
1276             ppc40x_system_reset(cpu);
1277             break;
1278         }
1279     }
1280 }
1281 
1282 void store_40x_pit (CPUPPCState *env, target_ulong val)
1283 {
1284     ppc_tb_t *tb_env;
1285     ppc40x_timer_t *ppc40x_timer;
1286 
1287     tb_env = env->tb_env;
1288     ppc40x_timer = tb_env->opaque;
1289     trace_ppc40x_store_pit(val);
1290     ppc40x_timer->pit_reload = val;
1291     start_stop_pit(env, tb_env, 0);
1292 }
1293 
1294 target_ulong load_40x_pit (CPUPPCState *env)
1295 {
1296     return cpu_ppc_load_decr(env);
1297 }
1298 
1299 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1300 {
1301     CPUPPCState *env = opaque;
1302     ppc_tb_t *tb_env = env->tb_env;
1303 
1304     trace_ppc40x_set_tb_clk(freq);
1305     tb_env->tb_freq = freq;
1306     tb_env->decr_freq = freq;
1307     /* XXX: we should also update all timers */
1308 }
1309 
1310 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1311                                   unsigned int decr_excp)
1312 {
1313     ppc_tb_t *tb_env;
1314     ppc40x_timer_t *ppc40x_timer;
1315 
1316     tb_env = g_malloc0(sizeof(ppc_tb_t));
1317     env->tb_env = tb_env;
1318     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1319     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1320     tb_env->tb_freq = freq;
1321     tb_env->decr_freq = freq;
1322     tb_env->opaque = ppc40x_timer;
1323     trace_ppc40x_timers_init(freq);
1324     if (ppc40x_timer != NULL) {
1325         /* We use decr timer for PIT */
1326         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1327         ppc40x_timer->fit_timer =
1328             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1329         ppc40x_timer->wdt_timer =
1330             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1331         ppc40x_timer->decr_excp = decr_excp;
1332     }
1333 
1334     return &ppc_40x_set_tb_clk;
1335 }
1336 
1337 /*****************************************************************************/
1338 /* Embedded PowerPC Device Control Registers */
1339 typedef struct ppc_dcrn_t ppc_dcrn_t;
1340 struct ppc_dcrn_t {
1341     dcr_read_cb dcr_read;
1342     dcr_write_cb dcr_write;
1343     void *opaque;
1344 };
1345 
1346 /* XXX: on 460, DCR addresses are 32 bits wide,
1347  *      using DCRIPR to get the 22 upper bits of the DCR address
1348  */
1349 #define DCRN_NB 1024
1350 struct ppc_dcr_t {
1351     ppc_dcrn_t dcrn[DCRN_NB];
1352     int (*read_error)(int dcrn);
1353     int (*write_error)(int dcrn);
1354 };
1355 
1356 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1357 {
1358     ppc_dcrn_t *dcr;
1359 
1360     if (dcrn < 0 || dcrn >= DCRN_NB)
1361         goto error;
1362     dcr = &dcr_env->dcrn[dcrn];
1363     if (dcr->dcr_read == NULL)
1364         goto error;
1365     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1366 
1367     return 0;
1368 
1369  error:
1370     if (dcr_env->read_error != NULL)
1371         return (*dcr_env->read_error)(dcrn);
1372 
1373     return -1;
1374 }
1375 
1376 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1377 {
1378     ppc_dcrn_t *dcr;
1379 
1380     if (dcrn < 0 || dcrn >= DCRN_NB)
1381         goto error;
1382     dcr = &dcr_env->dcrn[dcrn];
1383     if (dcr->dcr_write == NULL)
1384         goto error;
1385     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1386 
1387     return 0;
1388 
1389  error:
1390     if (dcr_env->write_error != NULL)
1391         return (*dcr_env->write_error)(dcrn);
1392 
1393     return -1;
1394 }
1395 
1396 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1397                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1398 {
1399     ppc_dcr_t *dcr_env;
1400     ppc_dcrn_t *dcr;
1401 
1402     dcr_env = env->dcr_env;
1403     if (dcr_env == NULL)
1404         return -1;
1405     if (dcrn < 0 || dcrn >= DCRN_NB)
1406         return -1;
1407     dcr = &dcr_env->dcrn[dcrn];
1408     if (dcr->opaque != NULL ||
1409         dcr->dcr_read != NULL ||
1410         dcr->dcr_write != NULL)
1411         return -1;
1412     dcr->opaque = opaque;
1413     dcr->dcr_read = dcr_read;
1414     dcr->dcr_write = dcr_write;
1415 
1416     return 0;
1417 }
1418 
1419 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1420                   int (*write_error)(int dcrn))
1421 {
1422     ppc_dcr_t *dcr_env;
1423 
1424     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1425     dcr_env->read_error = read_error;
1426     dcr_env->write_error = write_error;
1427     env->dcr_env = dcr_env;
1428 
1429     return 0;
1430 }
1431 
1432 /*****************************************************************************/
1433 
1434 int ppc_cpu_pir(PowerPCCPU *cpu)
1435 {
1436     CPUPPCState *env = &cpu->env;
1437     return env->spr_cb[SPR_PIR].default_value;
1438 }
1439 
1440 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1441 {
1442     CPUState *cs;
1443 
1444     CPU_FOREACH(cs) {
1445         PowerPCCPU *cpu = POWERPC_CPU(cs);
1446 
1447         if (ppc_cpu_pir(cpu) == pir) {
1448             return cpu;
1449         }
1450     }
1451 
1452     return NULL;
1453 }
1454 
1455 void ppc_irq_reset(PowerPCCPU *cpu)
1456 {
1457     CPUPPCState *env = &cpu->env;
1458 
1459     env->irq_input_state = 0;
1460     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1461 }
1462