xref: /openbmc/qemu/hw/ppc/ppc.c (revision bc5c4f21)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "qapi/error.h"
37 #include "hw/loader.h"
38 #include "sysemu/kvm.h"
39 #include "kvm_ppc.h"
40 #include "trace.h"
41 
42 //#define PPC_DEBUG_IRQ
43 //#define PPC_DEBUG_TB
44 
45 #ifdef PPC_DEBUG_IRQ
46 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 #else
48 #  define LOG_IRQ(...) do { } while (0)
49 #endif
50 
51 
52 #ifdef PPC_DEBUG_TB
53 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
54 #else
55 #  define LOG_TB(...) do { } while (0)
56 #endif
57 
58 static void cpu_ppc_tb_stop (CPUPPCState *env);
59 static void cpu_ppc_tb_start (CPUPPCState *env);
60 
61 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 {
63     CPUState *cs = CPU(cpu);
64     CPUPPCState *env = &cpu->env;
65     unsigned int old_pending = env->pending_interrupts;
66 
67     if (level) {
68         env->pending_interrupts |= 1 << n_IRQ;
69         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
70     } else {
71         env->pending_interrupts &= ~(1 << n_IRQ);
72         if (env->pending_interrupts == 0) {
73             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
74         }
75     }
76 
77     if (old_pending != env->pending_interrupts) {
78 #ifdef CONFIG_KVM
79         kvmppc_set_interrupt(cpu, n_IRQ, level);
80 #endif
81     }
82 
83     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
84                 "req %08x\n", __func__, env, n_IRQ, level,
85                 env->pending_interrupts, CPU(cpu)->interrupt_request);
86 }
87 
88 /* PowerPC 6xx / 7xx internal IRQ controller */
89 static void ppc6xx_set_irq(void *opaque, int pin, int level)
90 {
91     PowerPCCPU *cpu = opaque;
92     CPUPPCState *env = &cpu->env;
93     int cur_level;
94 
95     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
96                 env, pin, level);
97     cur_level = (env->irq_input_state >> pin) & 1;
98     /* Don't generate spurious events */
99     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
100         CPUState *cs = CPU(cpu);
101 
102         switch (pin) {
103         case PPC6xx_INPUT_TBEN:
104             /* Level sensitive - active high */
105             LOG_IRQ("%s: %s the time base\n",
106                         __func__, level ? "start" : "stop");
107             if (level) {
108                 cpu_ppc_tb_start(env);
109             } else {
110                 cpu_ppc_tb_stop(env);
111             }
112         case PPC6xx_INPUT_INT:
113             /* Level sensitive - active high */
114             LOG_IRQ("%s: set the external IRQ state to %d\n",
115                         __func__, level);
116             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
117             break;
118         case PPC6xx_INPUT_SMI:
119             /* Level sensitive - active high */
120             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
121                         __func__, level);
122             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
123             break;
124         case PPC6xx_INPUT_MCP:
125             /* Negative edge sensitive */
126             /* XXX: TODO: actual reaction may depends on HID0 status
127              *            603/604/740/750: check HID0[EMCP]
128              */
129             if (cur_level == 1 && level == 0) {
130                 LOG_IRQ("%s: raise machine check state\n",
131                             __func__);
132                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
133             }
134             break;
135         case PPC6xx_INPUT_CKSTP_IN:
136             /* Level sensitive - active low */
137             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
138             /* XXX: Note that the only way to restart the CPU is to reset it */
139             if (level) {
140                 LOG_IRQ("%s: stop the CPU\n", __func__);
141                 cs->halted = 1;
142             }
143             break;
144         case PPC6xx_INPUT_HRESET:
145             /* Level sensitive - active low */
146             if (level) {
147                 LOG_IRQ("%s: reset the CPU\n", __func__);
148                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
149             }
150             break;
151         case PPC6xx_INPUT_SRESET:
152             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
153                         __func__, level);
154             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
155             break;
156         default:
157             /* Unknown pin - do nothing */
158             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
159             return;
160         }
161         if (level)
162             env->irq_input_state |= 1 << pin;
163         else
164             env->irq_input_state &= ~(1 << pin);
165     }
166 }
167 
168 void ppc6xx_irq_init(PowerPCCPU *cpu)
169 {
170     CPUPPCState *env = &cpu->env;
171 
172     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
173                                                   PPC6xx_INPUT_NB);
174 }
175 
176 #if defined(TARGET_PPC64)
177 /* PowerPC 970 internal IRQ controller */
178 static void ppc970_set_irq(void *opaque, int pin, int level)
179 {
180     PowerPCCPU *cpu = opaque;
181     CPUPPCState *env = &cpu->env;
182     int cur_level;
183 
184     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
185                 env, pin, level);
186     cur_level = (env->irq_input_state >> pin) & 1;
187     /* Don't generate spurious events */
188     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
189         CPUState *cs = CPU(cpu);
190 
191         switch (pin) {
192         case PPC970_INPUT_INT:
193             /* Level sensitive - active high */
194             LOG_IRQ("%s: set the external IRQ state to %d\n",
195                         __func__, level);
196             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
197             break;
198         case PPC970_INPUT_THINT:
199             /* Level sensitive - active high */
200             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
201                         level);
202             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
203             break;
204         case PPC970_INPUT_MCP:
205             /* Negative edge sensitive */
206             /* XXX: TODO: actual reaction may depends on HID0 status
207              *            603/604/740/750: check HID0[EMCP]
208              */
209             if (cur_level == 1 && level == 0) {
210                 LOG_IRQ("%s: raise machine check state\n",
211                             __func__);
212                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
213             }
214             break;
215         case PPC970_INPUT_CKSTP:
216             /* Level sensitive - active low */
217             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
218             if (level) {
219                 LOG_IRQ("%s: stop the CPU\n", __func__);
220                 cs->halted = 1;
221             } else {
222                 LOG_IRQ("%s: restart the CPU\n", __func__);
223                 cs->halted = 0;
224                 qemu_cpu_kick(cs);
225             }
226             break;
227         case PPC970_INPUT_HRESET:
228             /* Level sensitive - active low */
229             if (level) {
230                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
231             }
232             break;
233         case PPC970_INPUT_SRESET:
234             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
235                         __func__, level);
236             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
237             break;
238         case PPC970_INPUT_TBEN:
239             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
240                         level);
241             /* XXX: TODO */
242             break;
243         default:
244             /* Unknown pin - do nothing */
245             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
246             return;
247         }
248         if (level)
249             env->irq_input_state |= 1 << pin;
250         else
251             env->irq_input_state &= ~(1 << pin);
252     }
253 }
254 
255 void ppc970_irq_init(PowerPCCPU *cpu)
256 {
257     CPUPPCState *env = &cpu->env;
258 
259     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
260                                                   PPC970_INPUT_NB);
261 }
262 
263 /* POWER7 internal IRQ controller */
264 static void power7_set_irq(void *opaque, int pin, int level)
265 {
266     PowerPCCPU *cpu = opaque;
267     CPUPPCState *env = &cpu->env;
268 
269     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
270                 env, pin, level);
271 
272     switch (pin) {
273     case POWER7_INPUT_INT:
274         /* Level sensitive - active high */
275         LOG_IRQ("%s: set the external IRQ state to %d\n",
276                 __func__, level);
277         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
278         break;
279     default:
280         /* Unknown pin - do nothing */
281         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
282         return;
283     }
284     if (level) {
285         env->irq_input_state |= 1 << pin;
286     } else {
287         env->irq_input_state &= ~(1 << pin);
288     }
289 }
290 
291 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
292 {
293     CPUPPCState *env = &cpu->env;
294 
295     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
296                                                   POWER7_INPUT_NB);
297 }
298 #endif /* defined(TARGET_PPC64) */
299 
300 /* PowerPC 40x internal IRQ controller */
301 static void ppc40x_set_irq(void *opaque, int pin, int level)
302 {
303     PowerPCCPU *cpu = opaque;
304     CPUPPCState *env = &cpu->env;
305     int cur_level;
306 
307     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
308                 env, pin, level);
309     cur_level = (env->irq_input_state >> pin) & 1;
310     /* Don't generate spurious events */
311     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
312         CPUState *cs = CPU(cpu);
313 
314         switch (pin) {
315         case PPC40x_INPUT_RESET_SYS:
316             if (level) {
317                 LOG_IRQ("%s: reset the PowerPC system\n",
318                             __func__);
319                 ppc40x_system_reset(cpu);
320             }
321             break;
322         case PPC40x_INPUT_RESET_CHIP:
323             if (level) {
324                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
325                 ppc40x_chip_reset(cpu);
326             }
327             break;
328         case PPC40x_INPUT_RESET_CORE:
329             /* XXX: TODO: update DBSR[MRR] */
330             if (level) {
331                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
332                 ppc40x_core_reset(cpu);
333             }
334             break;
335         case PPC40x_INPUT_CINT:
336             /* Level sensitive - active high */
337             LOG_IRQ("%s: set the critical IRQ state to %d\n",
338                         __func__, level);
339             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
340             break;
341         case PPC40x_INPUT_INT:
342             /* Level sensitive - active high */
343             LOG_IRQ("%s: set the external IRQ state to %d\n",
344                         __func__, level);
345             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
346             break;
347         case PPC40x_INPUT_HALT:
348             /* Level sensitive - active low */
349             if (level) {
350                 LOG_IRQ("%s: stop the CPU\n", __func__);
351                 cs->halted = 1;
352             } else {
353                 LOG_IRQ("%s: restart the CPU\n", __func__);
354                 cs->halted = 0;
355                 qemu_cpu_kick(cs);
356             }
357             break;
358         case PPC40x_INPUT_DEBUG:
359             /* Level sensitive - active high */
360             LOG_IRQ("%s: set the debug pin state to %d\n",
361                         __func__, level);
362             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
363             break;
364         default:
365             /* Unknown pin - do nothing */
366             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
367             return;
368         }
369         if (level)
370             env->irq_input_state |= 1 << pin;
371         else
372             env->irq_input_state &= ~(1 << pin);
373     }
374 }
375 
376 void ppc40x_irq_init(PowerPCCPU *cpu)
377 {
378     CPUPPCState *env = &cpu->env;
379 
380     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
381                                                   cpu, PPC40x_INPUT_NB);
382 }
383 
384 /* PowerPC E500 internal IRQ controller */
385 static void ppce500_set_irq(void *opaque, int pin, int level)
386 {
387     PowerPCCPU *cpu = opaque;
388     CPUPPCState *env = &cpu->env;
389     int cur_level;
390 
391     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
392                 env, pin, level);
393     cur_level = (env->irq_input_state >> pin) & 1;
394     /* Don't generate spurious events */
395     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
396         switch (pin) {
397         case PPCE500_INPUT_MCK:
398             if (level) {
399                 LOG_IRQ("%s: reset the PowerPC system\n",
400                             __func__);
401                 qemu_system_reset_request();
402             }
403             break;
404         case PPCE500_INPUT_RESET_CORE:
405             if (level) {
406                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
407                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
408             }
409             break;
410         case PPCE500_INPUT_CINT:
411             /* Level sensitive - active high */
412             LOG_IRQ("%s: set the critical IRQ state to %d\n",
413                         __func__, level);
414             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
415             break;
416         case PPCE500_INPUT_INT:
417             /* Level sensitive - active high */
418             LOG_IRQ("%s: set the core IRQ state to %d\n",
419                         __func__, level);
420             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
421             break;
422         case PPCE500_INPUT_DEBUG:
423             /* Level sensitive - active high */
424             LOG_IRQ("%s: set the debug pin state to %d\n",
425                         __func__, level);
426             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
427             break;
428         default:
429             /* Unknown pin - do nothing */
430             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
431             return;
432         }
433         if (level)
434             env->irq_input_state |= 1 << pin;
435         else
436             env->irq_input_state &= ~(1 << pin);
437     }
438 }
439 
440 void ppce500_irq_init(PowerPCCPU *cpu)
441 {
442     CPUPPCState *env = &cpu->env;
443 
444     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
445                                                   cpu, PPCE500_INPUT_NB);
446 }
447 
448 /* Enable or Disable the E500 EPR capability */
449 void ppce500_set_mpic_proxy(bool enabled)
450 {
451     CPUState *cs;
452 
453     CPU_FOREACH(cs) {
454         PowerPCCPU *cpu = POWERPC_CPU(cs);
455 
456         cpu->env.mpic_proxy = enabled;
457         if (kvm_enabled()) {
458             kvmppc_set_mpic_proxy(cpu, enabled);
459         }
460     }
461 }
462 
463 /*****************************************************************************/
464 /* PowerPC time base and decrementer emulation */
465 
466 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
467 {
468     /* TB time in tb periods */
469     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
470 }
471 
472 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
473 {
474     ppc_tb_t *tb_env = env->tb_env;
475     uint64_t tb;
476 
477     if (kvm_enabled()) {
478         return env->spr[SPR_TBL];
479     }
480 
481     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
482     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
483 
484     return tb;
485 }
486 
487 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
488 {
489     ppc_tb_t *tb_env = env->tb_env;
490     uint64_t tb;
491 
492     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
493     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
494 
495     return tb >> 32;
496 }
497 
498 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
499 {
500     if (kvm_enabled()) {
501         return env->spr[SPR_TBU];
502     }
503 
504     return _cpu_ppc_load_tbu(env);
505 }
506 
507 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
508                                     int64_t *tb_offsetp, uint64_t value)
509 {
510     *tb_offsetp = value -
511         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
512 
513     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
514                 __func__, value, *tb_offsetp);
515 }
516 
517 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
518 {
519     ppc_tb_t *tb_env = env->tb_env;
520     uint64_t tb;
521 
522     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
523     tb &= 0xFFFFFFFF00000000ULL;
524     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
525                      &tb_env->tb_offset, tb | (uint64_t)value);
526 }
527 
528 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
529 {
530     ppc_tb_t *tb_env = env->tb_env;
531     uint64_t tb;
532 
533     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
534     tb &= 0x00000000FFFFFFFFULL;
535     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
536                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
537 }
538 
539 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
540 {
541     _cpu_ppc_store_tbu(env, value);
542 }
543 
544 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
545 {
546     ppc_tb_t *tb_env = env->tb_env;
547     uint64_t tb;
548 
549     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
550     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
551 
552     return tb;
553 }
554 
555 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
556 {
557     ppc_tb_t *tb_env = env->tb_env;
558     uint64_t tb;
559 
560     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
561     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
562 
563     return tb >> 32;
564 }
565 
566 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
567 {
568     ppc_tb_t *tb_env = env->tb_env;
569     uint64_t tb;
570 
571     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
572     tb &= 0xFFFFFFFF00000000ULL;
573     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
574                      &tb_env->atb_offset, tb | (uint64_t)value);
575 }
576 
577 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
578 {
579     ppc_tb_t *tb_env = env->tb_env;
580     uint64_t tb;
581 
582     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
583     tb &= 0x00000000FFFFFFFFULL;
584     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
585                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
586 }
587 
588 static void cpu_ppc_tb_stop (CPUPPCState *env)
589 {
590     ppc_tb_t *tb_env = env->tb_env;
591     uint64_t tb, atb, vmclk;
592 
593     /* If the time base is already frozen, do nothing */
594     if (tb_env->tb_freq != 0) {
595         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
596         /* Get the time base */
597         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
598         /* Get the alternate time base */
599         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
600         /* Store the time base value (ie compute the current offset) */
601         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
602         /* Store the alternate time base value (compute the current offset) */
603         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
604         /* Set the time base frequency to zero */
605         tb_env->tb_freq = 0;
606         /* Now, the time bases are frozen to tb_offset / atb_offset value */
607     }
608 }
609 
610 static void cpu_ppc_tb_start (CPUPPCState *env)
611 {
612     ppc_tb_t *tb_env = env->tb_env;
613     uint64_t tb, atb, vmclk;
614 
615     /* If the time base is not frozen, do nothing */
616     if (tb_env->tb_freq == 0) {
617         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
618         /* Get the time base from tb_offset */
619         tb = tb_env->tb_offset;
620         /* Get the alternate time base from atb_offset */
621         atb = tb_env->atb_offset;
622         /* Restore the tb frequency from the decrementer frequency */
623         tb_env->tb_freq = tb_env->decr_freq;
624         /* Store the time base value */
625         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
626         /* Store the alternate time base value */
627         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
628     }
629 }
630 
631 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
632 {
633     ppc_tb_t *tb_env = env->tb_env;
634     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
635     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
636 }
637 
638 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
639 {
640     ppc_tb_t *tb_env = env->tb_env;
641     uint32_t decr;
642     int64_t diff;
643 
644     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
645     if (diff >= 0) {
646         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
647     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
648         decr = 0;
649     }  else {
650         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
651     }
652     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
653 
654     return decr;
655 }
656 
657 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
658 {
659     ppc_tb_t *tb_env = env->tb_env;
660 
661     if (kvm_enabled()) {
662         return env->spr[SPR_DECR];
663     }
664 
665     return _cpu_ppc_load_decr(env, tb_env->decr_next);
666 }
667 
668 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
669 {
670     ppc_tb_t *tb_env = env->tb_env;
671 
672     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
673 }
674 
675 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
676 {
677     ppc_tb_t *tb_env = env->tb_env;
678     uint64_t diff;
679 
680     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
681 
682     return tb_env->purr_load +
683         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
684 }
685 
686 /* When decrementer expires,
687  * all we need to do is generate or queue a CPU exception
688  */
689 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
690 {
691     /* Raise it */
692     LOG_TB("raise decrementer exception\n");
693     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
694 }
695 
696 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
697 {
698     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
699 }
700 
701 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
702 {
703     CPUPPCState *env = &cpu->env;
704 
705     /* Raise it */
706     LOG_TB("raise hv decrementer exception\n");
707 
708     /* The architecture specifies that we don't deliver HDEC
709      * interrupts in a PM state. Not only they don't cause a
710      * wakeup but they also get effectively discarded.
711      */
712     if (!env->in_pm_state) {
713         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
714     }
715 }
716 
717 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
718 {
719     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
720 }
721 
722 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
723                                  QEMUTimer *timer,
724                                  void (*raise_excp)(void *),
725                                  void (*lower_excp)(PowerPCCPU *),
726                                  uint32_t decr, uint32_t value)
727 {
728     CPUPPCState *env = &cpu->env;
729     ppc_tb_t *tb_env = env->tb_env;
730     uint64_t now, next;
731 
732     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
733                 decr, value);
734 
735     if (kvm_enabled()) {
736         /* KVM handles decrementer exceptions, we don't need our own timer */
737         return;
738     }
739 
740     /*
741      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
742      * interrupt.
743      *
744      * If we get a really small DEC value, we can assume that by the time we
745      * handled it we should inject an interrupt already.
746      *
747      * On MSB level based DEC implementations the MSB always means the interrupt
748      * is pending, so raise it on those.
749      *
750      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
751      * an edge interrupt, so raise it here too.
752      */
753     if ((value < 3) ||
754         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
755         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
756           && !(decr & 0x80000000))) {
757         (*raise_excp)(cpu);
758         return;
759     }
760 
761     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
762     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
763         (*lower_excp)(cpu);
764     }
765 
766     /* Calculate the next timer event */
767     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
768     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
769     *nextp = next;
770 
771     /* Adjust timer */
772     timer_mod(timer, next);
773 }
774 
775 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
776                                        uint32_t value)
777 {
778     ppc_tb_t *tb_env = cpu->env.tb_env;
779 
780     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
781                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
782                          value);
783 }
784 
785 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
786 {
787     PowerPCCPU *cpu = ppc_env_get_cpu(env);
788 
789     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
790 }
791 
792 static void cpu_ppc_decr_cb(void *opaque)
793 {
794     PowerPCCPU *cpu = opaque;
795 
796     cpu_ppc_decr_excp(cpu);
797 }
798 
799 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
800                                         uint32_t value)
801 {
802     ppc_tb_t *tb_env = cpu->env.tb_env;
803 
804     if (tb_env->hdecr_timer != NULL) {
805         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
806                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
807                              hdecr, value);
808     }
809 }
810 
811 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
812 {
813     PowerPCCPU *cpu = ppc_env_get_cpu(env);
814 
815     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
816 }
817 
818 static void cpu_ppc_hdecr_cb(void *opaque)
819 {
820     PowerPCCPU *cpu = opaque;
821 
822     cpu_ppc_hdecr_excp(cpu);
823 }
824 
825 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
826 {
827     ppc_tb_t *tb_env = cpu->env.tb_env;
828 
829     tb_env->purr_load = value;
830     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
831 }
832 
833 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
834 {
835     CPUPPCState *env = opaque;
836     PowerPCCPU *cpu = ppc_env_get_cpu(env);
837     ppc_tb_t *tb_env = env->tb_env;
838 
839     tb_env->tb_freq = freq;
840     tb_env->decr_freq = freq;
841     /* There is a bug in Linux 2.4 kernels:
842      * if a decrementer exception is pending when it enables msr_ee at startup,
843      * it's not ready to handle it...
844      */
845     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
846     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
847     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
848 }
849 
850 static void timebase_save(PPCTimebase *tb)
851 {
852     uint64_t ticks = cpu_get_host_ticks();
853     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
854 
855     if (!first_ppc_cpu->env.tb_env) {
856         error_report("No timebase object");
857         return;
858     }
859 
860     /* not used anymore, we keep it for compatibility */
861     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
862     /*
863      * tb_offset is only expected to be changed by QEMU so
864      * there is no need to update it from KVM here
865      */
866     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
867 }
868 
869 static void timebase_load(PPCTimebase *tb)
870 {
871     CPUState *cpu;
872     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
873     int64_t tb_off_adj, tb_off;
874     unsigned long freq;
875 
876     if (!first_ppc_cpu->env.tb_env) {
877         error_report("No timebase object");
878         return;
879     }
880 
881     freq = first_ppc_cpu->env.tb_env->tb_freq;
882 
883     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
884 
885     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
886     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
887                         (tb_off_adj - tb_off) / freq);
888 
889     /* Set new offset to all CPUs */
890     CPU_FOREACH(cpu) {
891         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
892         pcpu->env.tb_env->tb_offset = tb_off_adj;
893 #if defined(CONFIG_KVM)
894         kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
895                         &pcpu->env.tb_env->tb_offset);
896 #endif
897     }
898 }
899 
900 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
901                                    RunState state)
902 {
903     PPCTimebase *tb = opaque;
904 
905     if (running) {
906         timebase_load(tb);
907     } else {
908         timebase_save(tb);
909     }
910 }
911 
912 /*
913  * When migrating, read the clock just before migration,
914  * so that the guest clock counts during the events
915  * between:
916  *
917  *  * vm_stop()
918  *  *
919  *  * pre_save()
920  *
921  *  This reduces clock difference on migration from 5s
922  *  to 0.1s (when max_downtime == 5s), because sending the
923  *  final pages of memory (which happens between vm_stop()
924  *  and pre_save()) takes max_downtime.
925  */
926 static void timebase_pre_save(void *opaque)
927 {
928     PPCTimebase *tb = opaque;
929 
930     timebase_save(tb);
931 }
932 
933 const VMStateDescription vmstate_ppc_timebase = {
934     .name = "timebase",
935     .version_id = 1,
936     .minimum_version_id = 1,
937     .minimum_version_id_old = 1,
938     .pre_save = timebase_pre_save,
939     .fields      = (VMStateField []) {
940         VMSTATE_UINT64(guest_timebase, PPCTimebase),
941         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
942         VMSTATE_END_OF_LIST()
943     },
944 };
945 
946 /* Set up (once) timebase frequency (in Hz) */
947 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
948 {
949     PowerPCCPU *cpu = ppc_env_get_cpu(env);
950     ppc_tb_t *tb_env;
951 
952     tb_env = g_malloc0(sizeof(ppc_tb_t));
953     env->tb_env = tb_env;
954     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
955     if (env->insns_flags & PPC_SEGMENT_64B) {
956         /* All Book3S 64bit CPUs implement level based DEC logic */
957         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
958     }
959     /* Create new timer */
960     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
961     if (env->has_hv_mode) {
962         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
963                                                 cpu);
964     } else {
965         tb_env->hdecr_timer = NULL;
966     }
967     cpu_ppc_set_tb_clk(env, freq);
968 
969     return &cpu_ppc_set_tb_clk;
970 }
971 
972 /* Specific helpers for POWER & PowerPC 601 RTC */
973 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
974 {
975     _cpu_ppc_store_tbu(env, value);
976 }
977 
978 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
979 {
980     return _cpu_ppc_load_tbu(env);
981 }
982 
983 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
984 {
985     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
986 }
987 
988 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
989 {
990     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
991 }
992 
993 /*****************************************************************************/
994 /* PowerPC 40x timers */
995 
996 /* PIT, FIT & WDT */
997 typedef struct ppc40x_timer_t ppc40x_timer_t;
998 struct ppc40x_timer_t {
999     uint64_t pit_reload;  /* PIT auto-reload value        */
1000     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1001     QEMUTimer *fit_timer;
1002     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1003     QEMUTimer *wdt_timer;
1004 
1005     /* 405 have the PIT, 440 have a DECR.  */
1006     unsigned int decr_excp;
1007 };
1008 
1009 /* Fixed interval timer */
1010 static void cpu_4xx_fit_cb (void *opaque)
1011 {
1012     PowerPCCPU *cpu;
1013     CPUPPCState *env;
1014     ppc_tb_t *tb_env;
1015     ppc40x_timer_t *ppc40x_timer;
1016     uint64_t now, next;
1017 
1018     env = opaque;
1019     cpu = ppc_env_get_cpu(env);
1020     tb_env = env->tb_env;
1021     ppc40x_timer = tb_env->opaque;
1022     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1023     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1024     case 0:
1025         next = 1 << 9;
1026         break;
1027     case 1:
1028         next = 1 << 13;
1029         break;
1030     case 2:
1031         next = 1 << 17;
1032         break;
1033     case 3:
1034         next = 1 << 21;
1035         break;
1036     default:
1037         /* Cannot occur, but makes gcc happy */
1038         return;
1039     }
1040     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1041     if (next == now)
1042         next++;
1043     timer_mod(ppc40x_timer->fit_timer, next);
1044     env->spr[SPR_40x_TSR] |= 1 << 26;
1045     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1046         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1047     }
1048     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1049            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1050            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1051 }
1052 
1053 /* Programmable interval timer */
1054 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1055 {
1056     ppc40x_timer_t *ppc40x_timer;
1057     uint64_t now, next;
1058 
1059     ppc40x_timer = tb_env->opaque;
1060     if (ppc40x_timer->pit_reload <= 1 ||
1061         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1062         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1063         /* Stop PIT */
1064         LOG_TB("%s: stop PIT\n", __func__);
1065         timer_del(tb_env->decr_timer);
1066     } else {
1067         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1068                     __func__, ppc40x_timer->pit_reload);
1069         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1070         next = now + muldiv64(ppc40x_timer->pit_reload,
1071                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1072         if (is_excp)
1073             next += tb_env->decr_next - now;
1074         if (next == now)
1075             next++;
1076         timer_mod(tb_env->decr_timer, next);
1077         tb_env->decr_next = next;
1078     }
1079 }
1080 
1081 static void cpu_4xx_pit_cb (void *opaque)
1082 {
1083     PowerPCCPU *cpu;
1084     CPUPPCState *env;
1085     ppc_tb_t *tb_env;
1086     ppc40x_timer_t *ppc40x_timer;
1087 
1088     env = opaque;
1089     cpu = ppc_env_get_cpu(env);
1090     tb_env = env->tb_env;
1091     ppc40x_timer = tb_env->opaque;
1092     env->spr[SPR_40x_TSR] |= 1 << 27;
1093     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1094         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1095     }
1096     start_stop_pit(env, tb_env, 1);
1097     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1098            "%016" PRIx64 "\n", __func__,
1099            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1100            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1101            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1102            ppc40x_timer->pit_reload);
1103 }
1104 
1105 /* Watchdog timer */
1106 static void cpu_4xx_wdt_cb (void *opaque)
1107 {
1108     PowerPCCPU *cpu;
1109     CPUPPCState *env;
1110     ppc_tb_t *tb_env;
1111     ppc40x_timer_t *ppc40x_timer;
1112     uint64_t now, next;
1113 
1114     env = opaque;
1115     cpu = ppc_env_get_cpu(env);
1116     tb_env = env->tb_env;
1117     ppc40x_timer = tb_env->opaque;
1118     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1119     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1120     case 0:
1121         next = 1 << 17;
1122         break;
1123     case 1:
1124         next = 1 << 21;
1125         break;
1126     case 2:
1127         next = 1 << 25;
1128         break;
1129     case 3:
1130         next = 1 << 29;
1131         break;
1132     default:
1133         /* Cannot occur, but makes gcc happy */
1134         return;
1135     }
1136     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1137     if (next == now)
1138         next++;
1139     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1140            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1141     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1142     case 0x0:
1143     case 0x1:
1144         timer_mod(ppc40x_timer->wdt_timer, next);
1145         ppc40x_timer->wdt_next = next;
1146         env->spr[SPR_40x_TSR] |= 1U << 31;
1147         break;
1148     case 0x2:
1149         timer_mod(ppc40x_timer->wdt_timer, next);
1150         ppc40x_timer->wdt_next = next;
1151         env->spr[SPR_40x_TSR] |= 1 << 30;
1152         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1153             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1154         }
1155         break;
1156     case 0x3:
1157         env->spr[SPR_40x_TSR] &= ~0x30000000;
1158         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1159         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1160         case 0x0:
1161             /* No reset */
1162             break;
1163         case 0x1: /* Core reset */
1164             ppc40x_core_reset(cpu);
1165             break;
1166         case 0x2: /* Chip reset */
1167             ppc40x_chip_reset(cpu);
1168             break;
1169         case 0x3: /* System reset */
1170             ppc40x_system_reset(cpu);
1171             break;
1172         }
1173     }
1174 }
1175 
1176 void store_40x_pit (CPUPPCState *env, target_ulong val)
1177 {
1178     ppc_tb_t *tb_env;
1179     ppc40x_timer_t *ppc40x_timer;
1180 
1181     tb_env = env->tb_env;
1182     ppc40x_timer = tb_env->opaque;
1183     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1184     ppc40x_timer->pit_reload = val;
1185     start_stop_pit(env, tb_env, 0);
1186 }
1187 
1188 target_ulong load_40x_pit (CPUPPCState *env)
1189 {
1190     return cpu_ppc_load_decr(env);
1191 }
1192 
1193 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1194 {
1195     CPUPPCState *env = opaque;
1196     ppc_tb_t *tb_env = env->tb_env;
1197 
1198     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1199                 freq);
1200     tb_env->tb_freq = freq;
1201     tb_env->decr_freq = freq;
1202     /* XXX: we should also update all timers */
1203 }
1204 
1205 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1206                                   unsigned int decr_excp)
1207 {
1208     ppc_tb_t *tb_env;
1209     ppc40x_timer_t *ppc40x_timer;
1210 
1211     tb_env = g_malloc0(sizeof(ppc_tb_t));
1212     env->tb_env = tb_env;
1213     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1214     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1215     tb_env->tb_freq = freq;
1216     tb_env->decr_freq = freq;
1217     tb_env->opaque = ppc40x_timer;
1218     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1219     if (ppc40x_timer != NULL) {
1220         /* We use decr timer for PIT */
1221         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1222         ppc40x_timer->fit_timer =
1223             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1224         ppc40x_timer->wdt_timer =
1225             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1226         ppc40x_timer->decr_excp = decr_excp;
1227     }
1228 
1229     return &ppc_40x_set_tb_clk;
1230 }
1231 
1232 /*****************************************************************************/
1233 /* Embedded PowerPC Device Control Registers */
1234 typedef struct ppc_dcrn_t ppc_dcrn_t;
1235 struct ppc_dcrn_t {
1236     dcr_read_cb dcr_read;
1237     dcr_write_cb dcr_write;
1238     void *opaque;
1239 };
1240 
1241 /* XXX: on 460, DCR addresses are 32 bits wide,
1242  *      using DCRIPR to get the 22 upper bits of the DCR address
1243  */
1244 #define DCRN_NB 1024
1245 struct ppc_dcr_t {
1246     ppc_dcrn_t dcrn[DCRN_NB];
1247     int (*read_error)(int dcrn);
1248     int (*write_error)(int dcrn);
1249 };
1250 
1251 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1252 {
1253     ppc_dcrn_t *dcr;
1254 
1255     if (dcrn < 0 || dcrn >= DCRN_NB)
1256         goto error;
1257     dcr = &dcr_env->dcrn[dcrn];
1258     if (dcr->dcr_read == NULL)
1259         goto error;
1260     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1261 
1262     return 0;
1263 
1264  error:
1265     if (dcr_env->read_error != NULL)
1266         return (*dcr_env->read_error)(dcrn);
1267 
1268     return -1;
1269 }
1270 
1271 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1272 {
1273     ppc_dcrn_t *dcr;
1274 
1275     if (dcrn < 0 || dcrn >= DCRN_NB)
1276         goto error;
1277     dcr = &dcr_env->dcrn[dcrn];
1278     if (dcr->dcr_write == NULL)
1279         goto error;
1280     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1281 
1282     return 0;
1283 
1284  error:
1285     if (dcr_env->write_error != NULL)
1286         return (*dcr_env->write_error)(dcrn);
1287 
1288     return -1;
1289 }
1290 
1291 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1292                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1293 {
1294     ppc_dcr_t *dcr_env;
1295     ppc_dcrn_t *dcr;
1296 
1297     dcr_env = env->dcr_env;
1298     if (dcr_env == NULL)
1299         return -1;
1300     if (dcrn < 0 || dcrn >= DCRN_NB)
1301         return -1;
1302     dcr = &dcr_env->dcrn[dcrn];
1303     if (dcr->opaque != NULL ||
1304         dcr->dcr_read != NULL ||
1305         dcr->dcr_write != NULL)
1306         return -1;
1307     dcr->opaque = opaque;
1308     dcr->dcr_read = dcr_read;
1309     dcr->dcr_write = dcr_write;
1310 
1311     return 0;
1312 }
1313 
1314 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1315                   int (*write_error)(int dcrn))
1316 {
1317     ppc_dcr_t *dcr_env;
1318 
1319     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1320     dcr_env->read_error = read_error;
1321     dcr_env->write_error = write_error;
1322     env->dcr_env = dcr_env;
1323 
1324     return 0;
1325 }
1326 
1327 /*****************************************************************************/
1328 /* Debug port */
1329 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1330 {
1331     addr &= 0xF;
1332     switch (addr) {
1333     case 0:
1334         printf("%c", val);
1335         break;
1336     case 1:
1337         printf("\n");
1338         fflush(stdout);
1339         break;
1340     case 2:
1341         printf("Set loglevel to %04" PRIx32 "\n", val);
1342         qemu_set_log(val | 0x100);
1343         break;
1344     }
1345 }
1346 
1347 /* CPU device-tree ID helpers */
1348 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1349 {
1350     return cpu->cpu_dt_id;
1351 }
1352 
1353 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1354 {
1355     CPUState *cs;
1356 
1357     CPU_FOREACH(cs) {
1358         PowerPCCPU *cpu = POWERPC_CPU(cs);
1359 
1360         if (cpu->cpu_dt_id == cpu_dt_id) {
1361             return cpu;
1362         }
1363     }
1364 
1365     return NULL;
1366 }
1367 
1368 void ppc_cpu_parse_features(const char *cpu_model)
1369 {
1370     CPUClass *cc;
1371     ObjectClass *oc;
1372     const char *typename;
1373     gchar **model_pieces;
1374 
1375     model_pieces = g_strsplit(cpu_model, ",", 2);
1376     if (!model_pieces[0]) {
1377         error_report("Invalid/empty CPU model name");
1378         exit(1);
1379     }
1380 
1381     oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
1382     if (oc == NULL) {
1383         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1384         exit(1);
1385     }
1386 
1387     typename = object_class_get_name(oc);
1388     cc = CPU_CLASS(oc);
1389     cc->parse_features(typename, model_pieces[1], &error_fatal);
1390     g_strfreev(model_pieces);
1391 }
1392