1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/ppc/ppc.h" 28 #include "hw/ppc/ppc_e500.h" 29 #include "qemu/timer.h" 30 #include "sysemu/cpus.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/error-report.h" 34 #include "sysemu/kvm.h" 35 #include "sysemu/runstate.h" 36 #include "kvm_ppc.h" 37 #include "migration/vmstate.h" 38 #include "trace.h" 39 40 static void cpu_ppc_tb_stop (CPUPPCState *env); 41 static void cpu_ppc_tb_start (CPUPPCState *env); 42 43 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level) 44 { 45 CPUState *cs = CPU(cpu); 46 CPUPPCState *env = &cpu->env; 47 unsigned int old_pending; 48 bool locked = false; 49 50 /* We may already have the BQL if coming from the reset path */ 51 if (!qemu_mutex_iothread_locked()) { 52 locked = true; 53 qemu_mutex_lock_iothread(); 54 } 55 56 old_pending = env->pending_interrupts; 57 58 if (level) { 59 env->pending_interrupts |= 1 << n_IRQ; 60 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 61 } else { 62 env->pending_interrupts &= ~(1 << n_IRQ); 63 if (env->pending_interrupts == 0) { 64 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 65 } 66 } 67 68 if (old_pending != env->pending_interrupts) { 69 kvmppc_set_interrupt(cpu, n_IRQ, level); 70 } 71 72 73 trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts, 74 CPU(cpu)->interrupt_request); 75 76 if (locked) { 77 qemu_mutex_unlock_iothread(); 78 } 79 } 80 81 /* PowerPC 6xx / 7xx internal IRQ controller */ 82 static void ppc6xx_set_irq(void *opaque, int pin, int level) 83 { 84 PowerPCCPU *cpu = opaque; 85 CPUPPCState *env = &cpu->env; 86 int cur_level; 87 88 trace_ppc_irq_set(env, pin, level); 89 90 cur_level = (env->irq_input_state >> pin) & 1; 91 /* Don't generate spurious events */ 92 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 93 CPUState *cs = CPU(cpu); 94 95 switch (pin) { 96 case PPC6xx_INPUT_TBEN: 97 /* Level sensitive - active high */ 98 trace_ppc_irq_set_state("time base", level); 99 if (level) { 100 cpu_ppc_tb_start(env); 101 } else { 102 cpu_ppc_tb_stop(env); 103 } 104 break; 105 case PPC6xx_INPUT_INT: 106 /* Level sensitive - active high */ 107 trace_ppc_irq_set_state("external IRQ", level); 108 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 109 break; 110 case PPC6xx_INPUT_SMI: 111 /* Level sensitive - active high */ 112 trace_ppc_irq_set_state("SMI IRQ", level); 113 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 114 break; 115 case PPC6xx_INPUT_MCP: 116 /* Negative edge sensitive */ 117 /* XXX: TODO: actual reaction may depends on HID0 status 118 * 603/604/740/750: check HID0[EMCP] 119 */ 120 if (cur_level == 1 && level == 0) { 121 trace_ppc_irq_set_state("machine check", 1); 122 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 123 } 124 break; 125 case PPC6xx_INPUT_CKSTP_IN: 126 /* Level sensitive - active low */ 127 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 128 /* XXX: Note that the only way to restart the CPU is to reset it */ 129 if (level) { 130 trace_ppc_irq_cpu("stop"); 131 cs->halted = 1; 132 } 133 break; 134 case PPC6xx_INPUT_HRESET: 135 /* Level sensitive - active low */ 136 if (level) { 137 trace_ppc_irq_reset("CPU"); 138 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 139 } 140 break; 141 case PPC6xx_INPUT_SRESET: 142 trace_ppc_irq_set_state("RESET IRQ", level); 143 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 144 break; 145 default: 146 g_assert_not_reached(); 147 } 148 if (level) 149 env->irq_input_state |= 1 << pin; 150 else 151 env->irq_input_state &= ~(1 << pin); 152 } 153 } 154 155 void ppc6xx_irq_init(PowerPCCPU *cpu) 156 { 157 CPUPPCState *env = &cpu->env; 158 159 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu, 160 PPC6xx_INPUT_NB); 161 } 162 163 #if defined(TARGET_PPC64) 164 /* PowerPC 970 internal IRQ controller */ 165 static void ppc970_set_irq(void *opaque, int pin, int level) 166 { 167 PowerPCCPU *cpu = opaque; 168 CPUPPCState *env = &cpu->env; 169 int cur_level; 170 171 trace_ppc_irq_set(env, pin, level); 172 173 cur_level = (env->irq_input_state >> pin) & 1; 174 /* Don't generate spurious events */ 175 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 176 CPUState *cs = CPU(cpu); 177 178 switch (pin) { 179 case PPC970_INPUT_INT: 180 /* Level sensitive - active high */ 181 trace_ppc_irq_set_state("external IRQ", level); 182 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 183 break; 184 case PPC970_INPUT_THINT: 185 /* Level sensitive - active high */ 186 trace_ppc_irq_set_state("SMI IRQ", level); 187 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 188 break; 189 case PPC970_INPUT_MCP: 190 /* Negative edge sensitive */ 191 /* XXX: TODO: actual reaction may depends on HID0 status 192 * 603/604/740/750: check HID0[EMCP] 193 */ 194 if (cur_level == 1 && level == 0) { 195 trace_ppc_irq_set_state("machine check", 1); 196 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 197 } 198 break; 199 case PPC970_INPUT_CKSTP: 200 /* Level sensitive - active low */ 201 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 202 if (level) { 203 trace_ppc_irq_cpu("stop"); 204 cs->halted = 1; 205 } else { 206 trace_ppc_irq_cpu("restart"); 207 cs->halted = 0; 208 qemu_cpu_kick(cs); 209 } 210 break; 211 case PPC970_INPUT_HRESET: 212 /* Level sensitive - active low */ 213 if (level) { 214 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 215 } 216 break; 217 case PPC970_INPUT_SRESET: 218 trace_ppc_irq_set_state("RESET IRQ", level); 219 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 220 break; 221 case PPC970_INPUT_TBEN: 222 trace_ppc_irq_set_state("TBEN IRQ", level); 223 /* XXX: TODO */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 if (level) 229 env->irq_input_state |= 1 << pin; 230 else 231 env->irq_input_state &= ~(1 << pin); 232 } 233 } 234 235 void ppc970_irq_init(PowerPCCPU *cpu) 236 { 237 CPUPPCState *env = &cpu->env; 238 239 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu, 240 PPC970_INPUT_NB); 241 } 242 243 /* POWER7 internal IRQ controller */ 244 static void power7_set_irq(void *opaque, int pin, int level) 245 { 246 PowerPCCPU *cpu = opaque; 247 248 trace_ppc_irq_set(&cpu->env, pin, level); 249 250 switch (pin) { 251 case POWER7_INPUT_INT: 252 /* Level sensitive - active high */ 253 trace_ppc_irq_set_state("external IRQ", level); 254 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 255 break; 256 default: 257 g_assert_not_reached(); 258 } 259 } 260 261 void ppcPOWER7_irq_init(PowerPCCPU *cpu) 262 { 263 CPUPPCState *env = &cpu->env; 264 265 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu, 266 POWER7_INPUT_NB); 267 } 268 269 /* POWER9 internal IRQ controller */ 270 static void power9_set_irq(void *opaque, int pin, int level) 271 { 272 PowerPCCPU *cpu = opaque; 273 274 trace_ppc_irq_set(&cpu->env, pin, level); 275 276 switch (pin) { 277 case POWER9_INPUT_INT: 278 /* Level sensitive - active high */ 279 trace_ppc_irq_set_state("external IRQ", level); 280 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 281 break; 282 case POWER9_INPUT_HINT: 283 /* Level sensitive - active high */ 284 trace_ppc_irq_set_state("HV external IRQ", level); 285 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 286 break; 287 default: 288 g_assert_not_reached(); 289 return; 290 } 291 } 292 293 void ppcPOWER9_irq_init(PowerPCCPU *cpu) 294 { 295 CPUPPCState *env = &cpu->env; 296 297 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu, 298 POWER9_INPUT_NB); 299 } 300 #endif /* defined(TARGET_PPC64) */ 301 302 void ppc40x_core_reset(PowerPCCPU *cpu) 303 { 304 CPUPPCState *env = &cpu->env; 305 target_ulong dbsr; 306 307 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 308 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 309 dbsr = env->spr[SPR_40x_DBSR]; 310 dbsr &= ~0x00000300; 311 dbsr |= 0x00000100; 312 env->spr[SPR_40x_DBSR] = dbsr; 313 } 314 315 void ppc40x_chip_reset(PowerPCCPU *cpu) 316 { 317 CPUPPCState *env = &cpu->env; 318 target_ulong dbsr; 319 320 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 321 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 322 /* XXX: TODO reset all internal peripherals */ 323 dbsr = env->spr[SPR_40x_DBSR]; 324 dbsr &= ~0x00000300; 325 dbsr |= 0x00000200; 326 env->spr[SPR_40x_DBSR] = dbsr; 327 } 328 329 void ppc40x_system_reset(PowerPCCPU *cpu) 330 { 331 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 332 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 333 } 334 335 void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 336 { 337 PowerPCCPU *cpu = env_archcpu(env); 338 339 qemu_mutex_lock_iothread(); 340 341 switch ((val >> 28) & 0x3) { 342 case 0x0: 343 /* No action */ 344 break; 345 case 0x1: 346 /* Core reset */ 347 ppc40x_core_reset(cpu); 348 break; 349 case 0x2: 350 /* Chip reset */ 351 ppc40x_chip_reset(cpu); 352 break; 353 case 0x3: 354 /* System reset */ 355 ppc40x_system_reset(cpu); 356 break; 357 } 358 359 qemu_mutex_unlock_iothread(); 360 } 361 362 /* PowerPC 40x internal IRQ controller */ 363 static void ppc40x_set_irq(void *opaque, int pin, int level) 364 { 365 PowerPCCPU *cpu = opaque; 366 CPUPPCState *env = &cpu->env; 367 int cur_level; 368 369 trace_ppc_irq_set(env, pin, level); 370 371 cur_level = (env->irq_input_state >> pin) & 1; 372 /* Don't generate spurious events */ 373 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 374 CPUState *cs = CPU(cpu); 375 376 switch (pin) { 377 case PPC40x_INPUT_RESET_SYS: 378 if (level) { 379 trace_ppc_irq_reset("system"); 380 ppc40x_system_reset(cpu); 381 } 382 break; 383 case PPC40x_INPUT_RESET_CHIP: 384 if (level) { 385 trace_ppc_irq_reset("chip"); 386 ppc40x_chip_reset(cpu); 387 } 388 break; 389 case PPC40x_INPUT_RESET_CORE: 390 /* XXX: TODO: update DBSR[MRR] */ 391 if (level) { 392 trace_ppc_irq_reset("core"); 393 ppc40x_core_reset(cpu); 394 } 395 break; 396 case PPC40x_INPUT_CINT: 397 /* Level sensitive - active high */ 398 trace_ppc_irq_set_state("critical IRQ", level); 399 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 400 break; 401 case PPC40x_INPUT_INT: 402 /* Level sensitive - active high */ 403 trace_ppc_irq_set_state("external IRQ", level); 404 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 405 break; 406 case PPC40x_INPUT_HALT: 407 /* Level sensitive - active low */ 408 if (level) { 409 trace_ppc_irq_cpu("stop"); 410 cs->halted = 1; 411 } else { 412 trace_ppc_irq_cpu("restart"); 413 cs->halted = 0; 414 qemu_cpu_kick(cs); 415 } 416 break; 417 case PPC40x_INPUT_DEBUG: 418 /* Level sensitive - active high */ 419 trace_ppc_irq_set_state("debug pin", level); 420 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 421 break; 422 default: 423 g_assert_not_reached(); 424 } 425 if (level) 426 env->irq_input_state |= 1 << pin; 427 else 428 env->irq_input_state &= ~(1 << pin); 429 } 430 } 431 432 void ppc40x_irq_init(PowerPCCPU *cpu) 433 { 434 CPUPPCState *env = &cpu->env; 435 436 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq, 437 cpu, PPC40x_INPUT_NB); 438 } 439 440 /* PowerPC E500 internal IRQ controller */ 441 static void ppce500_set_irq(void *opaque, int pin, int level) 442 { 443 PowerPCCPU *cpu = opaque; 444 CPUPPCState *env = &cpu->env; 445 int cur_level; 446 447 trace_ppc_irq_set(env, pin, level); 448 449 cur_level = (env->irq_input_state >> pin) & 1; 450 /* Don't generate spurious events */ 451 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 452 switch (pin) { 453 case PPCE500_INPUT_MCK: 454 if (level) { 455 trace_ppc_irq_reset("system"); 456 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 457 } 458 break; 459 case PPCE500_INPUT_RESET_CORE: 460 if (level) { 461 trace_ppc_irq_reset("core"); 462 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 463 } 464 break; 465 case PPCE500_INPUT_CINT: 466 /* Level sensitive - active high */ 467 trace_ppc_irq_set_state("critical IRQ", level); 468 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 469 break; 470 case PPCE500_INPUT_INT: 471 /* Level sensitive - active high */ 472 trace_ppc_irq_set_state("core IRQ", level); 473 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 474 break; 475 case PPCE500_INPUT_DEBUG: 476 /* Level sensitive - active high */ 477 trace_ppc_irq_set_state("debug pin", level); 478 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 479 break; 480 default: 481 g_assert_not_reached(); 482 } 483 if (level) 484 env->irq_input_state |= 1 << pin; 485 else 486 env->irq_input_state &= ~(1 << pin); 487 } 488 } 489 490 void ppce500_irq_init(PowerPCCPU *cpu) 491 { 492 CPUPPCState *env = &cpu->env; 493 494 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq, 495 cpu, PPCE500_INPUT_NB); 496 } 497 498 /* Enable or Disable the E500 EPR capability */ 499 void ppce500_set_mpic_proxy(bool enabled) 500 { 501 CPUState *cs; 502 503 CPU_FOREACH(cs) { 504 PowerPCCPU *cpu = POWERPC_CPU(cs); 505 506 cpu->env.mpic_proxy = enabled; 507 if (kvm_enabled()) { 508 kvmppc_set_mpic_proxy(cpu, enabled); 509 } 510 } 511 } 512 513 /*****************************************************************************/ 514 /* PowerPC time base and decrementer emulation */ 515 516 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 517 { 518 /* TB time in tb periods */ 519 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset; 520 } 521 522 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 523 { 524 ppc_tb_t *tb_env = env->tb_env; 525 uint64_t tb; 526 527 if (kvm_enabled()) { 528 return env->spr[SPR_TBL]; 529 } 530 531 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 532 trace_ppc_tb_load(tb); 533 534 return tb; 535 } 536 537 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 538 { 539 ppc_tb_t *tb_env = env->tb_env; 540 uint64_t tb; 541 542 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 543 trace_ppc_tb_load(tb); 544 545 return tb >> 32; 546 } 547 548 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 549 { 550 if (kvm_enabled()) { 551 return env->spr[SPR_TBU]; 552 } 553 554 return _cpu_ppc_load_tbu(env); 555 } 556 557 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 558 int64_t *tb_offsetp, uint64_t value) 559 { 560 *tb_offsetp = value - 561 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND); 562 563 trace_ppc_tb_store(value, *tb_offsetp); 564 } 565 566 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 567 { 568 ppc_tb_t *tb_env = env->tb_env; 569 uint64_t tb; 570 571 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 572 tb &= 0xFFFFFFFF00000000ULL; 573 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 574 &tb_env->tb_offset, tb | (uint64_t)value); 575 } 576 577 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 578 { 579 ppc_tb_t *tb_env = env->tb_env; 580 uint64_t tb; 581 582 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 583 tb &= 0x00000000FFFFFFFFULL; 584 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 585 &tb_env->tb_offset, ((uint64_t)value << 32) | tb); 586 } 587 588 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 589 { 590 _cpu_ppc_store_tbu(env, value); 591 } 592 593 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 594 { 595 ppc_tb_t *tb_env = env->tb_env; 596 uint64_t tb; 597 598 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 599 trace_ppc_tb_load(tb); 600 601 return tb; 602 } 603 604 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 605 { 606 ppc_tb_t *tb_env = env->tb_env; 607 uint64_t tb; 608 609 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 610 trace_ppc_tb_load(tb); 611 612 return tb >> 32; 613 } 614 615 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 616 { 617 ppc_tb_t *tb_env = env->tb_env; 618 uint64_t tb; 619 620 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 621 tb &= 0xFFFFFFFF00000000ULL; 622 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 623 &tb_env->atb_offset, tb | (uint64_t)value); 624 } 625 626 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 627 { 628 ppc_tb_t *tb_env = env->tb_env; 629 uint64_t tb; 630 631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 632 tb &= 0x00000000FFFFFFFFULL; 633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 634 &tb_env->atb_offset, ((uint64_t)value << 32) | tb); 635 } 636 637 uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 638 { 639 ppc_tb_t *tb_env = env->tb_env; 640 641 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 642 tb_env->vtb_offset); 643 } 644 645 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 646 { 647 ppc_tb_t *tb_env = env->tb_env; 648 649 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 650 &tb_env->vtb_offset, value); 651 } 652 653 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 654 { 655 ppc_tb_t *tb_env = env->tb_env; 656 uint64_t tb; 657 658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 659 tb_env->tb_offset); 660 tb &= 0xFFFFFFUL; 661 tb |= (value & ~0xFFFFFFUL); 662 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 663 &tb_env->tb_offset, tb); 664 } 665 666 static void cpu_ppc_tb_stop (CPUPPCState *env) 667 { 668 ppc_tb_t *tb_env = env->tb_env; 669 uint64_t tb, atb, vmclk; 670 671 /* If the time base is already frozen, do nothing */ 672 if (tb_env->tb_freq != 0) { 673 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 674 /* Get the time base */ 675 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 676 /* Get the alternate time base */ 677 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 678 /* Store the time base value (ie compute the current offset) */ 679 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 680 /* Store the alternate time base value (compute the current offset) */ 681 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 682 /* Set the time base frequency to zero */ 683 tb_env->tb_freq = 0; 684 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 685 } 686 } 687 688 static void cpu_ppc_tb_start (CPUPPCState *env) 689 { 690 ppc_tb_t *tb_env = env->tb_env; 691 uint64_t tb, atb, vmclk; 692 693 /* If the time base is not frozen, do nothing */ 694 if (tb_env->tb_freq == 0) { 695 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 696 /* Get the time base from tb_offset */ 697 tb = tb_env->tb_offset; 698 /* Get the alternate time base from atb_offset */ 699 atb = tb_env->atb_offset; 700 /* Restore the tb frequency from the decrementer frequency */ 701 tb_env->tb_freq = tb_env->decr_freq; 702 /* Store the time base value */ 703 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 704 /* Store the alternate time base value */ 705 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 706 } 707 } 708 709 bool ppc_decr_clear_on_delivery(CPUPPCState *env) 710 { 711 ppc_tb_t *tb_env = env->tb_env; 712 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 713 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 714 } 715 716 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) 717 { 718 ppc_tb_t *tb_env = env->tb_env; 719 int64_t decr, diff; 720 721 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 722 if (diff >= 0) { 723 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 724 } else if (tb_env->flags & PPC_TIMER_BOOKE) { 725 decr = 0; 726 } else { 727 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 728 } 729 trace_ppc_decr_load(decr); 730 731 return decr; 732 } 733 734 target_ulong cpu_ppc_load_decr(CPUPPCState *env) 735 { 736 ppc_tb_t *tb_env = env->tb_env; 737 uint64_t decr; 738 739 if (kvm_enabled()) { 740 return env->spr[SPR_DECR]; 741 } 742 743 decr = _cpu_ppc_load_decr(env, tb_env->decr_next); 744 745 /* 746 * If large decrementer is enabled then the decrementer is signed extened 747 * to 64 bits, otherwise it is a 32 bit value. 748 */ 749 if (env->spr[SPR_LPCR] & LPCR_LD) { 750 return decr; 751 } 752 return (uint32_t) decr; 753 } 754 755 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 756 { 757 PowerPCCPU *cpu = env_archcpu(env); 758 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 759 ppc_tb_t *tb_env = env->tb_env; 760 uint64_t hdecr; 761 762 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next); 763 764 /* 765 * If we have a large decrementer (POWER9 or later) then hdecr is sign 766 * extended to 64 bits, otherwise it is 32 bits. 767 */ 768 if (pcc->lrg_decr_bits > 32) { 769 return hdecr; 770 } 771 return (uint32_t) hdecr; 772 } 773 774 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 775 { 776 ppc_tb_t *tb_env = env->tb_env; 777 778 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 779 tb_env->purr_offset); 780 } 781 782 /* When decrementer expires, 783 * all we need to do is generate or queue a CPU exception 784 */ 785 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 786 { 787 /* Raise it */ 788 trace_ppc_decr_excp("raise"); 789 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 790 } 791 792 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 793 { 794 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 795 } 796 797 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 798 { 799 CPUPPCState *env = &cpu->env; 800 801 /* Raise it */ 802 trace_ppc_decr_excp("raise HV"); 803 804 /* The architecture specifies that we don't deliver HDEC 805 * interrupts in a PM state. Not only they don't cause a 806 * wakeup but they also get effectively discarded. 807 */ 808 if (!env->resume_as_sreset) { 809 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 810 } 811 } 812 813 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 814 { 815 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 816 } 817 818 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, 819 QEMUTimer *timer, 820 void (*raise_excp)(void *), 821 void (*lower_excp)(PowerPCCPU *), 822 target_ulong decr, target_ulong value, 823 int nr_bits) 824 { 825 CPUPPCState *env = &cpu->env; 826 ppc_tb_t *tb_env = env->tb_env; 827 uint64_t now, next; 828 int64_t signed_value; 829 int64_t signed_decr; 830 831 /* Truncate value to decr_width and sign extend for simplicity */ 832 signed_value = sextract64(value, 0, nr_bits); 833 signed_decr = sextract64(decr, 0, nr_bits); 834 835 trace_ppc_decr_store(nr_bits, decr, value); 836 837 if (kvm_enabled()) { 838 /* KVM handles decrementer exceptions, we don't need our own timer */ 839 return; 840 } 841 842 /* 843 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC 844 * interrupt. 845 * 846 * If we get a really small DEC value, we can assume that by the time we 847 * handled it we should inject an interrupt already. 848 * 849 * On MSB level based DEC implementations the MSB always means the interrupt 850 * is pending, so raise it on those. 851 * 852 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 853 * an edge interrupt, so raise it here too. 854 */ 855 if ((value < 3) || 856 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || 857 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 858 && signed_decr >= 0)) { 859 (*raise_excp)(cpu); 860 return; 861 } 862 863 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 864 if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) { 865 (*lower_excp)(cpu); 866 } 867 868 /* Calculate the next timer event */ 869 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 870 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 871 *nextp = next; 872 873 /* Adjust timer */ 874 timer_mod(timer, next); 875 } 876 877 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr, 878 target_ulong value, int nr_bits) 879 { 880 ppc_tb_t *tb_env = cpu->env.tb_env; 881 882 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, 883 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr, 884 value, nr_bits); 885 } 886 887 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 888 { 889 PowerPCCPU *cpu = env_archcpu(env); 890 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 891 int nr_bits = 32; 892 893 if (env->spr[SPR_LPCR] & LPCR_LD) { 894 nr_bits = pcc->lrg_decr_bits; 895 } 896 897 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits); 898 } 899 900 static void cpu_ppc_decr_cb(void *opaque) 901 { 902 PowerPCCPU *cpu = opaque; 903 904 cpu_ppc_decr_excp(cpu); 905 } 906 907 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr, 908 target_ulong value, int nr_bits) 909 { 910 ppc_tb_t *tb_env = cpu->env.tb_env; 911 912 if (tb_env->hdecr_timer != NULL) { 913 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, 914 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 915 hdecr, value, nr_bits); 916 } 917 } 918 919 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 920 { 921 PowerPCCPU *cpu = env_archcpu(env); 922 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 923 924 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 925 pcc->lrg_decr_bits); 926 } 927 928 static void cpu_ppc_hdecr_cb(void *opaque) 929 { 930 PowerPCCPU *cpu = opaque; 931 932 cpu_ppc_hdecr_excp(cpu); 933 } 934 935 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 936 { 937 ppc_tb_t *tb_env = env->tb_env; 938 939 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 940 &tb_env->purr_offset, value); 941 } 942 943 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) 944 { 945 CPUPPCState *env = opaque; 946 PowerPCCPU *cpu = env_archcpu(env); 947 ppc_tb_t *tb_env = env->tb_env; 948 949 tb_env->tb_freq = freq; 950 tb_env->decr_freq = freq; 951 /* There is a bug in Linux 2.4 kernels: 952 * if a decrementer exception is pending when it enables msr_ee at startup, 953 * it's not ready to handle it... 954 */ 955 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 956 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 957 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 958 } 959 960 static void timebase_save(PPCTimebase *tb) 961 { 962 uint64_t ticks = cpu_get_host_ticks(); 963 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 964 965 if (!first_ppc_cpu->env.tb_env) { 966 error_report("No timebase object"); 967 return; 968 } 969 970 /* not used anymore, we keep it for compatibility */ 971 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 972 /* 973 * tb_offset is only expected to be changed by QEMU so 974 * there is no need to update it from KVM here 975 */ 976 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 977 978 tb->runstate_paused = 979 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); 980 } 981 982 static void timebase_load(PPCTimebase *tb) 983 { 984 CPUState *cpu; 985 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 986 int64_t tb_off_adj, tb_off; 987 unsigned long freq; 988 989 if (!first_ppc_cpu->env.tb_env) { 990 error_report("No timebase object"); 991 return; 992 } 993 994 freq = first_ppc_cpu->env.tb_env->tb_freq; 995 996 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 997 998 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 999 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 1000 (tb_off_adj - tb_off) / freq); 1001 1002 /* Set new offset to all CPUs */ 1003 CPU_FOREACH(cpu) { 1004 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 1005 pcpu->env.tb_env->tb_offset = tb_off_adj; 1006 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 1007 } 1008 } 1009 1010 void cpu_ppc_clock_vm_state_change(void *opaque, bool running, 1011 RunState state) 1012 { 1013 PPCTimebase *tb = opaque; 1014 1015 if (running) { 1016 timebase_load(tb); 1017 } else { 1018 timebase_save(tb); 1019 } 1020 } 1021 1022 /* 1023 * When migrating a running guest, read the clock just 1024 * before migration, so that the guest clock counts 1025 * during the events between: 1026 * 1027 * * vm_stop() 1028 * * 1029 * * pre_save() 1030 * 1031 * This reduces clock difference on migration from 5s 1032 * to 0.1s (when max_downtime == 5s), because sending the 1033 * final pages of memory (which happens between vm_stop() 1034 * and pre_save()) takes max_downtime. 1035 */ 1036 static int timebase_pre_save(void *opaque) 1037 { 1038 PPCTimebase *tb = opaque; 1039 1040 /* guest_timebase won't be overridden in case of paused guest or savevm */ 1041 if (!tb->runstate_paused) { 1042 timebase_save(tb); 1043 } 1044 1045 return 0; 1046 } 1047 1048 const VMStateDescription vmstate_ppc_timebase = { 1049 .name = "timebase", 1050 .version_id = 1, 1051 .minimum_version_id = 1, 1052 .pre_save = timebase_pre_save, 1053 .fields = (VMStateField []) { 1054 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1055 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1056 VMSTATE_END_OF_LIST() 1057 }, 1058 }; 1059 1060 /* Set up (once) timebase frequency (in Hz) */ 1061 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) 1062 { 1063 PowerPCCPU *cpu = env_archcpu(env); 1064 ppc_tb_t *tb_env; 1065 1066 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1067 env->tb_env = tb_env; 1068 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1069 if (is_book3s_arch2x(env)) { 1070 /* All Book3S 64bit CPUs implement level based DEC logic */ 1071 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1072 } 1073 /* Create new timer */ 1074 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); 1075 if (env->has_hv_mode && !cpu->vhyp) { 1076 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, 1077 cpu); 1078 } else { 1079 tb_env->hdecr_timer = NULL; 1080 } 1081 cpu_ppc_set_tb_clk(env, freq); 1082 1083 return &cpu_ppc_set_tb_clk; 1084 } 1085 1086 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ 1087 void cpu_ppc_hdecr_init(CPUPPCState *env) 1088 { 1089 PowerPCCPU *cpu = env_archcpu(env); 1090 1091 assert(env->tb_env->hdecr_timer == NULL); 1092 1093 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1094 &cpu_ppc_hdecr_cb, cpu); 1095 } 1096 1097 void cpu_ppc_hdecr_exit(CPUPPCState *env) 1098 { 1099 PowerPCCPU *cpu = env_archcpu(env); 1100 1101 timer_free(env->tb_env->hdecr_timer); 1102 env->tb_env->hdecr_timer = NULL; 1103 1104 cpu_ppc_hdecr_lower(cpu); 1105 } 1106 1107 /*****************************************************************************/ 1108 /* PowerPC 40x timers */ 1109 1110 /* PIT, FIT & WDT */ 1111 typedef struct ppc40x_timer_t ppc40x_timer_t; 1112 struct ppc40x_timer_t { 1113 uint64_t pit_reload; /* PIT auto-reload value */ 1114 uint64_t fit_next; /* Tick for next FIT interrupt */ 1115 QEMUTimer *fit_timer; 1116 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1117 QEMUTimer *wdt_timer; 1118 1119 /* 405 have the PIT, 440 have a DECR. */ 1120 unsigned int decr_excp; 1121 }; 1122 1123 /* Fixed interval timer */ 1124 static void cpu_4xx_fit_cb (void *opaque) 1125 { 1126 PowerPCCPU *cpu = opaque; 1127 CPUPPCState *env = &cpu->env; 1128 ppc_tb_t *tb_env; 1129 ppc40x_timer_t *ppc40x_timer; 1130 uint64_t now, next; 1131 1132 tb_env = env->tb_env; 1133 ppc40x_timer = tb_env->opaque; 1134 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1135 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1136 case 0: 1137 next = 1 << 9; 1138 break; 1139 case 1: 1140 next = 1 << 13; 1141 break; 1142 case 2: 1143 next = 1 << 17; 1144 break; 1145 case 3: 1146 next = 1 << 21; 1147 break; 1148 default: 1149 /* Cannot occur, but makes gcc happy */ 1150 return; 1151 } 1152 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq); 1153 if (next == now) 1154 next++; 1155 timer_mod(ppc40x_timer->fit_timer, next); 1156 env->spr[SPR_40x_TSR] |= 1 << 26; 1157 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1158 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1159 } 1160 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1161 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1162 } 1163 1164 /* Programmable interval timer */ 1165 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1166 { 1167 ppc40x_timer_t *ppc40x_timer; 1168 uint64_t now, next; 1169 1170 ppc40x_timer = tb_env->opaque; 1171 if (ppc40x_timer->pit_reload <= 1 || 1172 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1173 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1174 /* Stop PIT */ 1175 trace_ppc4xx_pit_stop(); 1176 timer_del(tb_env->decr_timer); 1177 } else { 1178 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); 1179 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1180 next = now + muldiv64(ppc40x_timer->pit_reload, 1181 NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1182 if (is_excp) 1183 next += tb_env->decr_next - now; 1184 if (next == now) 1185 next++; 1186 timer_mod(tb_env->decr_timer, next); 1187 tb_env->decr_next = next; 1188 } 1189 } 1190 1191 static void cpu_4xx_pit_cb (void *opaque) 1192 { 1193 PowerPCCPU *cpu = opaque; 1194 CPUPPCState *env = &cpu->env; 1195 ppc_tb_t *tb_env; 1196 ppc40x_timer_t *ppc40x_timer; 1197 1198 tb_env = env->tb_env; 1199 ppc40x_timer = tb_env->opaque; 1200 env->spr[SPR_40x_TSR] |= 1 << 27; 1201 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1202 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1203 } 1204 start_stop_pit(env, tb_env, 1); 1205 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1206 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1207 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1208 ppc40x_timer->pit_reload); 1209 } 1210 1211 /* Watchdog timer */ 1212 static void cpu_4xx_wdt_cb (void *opaque) 1213 { 1214 PowerPCCPU *cpu = opaque; 1215 CPUPPCState *env = &cpu->env; 1216 ppc_tb_t *tb_env; 1217 ppc40x_timer_t *ppc40x_timer; 1218 uint64_t now, next; 1219 1220 tb_env = env->tb_env; 1221 ppc40x_timer = tb_env->opaque; 1222 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1223 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1224 case 0: 1225 next = 1 << 17; 1226 break; 1227 case 1: 1228 next = 1 << 21; 1229 break; 1230 case 2: 1231 next = 1 << 25; 1232 break; 1233 case 3: 1234 next = 1 << 29; 1235 break; 1236 default: 1237 /* Cannot occur, but makes gcc happy */ 1238 return; 1239 } 1240 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1241 if (next == now) 1242 next++; 1243 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1244 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1245 case 0x0: 1246 case 0x1: 1247 timer_mod(ppc40x_timer->wdt_timer, next); 1248 ppc40x_timer->wdt_next = next; 1249 env->spr[SPR_40x_TSR] |= 1U << 31; 1250 break; 1251 case 0x2: 1252 timer_mod(ppc40x_timer->wdt_timer, next); 1253 ppc40x_timer->wdt_next = next; 1254 env->spr[SPR_40x_TSR] |= 1 << 30; 1255 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1256 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1257 } 1258 break; 1259 case 0x3: 1260 env->spr[SPR_40x_TSR] &= ~0x30000000; 1261 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1262 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1263 case 0x0: 1264 /* No reset */ 1265 break; 1266 case 0x1: /* Core reset */ 1267 ppc40x_core_reset(cpu); 1268 break; 1269 case 0x2: /* Chip reset */ 1270 ppc40x_chip_reset(cpu); 1271 break; 1272 case 0x3: /* System reset */ 1273 ppc40x_system_reset(cpu); 1274 break; 1275 } 1276 } 1277 } 1278 1279 void store_40x_pit (CPUPPCState *env, target_ulong val) 1280 { 1281 ppc_tb_t *tb_env; 1282 ppc40x_timer_t *ppc40x_timer; 1283 1284 tb_env = env->tb_env; 1285 ppc40x_timer = tb_env->opaque; 1286 trace_ppc40x_store_pit(val); 1287 ppc40x_timer->pit_reload = val; 1288 start_stop_pit(env, tb_env, 0); 1289 } 1290 1291 target_ulong load_40x_pit (CPUPPCState *env) 1292 { 1293 return cpu_ppc_load_decr(env); 1294 } 1295 1296 void store_40x_tsr(CPUPPCState *env, target_ulong val) 1297 { 1298 PowerPCCPU *cpu = env_archcpu(env); 1299 1300 trace_ppc40x_store_tcr(val); 1301 1302 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); 1303 if (val & 0x80000000) { 1304 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); 1305 } 1306 } 1307 1308 void store_40x_tcr(CPUPPCState *env, target_ulong val) 1309 { 1310 PowerPCCPU *cpu = env_archcpu(env); 1311 ppc_tb_t *tb_env; 1312 1313 trace_ppc40x_store_tsr(val); 1314 1315 tb_env = env->tb_env; 1316 env->spr[SPR_40x_TCR] = val & 0xFFC00000; 1317 start_stop_pit(env, tb_env, 1); 1318 cpu_4xx_wdt_cb(cpu); 1319 } 1320 1321 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1322 { 1323 CPUPPCState *env = opaque; 1324 ppc_tb_t *tb_env = env->tb_env; 1325 1326 trace_ppc40x_set_tb_clk(freq); 1327 tb_env->tb_freq = freq; 1328 tb_env->decr_freq = freq; 1329 /* XXX: we should also update all timers */ 1330 } 1331 1332 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1333 unsigned int decr_excp) 1334 { 1335 ppc_tb_t *tb_env; 1336 ppc40x_timer_t *ppc40x_timer; 1337 PowerPCCPU *cpu = env_archcpu(env); 1338 1339 trace_ppc40x_timers_init(freq); 1340 1341 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1342 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t)); 1343 1344 env->tb_env = tb_env; 1345 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1346 tb_env->tb_freq = freq; 1347 tb_env->decr_freq = freq; 1348 tb_env->opaque = ppc40x_timer; 1349 1350 /* We use decr timer for PIT */ 1351 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); 1352 ppc40x_timer->fit_timer = 1353 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); 1354 ppc40x_timer->wdt_timer = 1355 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); 1356 ppc40x_timer->decr_excp = decr_excp; 1357 1358 return &ppc_40x_set_tb_clk; 1359 } 1360 1361 /*****************************************************************************/ 1362 /* Embedded PowerPC Device Control Registers */ 1363 typedef struct ppc_dcrn_t ppc_dcrn_t; 1364 struct ppc_dcrn_t { 1365 dcr_read_cb dcr_read; 1366 dcr_write_cb dcr_write; 1367 void *opaque; 1368 }; 1369 1370 /* XXX: on 460, DCR addresses are 32 bits wide, 1371 * using DCRIPR to get the 22 upper bits of the DCR address 1372 */ 1373 #define DCRN_NB 1024 1374 struct ppc_dcr_t { 1375 ppc_dcrn_t dcrn[DCRN_NB]; 1376 int (*read_error)(int dcrn); 1377 int (*write_error)(int dcrn); 1378 }; 1379 1380 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1381 { 1382 ppc_dcrn_t *dcr; 1383 1384 if (dcrn < 0 || dcrn >= DCRN_NB) 1385 goto error; 1386 dcr = &dcr_env->dcrn[dcrn]; 1387 if (dcr->dcr_read == NULL) 1388 goto error; 1389 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1390 trace_ppc_dcr_read(dcrn, *valp); 1391 1392 return 0; 1393 1394 error: 1395 if (dcr_env->read_error != NULL) 1396 return (*dcr_env->read_error)(dcrn); 1397 1398 return -1; 1399 } 1400 1401 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1402 { 1403 ppc_dcrn_t *dcr; 1404 1405 if (dcrn < 0 || dcrn >= DCRN_NB) 1406 goto error; 1407 dcr = &dcr_env->dcrn[dcrn]; 1408 if (dcr->dcr_write == NULL) 1409 goto error; 1410 trace_ppc_dcr_write(dcrn, val); 1411 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1412 1413 return 0; 1414 1415 error: 1416 if (dcr_env->write_error != NULL) 1417 return (*dcr_env->write_error)(dcrn); 1418 1419 return -1; 1420 } 1421 1422 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1423 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1424 { 1425 ppc_dcr_t *dcr_env; 1426 ppc_dcrn_t *dcr; 1427 1428 dcr_env = env->dcr_env; 1429 if (dcr_env == NULL) 1430 return -1; 1431 if (dcrn < 0 || dcrn >= DCRN_NB) 1432 return -1; 1433 dcr = &dcr_env->dcrn[dcrn]; 1434 if (dcr->opaque != NULL || 1435 dcr->dcr_read != NULL || 1436 dcr->dcr_write != NULL) 1437 return -1; 1438 dcr->opaque = opaque; 1439 dcr->dcr_read = dcr_read; 1440 dcr->dcr_write = dcr_write; 1441 1442 return 0; 1443 } 1444 1445 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1446 int (*write_error)(int dcrn)) 1447 { 1448 ppc_dcr_t *dcr_env; 1449 1450 dcr_env = g_malloc0(sizeof(ppc_dcr_t)); 1451 dcr_env->read_error = read_error; 1452 dcr_env->write_error = write_error; 1453 env->dcr_env = dcr_env; 1454 1455 return 0; 1456 } 1457 1458 /*****************************************************************************/ 1459 1460 int ppc_cpu_pir(PowerPCCPU *cpu) 1461 { 1462 CPUPPCState *env = &cpu->env; 1463 return env->spr_cb[SPR_PIR].default_value; 1464 } 1465 1466 PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1467 { 1468 CPUState *cs; 1469 1470 CPU_FOREACH(cs) { 1471 PowerPCCPU *cpu = POWERPC_CPU(cs); 1472 1473 if (ppc_cpu_pir(cpu) == pir) { 1474 return cpu; 1475 } 1476 } 1477 1478 return NULL; 1479 } 1480 1481 void ppc_irq_reset(PowerPCCPU *cpu) 1482 { 1483 CPUPPCState *env = &cpu->env; 1484 1485 env->irq_input_state = 0; 1486 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1487 } 1488