xref: /openbmc/qemu/hw/ppc/ppc.c (revision b45c03f5)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
31 #include "qemu/log.h"
32 #include "qemu/error-report.h"
33 #include "hw/loader.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "trace.h"
37 
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
40 
41 #ifdef PPC_DEBUG_IRQ
42 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
43 #else
44 #  define LOG_IRQ(...) do { } while (0)
45 #endif
46 
47 
48 #ifdef PPC_DEBUG_TB
49 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
50 #else
51 #  define LOG_TB(...) do { } while (0)
52 #endif
53 
54 static void cpu_ppc_tb_stop (CPUPPCState *env);
55 static void cpu_ppc_tb_start (CPUPPCState *env);
56 
57 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
58 {
59     CPUState *cs = CPU(cpu);
60     CPUPPCState *env = &cpu->env;
61     unsigned int old_pending = env->pending_interrupts;
62 
63     if (level) {
64         env->pending_interrupts |= 1 << n_IRQ;
65         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
66     } else {
67         env->pending_interrupts &= ~(1 << n_IRQ);
68         if (env->pending_interrupts == 0) {
69             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
70         }
71     }
72 
73     if (old_pending != env->pending_interrupts) {
74 #ifdef CONFIG_KVM
75         kvmppc_set_interrupt(cpu, n_IRQ, level);
76 #endif
77     }
78 
79     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
80                 "req %08x\n", __func__, env, n_IRQ, level,
81                 env->pending_interrupts, CPU(cpu)->interrupt_request);
82 }
83 
84 /* PowerPC 6xx / 7xx internal IRQ controller */
85 static void ppc6xx_set_irq(void *opaque, int pin, int level)
86 {
87     PowerPCCPU *cpu = opaque;
88     CPUPPCState *env = &cpu->env;
89     int cur_level;
90 
91     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
92                 env, pin, level);
93     cur_level = (env->irq_input_state >> pin) & 1;
94     /* Don't generate spurious events */
95     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
96         CPUState *cs = CPU(cpu);
97 
98         switch (pin) {
99         case PPC6xx_INPUT_TBEN:
100             /* Level sensitive - active high */
101             LOG_IRQ("%s: %s the time base\n",
102                         __func__, level ? "start" : "stop");
103             if (level) {
104                 cpu_ppc_tb_start(env);
105             } else {
106                 cpu_ppc_tb_stop(env);
107             }
108         case PPC6xx_INPUT_INT:
109             /* Level sensitive - active high */
110             LOG_IRQ("%s: set the external IRQ state to %d\n",
111                         __func__, level);
112             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
113             break;
114         case PPC6xx_INPUT_SMI:
115             /* Level sensitive - active high */
116             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
117                         __func__, level);
118             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
119             break;
120         case PPC6xx_INPUT_MCP:
121             /* Negative edge sensitive */
122             /* XXX: TODO: actual reaction may depends on HID0 status
123              *            603/604/740/750: check HID0[EMCP]
124              */
125             if (cur_level == 1 && level == 0) {
126                 LOG_IRQ("%s: raise machine check state\n",
127                             __func__);
128                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
129             }
130             break;
131         case PPC6xx_INPUT_CKSTP_IN:
132             /* Level sensitive - active low */
133             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
134             /* XXX: Note that the only way to restart the CPU is to reset it */
135             if (level) {
136                 LOG_IRQ("%s: stop the CPU\n", __func__);
137                 cs->halted = 1;
138             }
139             break;
140         case PPC6xx_INPUT_HRESET:
141             /* Level sensitive - active low */
142             if (level) {
143                 LOG_IRQ("%s: reset the CPU\n", __func__);
144                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
145             }
146             break;
147         case PPC6xx_INPUT_SRESET:
148             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
149                         __func__, level);
150             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
151             break;
152         default:
153             /* Unknown pin - do nothing */
154             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
155             return;
156         }
157         if (level)
158             env->irq_input_state |= 1 << pin;
159         else
160             env->irq_input_state &= ~(1 << pin);
161     }
162 }
163 
164 void ppc6xx_irq_init(CPUPPCState *env)
165 {
166     PowerPCCPU *cpu = ppc_env_get_cpu(env);
167 
168     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
169                                                   PPC6xx_INPUT_NB);
170 }
171 
172 #if defined(TARGET_PPC64)
173 /* PowerPC 970 internal IRQ controller */
174 static void ppc970_set_irq(void *opaque, int pin, int level)
175 {
176     PowerPCCPU *cpu = opaque;
177     CPUPPCState *env = &cpu->env;
178     int cur_level;
179 
180     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
181                 env, pin, level);
182     cur_level = (env->irq_input_state >> pin) & 1;
183     /* Don't generate spurious events */
184     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
185         CPUState *cs = CPU(cpu);
186 
187         switch (pin) {
188         case PPC970_INPUT_INT:
189             /* Level sensitive - active high */
190             LOG_IRQ("%s: set the external IRQ state to %d\n",
191                         __func__, level);
192             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
193             break;
194         case PPC970_INPUT_THINT:
195             /* Level sensitive - active high */
196             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
197                         level);
198             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
199             break;
200         case PPC970_INPUT_MCP:
201             /* Negative edge sensitive */
202             /* XXX: TODO: actual reaction may depends on HID0 status
203              *            603/604/740/750: check HID0[EMCP]
204              */
205             if (cur_level == 1 && level == 0) {
206                 LOG_IRQ("%s: raise machine check state\n",
207                             __func__);
208                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
209             }
210             break;
211         case PPC970_INPUT_CKSTP:
212             /* Level sensitive - active low */
213             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
214             if (level) {
215                 LOG_IRQ("%s: stop the CPU\n", __func__);
216                 cs->halted = 1;
217             } else {
218                 LOG_IRQ("%s: restart the CPU\n", __func__);
219                 cs->halted = 0;
220                 qemu_cpu_kick(cs);
221             }
222             break;
223         case PPC970_INPUT_HRESET:
224             /* Level sensitive - active low */
225             if (level) {
226                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
227             }
228             break;
229         case PPC970_INPUT_SRESET:
230             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
231                         __func__, level);
232             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
233             break;
234         case PPC970_INPUT_TBEN:
235             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
236                         level);
237             /* XXX: TODO */
238             break;
239         default:
240             /* Unknown pin - do nothing */
241             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
242             return;
243         }
244         if (level)
245             env->irq_input_state |= 1 << pin;
246         else
247             env->irq_input_state &= ~(1 << pin);
248     }
249 }
250 
251 void ppc970_irq_init(CPUPPCState *env)
252 {
253     PowerPCCPU *cpu = ppc_env_get_cpu(env);
254 
255     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
256                                                   PPC970_INPUT_NB);
257 }
258 
259 /* POWER7 internal IRQ controller */
260 static void power7_set_irq(void *opaque, int pin, int level)
261 {
262     PowerPCCPU *cpu = opaque;
263     CPUPPCState *env = &cpu->env;
264 
265     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
266                 env, pin, level);
267 
268     switch (pin) {
269     case POWER7_INPUT_INT:
270         /* Level sensitive - active high */
271         LOG_IRQ("%s: set the external IRQ state to %d\n",
272                 __func__, level);
273         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
274         break;
275     default:
276         /* Unknown pin - do nothing */
277         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
278         return;
279     }
280     if (level) {
281         env->irq_input_state |= 1 << pin;
282     } else {
283         env->irq_input_state &= ~(1 << pin);
284     }
285 }
286 
287 void ppcPOWER7_irq_init(CPUPPCState *env)
288 {
289     PowerPCCPU *cpu = ppc_env_get_cpu(env);
290 
291     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
292                                                   POWER7_INPUT_NB);
293 }
294 #endif /* defined(TARGET_PPC64) */
295 
296 /* PowerPC 40x internal IRQ controller */
297 static void ppc40x_set_irq(void *opaque, int pin, int level)
298 {
299     PowerPCCPU *cpu = opaque;
300     CPUPPCState *env = &cpu->env;
301     int cur_level;
302 
303     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
304                 env, pin, level);
305     cur_level = (env->irq_input_state >> pin) & 1;
306     /* Don't generate spurious events */
307     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
308         CPUState *cs = CPU(cpu);
309 
310         switch (pin) {
311         case PPC40x_INPUT_RESET_SYS:
312             if (level) {
313                 LOG_IRQ("%s: reset the PowerPC system\n",
314                             __func__);
315                 ppc40x_system_reset(cpu);
316             }
317             break;
318         case PPC40x_INPUT_RESET_CHIP:
319             if (level) {
320                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
321                 ppc40x_chip_reset(cpu);
322             }
323             break;
324         case PPC40x_INPUT_RESET_CORE:
325             /* XXX: TODO: update DBSR[MRR] */
326             if (level) {
327                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
328                 ppc40x_core_reset(cpu);
329             }
330             break;
331         case PPC40x_INPUT_CINT:
332             /* Level sensitive - active high */
333             LOG_IRQ("%s: set the critical IRQ state to %d\n",
334                         __func__, level);
335             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
336             break;
337         case PPC40x_INPUT_INT:
338             /* Level sensitive - active high */
339             LOG_IRQ("%s: set the external IRQ state to %d\n",
340                         __func__, level);
341             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
342             break;
343         case PPC40x_INPUT_HALT:
344             /* Level sensitive - active low */
345             if (level) {
346                 LOG_IRQ("%s: stop the CPU\n", __func__);
347                 cs->halted = 1;
348             } else {
349                 LOG_IRQ("%s: restart the CPU\n", __func__);
350                 cs->halted = 0;
351                 qemu_cpu_kick(cs);
352             }
353             break;
354         case PPC40x_INPUT_DEBUG:
355             /* Level sensitive - active high */
356             LOG_IRQ("%s: set the debug pin state to %d\n",
357                         __func__, level);
358             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
359             break;
360         default:
361             /* Unknown pin - do nothing */
362             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
363             return;
364         }
365         if (level)
366             env->irq_input_state |= 1 << pin;
367         else
368             env->irq_input_state &= ~(1 << pin);
369     }
370 }
371 
372 void ppc40x_irq_init(CPUPPCState *env)
373 {
374     PowerPCCPU *cpu = ppc_env_get_cpu(env);
375 
376     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
377                                                   cpu, PPC40x_INPUT_NB);
378 }
379 
380 /* PowerPC E500 internal IRQ controller */
381 static void ppce500_set_irq(void *opaque, int pin, int level)
382 {
383     PowerPCCPU *cpu = opaque;
384     CPUPPCState *env = &cpu->env;
385     int cur_level;
386 
387     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
388                 env, pin, level);
389     cur_level = (env->irq_input_state >> pin) & 1;
390     /* Don't generate spurious events */
391     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
392         switch (pin) {
393         case PPCE500_INPUT_MCK:
394             if (level) {
395                 LOG_IRQ("%s: reset the PowerPC system\n",
396                             __func__);
397                 qemu_system_reset_request();
398             }
399             break;
400         case PPCE500_INPUT_RESET_CORE:
401             if (level) {
402                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
403                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
404             }
405             break;
406         case PPCE500_INPUT_CINT:
407             /* Level sensitive - active high */
408             LOG_IRQ("%s: set the critical IRQ state to %d\n",
409                         __func__, level);
410             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
411             break;
412         case PPCE500_INPUT_INT:
413             /* Level sensitive - active high */
414             LOG_IRQ("%s: set the core IRQ state to %d\n",
415                         __func__, level);
416             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
417             break;
418         case PPCE500_INPUT_DEBUG:
419             /* Level sensitive - active high */
420             LOG_IRQ("%s: set the debug pin state to %d\n",
421                         __func__, level);
422             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
423             break;
424         default:
425             /* Unknown pin - do nothing */
426             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
427             return;
428         }
429         if (level)
430             env->irq_input_state |= 1 << pin;
431         else
432             env->irq_input_state &= ~(1 << pin);
433     }
434 }
435 
436 void ppce500_irq_init(CPUPPCState *env)
437 {
438     PowerPCCPU *cpu = ppc_env_get_cpu(env);
439 
440     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
441                                                   cpu, PPCE500_INPUT_NB);
442 }
443 
444 /* Enable or Disable the E500 EPR capability */
445 void ppce500_set_mpic_proxy(bool enabled)
446 {
447     CPUState *cs;
448 
449     CPU_FOREACH(cs) {
450         PowerPCCPU *cpu = POWERPC_CPU(cs);
451 
452         cpu->env.mpic_proxy = enabled;
453         if (kvm_enabled()) {
454             kvmppc_set_mpic_proxy(cpu, enabled);
455         }
456     }
457 }
458 
459 /*****************************************************************************/
460 /* PowerPC time base and decrementer emulation */
461 
462 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
463 {
464     /* TB time in tb periods */
465     return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
466 }
467 
468 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
469 {
470     ppc_tb_t *tb_env = env->tb_env;
471     uint64_t tb;
472 
473     if (kvm_enabled()) {
474         return env->spr[SPR_TBL];
475     }
476 
477     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
478     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
479 
480     return tb;
481 }
482 
483 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
484 {
485     ppc_tb_t *tb_env = env->tb_env;
486     uint64_t tb;
487 
488     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
489     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
490 
491     return tb >> 32;
492 }
493 
494 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
495 {
496     if (kvm_enabled()) {
497         return env->spr[SPR_TBU];
498     }
499 
500     return _cpu_ppc_load_tbu(env);
501 }
502 
503 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
504                                     int64_t *tb_offsetp, uint64_t value)
505 {
506     *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
507     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
508                 __func__, value, *tb_offsetp);
509 }
510 
511 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
512 {
513     ppc_tb_t *tb_env = env->tb_env;
514     uint64_t tb;
515 
516     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
517     tb &= 0xFFFFFFFF00000000ULL;
518     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
519                      &tb_env->tb_offset, tb | (uint64_t)value);
520 }
521 
522 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
523 {
524     ppc_tb_t *tb_env = env->tb_env;
525     uint64_t tb;
526 
527     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
528     tb &= 0x00000000FFFFFFFFULL;
529     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
530                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
531 }
532 
533 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
534 {
535     _cpu_ppc_store_tbu(env, value);
536 }
537 
538 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
539 {
540     ppc_tb_t *tb_env = env->tb_env;
541     uint64_t tb;
542 
543     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
544     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
545 
546     return tb;
547 }
548 
549 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
550 {
551     ppc_tb_t *tb_env = env->tb_env;
552     uint64_t tb;
553 
554     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
555     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
556 
557     return tb >> 32;
558 }
559 
560 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
561 {
562     ppc_tb_t *tb_env = env->tb_env;
563     uint64_t tb;
564 
565     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
566     tb &= 0xFFFFFFFF00000000ULL;
567     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
568                      &tb_env->atb_offset, tb | (uint64_t)value);
569 }
570 
571 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
572 {
573     ppc_tb_t *tb_env = env->tb_env;
574     uint64_t tb;
575 
576     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
577     tb &= 0x00000000FFFFFFFFULL;
578     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
579                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
580 }
581 
582 static void cpu_ppc_tb_stop (CPUPPCState *env)
583 {
584     ppc_tb_t *tb_env = env->tb_env;
585     uint64_t tb, atb, vmclk;
586 
587     /* If the time base is already frozen, do nothing */
588     if (tb_env->tb_freq != 0) {
589         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
590         /* Get the time base */
591         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
592         /* Get the alternate time base */
593         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
594         /* Store the time base value (ie compute the current offset) */
595         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
596         /* Store the alternate time base value (compute the current offset) */
597         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
598         /* Set the time base frequency to zero */
599         tb_env->tb_freq = 0;
600         /* Now, the time bases are frozen to tb_offset / atb_offset value */
601     }
602 }
603 
604 static void cpu_ppc_tb_start (CPUPPCState *env)
605 {
606     ppc_tb_t *tb_env = env->tb_env;
607     uint64_t tb, atb, vmclk;
608 
609     /* If the time base is not frozen, do nothing */
610     if (tb_env->tb_freq == 0) {
611         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
612         /* Get the time base from tb_offset */
613         tb = tb_env->tb_offset;
614         /* Get the alternate time base from atb_offset */
615         atb = tb_env->atb_offset;
616         /* Restore the tb frequency from the decrementer frequency */
617         tb_env->tb_freq = tb_env->decr_freq;
618         /* Store the time base value */
619         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
620         /* Store the alternate time base value */
621         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
622     }
623 }
624 
625 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
626 {
627     ppc_tb_t *tb_env = env->tb_env;
628     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
629     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
630 }
631 
632 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
633 {
634     ppc_tb_t *tb_env = env->tb_env;
635     uint32_t decr;
636     int64_t diff;
637 
638     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
639     if (diff >= 0) {
640         decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
641     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
642         decr = 0;
643     }  else {
644         decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
645     }
646     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
647 
648     return decr;
649 }
650 
651 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
652 {
653     ppc_tb_t *tb_env = env->tb_env;
654 
655     if (kvm_enabled()) {
656         return env->spr[SPR_DECR];
657     }
658 
659     return _cpu_ppc_load_decr(env, tb_env->decr_next);
660 }
661 
662 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
663 {
664     ppc_tb_t *tb_env = env->tb_env;
665 
666     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
667 }
668 
669 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
670 {
671     ppc_tb_t *tb_env = env->tb_env;
672     uint64_t diff;
673 
674     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
675 
676     return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
677 }
678 
679 /* When decrementer expires,
680  * all we need to do is generate or queue a CPU exception
681  */
682 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
683 {
684     /* Raise it */
685     LOG_TB("raise decrementer exception\n");
686     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
687 }
688 
689 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
690 {
691     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
692 }
693 
694 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
695 {
696     /* Raise it */
697     LOG_TB("raise decrementer exception\n");
698     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
699 }
700 
701 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
702 {
703     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
704 }
705 
706 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
707                                  QEMUTimer *timer,
708                                  void (*raise_excp)(void *),
709                                  void (*lower_excp)(PowerPCCPU *),
710                                  uint32_t decr, uint32_t value)
711 {
712     CPUPPCState *env = &cpu->env;
713     ppc_tb_t *tb_env = env->tb_env;
714     uint64_t now, next;
715 
716     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
717                 decr, value);
718 
719     if (kvm_enabled()) {
720         /* KVM handles decrementer exceptions, we don't need our own timer */
721         return;
722     }
723 
724     /*
725      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
726      * interrupt.
727      *
728      * If we get a really small DEC value, we can assume that by the time we
729      * handled it we should inject an interrupt already.
730      *
731      * On MSB level based DEC implementations the MSB always means the interrupt
732      * is pending, so raise it on those.
733      *
734      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
735      * an edge interrupt, so raise it here too.
736      */
737     if ((value < 3) ||
738         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
739         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
740           && !(decr & 0x80000000))) {
741         (*raise_excp)(cpu);
742         return;
743     }
744 
745     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
746     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
747         (*lower_excp)(cpu);
748     }
749 
750     /* Calculate the next timer event */
751     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
752     next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
753     *nextp = next;
754 
755     /* Adjust timer */
756     timer_mod(timer, next);
757 }
758 
759 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
760                                        uint32_t value)
761 {
762     ppc_tb_t *tb_env = cpu->env.tb_env;
763 
764     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
765                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
766                          value);
767 }
768 
769 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
770 {
771     PowerPCCPU *cpu = ppc_env_get_cpu(env);
772 
773     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
774 }
775 
776 static void cpu_ppc_decr_cb(void *opaque)
777 {
778     PowerPCCPU *cpu = opaque;
779 
780     cpu_ppc_decr_excp(cpu);
781 }
782 
783 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
784                                         uint32_t value)
785 {
786     ppc_tb_t *tb_env = cpu->env.tb_env;
787 
788     if (tb_env->hdecr_timer != NULL) {
789         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
790                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
791                              hdecr, value);
792     }
793 }
794 
795 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
796 {
797     PowerPCCPU *cpu = ppc_env_get_cpu(env);
798 
799     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
800 }
801 
802 static void cpu_ppc_hdecr_cb(void *opaque)
803 {
804     PowerPCCPU *cpu = opaque;
805 
806     cpu_ppc_hdecr_excp(cpu);
807 }
808 
809 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
810 {
811     ppc_tb_t *tb_env = cpu->env.tb_env;
812 
813     tb_env->purr_load = value;
814     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
815 }
816 
817 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
818 {
819     CPUPPCState *env = opaque;
820     PowerPCCPU *cpu = ppc_env_get_cpu(env);
821     ppc_tb_t *tb_env = env->tb_env;
822 
823     tb_env->tb_freq = freq;
824     tb_env->decr_freq = freq;
825     /* There is a bug in Linux 2.4 kernels:
826      * if a decrementer exception is pending when it enables msr_ee at startup,
827      * it's not ready to handle it...
828      */
829     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
830     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
831     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
832 }
833 
834 static void timebase_pre_save(void *opaque)
835 {
836     PPCTimebase *tb = opaque;
837     uint64_t ticks = cpu_get_real_ticks();
838     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
839 
840     if (!first_ppc_cpu->env.tb_env) {
841         error_report("No timebase object");
842         return;
843     }
844 
845     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
846     /*
847      * tb_offset is only expected to be changed by migration so
848      * there is no need to update it from KVM here
849      */
850     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
851 }
852 
853 static int timebase_post_load(void *opaque, int version_id)
854 {
855     PPCTimebase *tb_remote = opaque;
856     CPUState *cpu;
857     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
858     int64_t tb_off_adj, tb_off, ns_diff;
859     int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
860     unsigned long freq;
861 
862     if (!first_ppc_cpu->env.tb_env) {
863         error_report("No timebase object");
864         return -1;
865     }
866 
867     freq = first_ppc_cpu->env.tb_env->tb_freq;
868     /*
869      * Calculate timebase on the destination side of migration.
870      * The destination timebase must be not less than the source timebase.
871      * We try to adjust timebase by downtime if host clocks are not
872      * too much out of sync (1 second for now).
873      */
874     host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
875     ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
876     migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
877     migration_duration_tb = muldiv64(migration_duration_ns, freq,
878                                      NANOSECONDS_PER_SECOND);
879     guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
880 
881     tb_off_adj = guest_tb - cpu_get_real_ticks();
882 
883     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
884     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
885                         (tb_off_adj - tb_off) / freq);
886 
887     /* Set new offset to all CPUs */
888     CPU_FOREACH(cpu) {
889         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
890         pcpu->env.tb_env->tb_offset = tb_off_adj;
891     }
892 
893     return 0;
894 }
895 
896 const VMStateDescription vmstate_ppc_timebase = {
897     .name = "timebase",
898     .version_id = 1,
899     .minimum_version_id = 1,
900     .minimum_version_id_old = 1,
901     .pre_save = timebase_pre_save,
902     .post_load = timebase_post_load,
903     .fields      = (VMStateField []) {
904         VMSTATE_UINT64(guest_timebase, PPCTimebase),
905         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
906         VMSTATE_END_OF_LIST()
907     },
908 };
909 
910 /* Set up (once) timebase frequency (in Hz) */
911 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
912 {
913     PowerPCCPU *cpu = ppc_env_get_cpu(env);
914     ppc_tb_t *tb_env;
915 
916     tb_env = g_malloc0(sizeof(ppc_tb_t));
917     env->tb_env = tb_env;
918     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
919     if (env->insns_flags & PPC_SEGMENT_64B) {
920         /* All Book3S 64bit CPUs implement level based DEC logic */
921         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
922     }
923     /* Create new timer */
924     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
925     if (0) {
926         /* XXX: find a suitable condition to enable the hypervisor decrementer
927          */
928         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
929                                                 cpu);
930     } else {
931         tb_env->hdecr_timer = NULL;
932     }
933     cpu_ppc_set_tb_clk(env, freq);
934 
935     return &cpu_ppc_set_tb_clk;
936 }
937 
938 /* Specific helpers for POWER & PowerPC 601 RTC */
939 #if 0
940 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
941 {
942     return cpu_ppc_tb_init(env, 7812500);
943 }
944 #endif
945 
946 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
947 {
948     _cpu_ppc_store_tbu(env, value);
949 }
950 
951 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
952 {
953     return _cpu_ppc_load_tbu(env);
954 }
955 
956 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
957 {
958     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
959 }
960 
961 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
962 {
963     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
964 }
965 
966 /*****************************************************************************/
967 /* PowerPC 40x timers */
968 
969 /* PIT, FIT & WDT */
970 typedef struct ppc40x_timer_t ppc40x_timer_t;
971 struct ppc40x_timer_t {
972     uint64_t pit_reload;  /* PIT auto-reload value        */
973     uint64_t fit_next;    /* Tick for next FIT interrupt  */
974     QEMUTimer *fit_timer;
975     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
976     QEMUTimer *wdt_timer;
977 
978     /* 405 have the PIT, 440 have a DECR.  */
979     unsigned int decr_excp;
980 };
981 
982 /* Fixed interval timer */
983 static void cpu_4xx_fit_cb (void *opaque)
984 {
985     PowerPCCPU *cpu;
986     CPUPPCState *env;
987     ppc_tb_t *tb_env;
988     ppc40x_timer_t *ppc40x_timer;
989     uint64_t now, next;
990 
991     env = opaque;
992     cpu = ppc_env_get_cpu(env);
993     tb_env = env->tb_env;
994     ppc40x_timer = tb_env->opaque;
995     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
996     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
997     case 0:
998         next = 1 << 9;
999         break;
1000     case 1:
1001         next = 1 << 13;
1002         break;
1003     case 2:
1004         next = 1 << 17;
1005         break;
1006     case 3:
1007         next = 1 << 21;
1008         break;
1009     default:
1010         /* Cannot occur, but makes gcc happy */
1011         return;
1012     }
1013     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
1014     if (next == now)
1015         next++;
1016     timer_mod(ppc40x_timer->fit_timer, next);
1017     env->spr[SPR_40x_TSR] |= 1 << 26;
1018     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1019         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1020     }
1021     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1022            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1023            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1024 }
1025 
1026 /* Programmable interval timer */
1027 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1028 {
1029     ppc40x_timer_t *ppc40x_timer;
1030     uint64_t now, next;
1031 
1032     ppc40x_timer = tb_env->opaque;
1033     if (ppc40x_timer->pit_reload <= 1 ||
1034         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1035         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1036         /* Stop PIT */
1037         LOG_TB("%s: stop PIT\n", __func__);
1038         timer_del(tb_env->decr_timer);
1039     } else {
1040         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1041                     __func__, ppc40x_timer->pit_reload);
1042         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1043         next = now + muldiv64(ppc40x_timer->pit_reload,
1044                               get_ticks_per_sec(), tb_env->decr_freq);
1045         if (is_excp)
1046             next += tb_env->decr_next - now;
1047         if (next == now)
1048             next++;
1049         timer_mod(tb_env->decr_timer, next);
1050         tb_env->decr_next = next;
1051     }
1052 }
1053 
1054 static void cpu_4xx_pit_cb (void *opaque)
1055 {
1056     PowerPCCPU *cpu;
1057     CPUPPCState *env;
1058     ppc_tb_t *tb_env;
1059     ppc40x_timer_t *ppc40x_timer;
1060 
1061     env = opaque;
1062     cpu = ppc_env_get_cpu(env);
1063     tb_env = env->tb_env;
1064     ppc40x_timer = tb_env->opaque;
1065     env->spr[SPR_40x_TSR] |= 1 << 27;
1066     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1067         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1068     }
1069     start_stop_pit(env, tb_env, 1);
1070     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1071            "%016" PRIx64 "\n", __func__,
1072            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1073            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1074            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1075            ppc40x_timer->pit_reload);
1076 }
1077 
1078 /* Watchdog timer */
1079 static void cpu_4xx_wdt_cb (void *opaque)
1080 {
1081     PowerPCCPU *cpu;
1082     CPUPPCState *env;
1083     ppc_tb_t *tb_env;
1084     ppc40x_timer_t *ppc40x_timer;
1085     uint64_t now, next;
1086 
1087     env = opaque;
1088     cpu = ppc_env_get_cpu(env);
1089     tb_env = env->tb_env;
1090     ppc40x_timer = tb_env->opaque;
1091     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1092     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1093     case 0:
1094         next = 1 << 17;
1095         break;
1096     case 1:
1097         next = 1 << 21;
1098         break;
1099     case 2:
1100         next = 1 << 25;
1101         break;
1102     case 3:
1103         next = 1 << 29;
1104         break;
1105     default:
1106         /* Cannot occur, but makes gcc happy */
1107         return;
1108     }
1109     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1110     if (next == now)
1111         next++;
1112     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1113            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1114     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1115     case 0x0:
1116     case 0x1:
1117         timer_mod(ppc40x_timer->wdt_timer, next);
1118         ppc40x_timer->wdt_next = next;
1119         env->spr[SPR_40x_TSR] |= 1U << 31;
1120         break;
1121     case 0x2:
1122         timer_mod(ppc40x_timer->wdt_timer, next);
1123         ppc40x_timer->wdt_next = next;
1124         env->spr[SPR_40x_TSR] |= 1 << 30;
1125         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1126             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1127         }
1128         break;
1129     case 0x3:
1130         env->spr[SPR_40x_TSR] &= ~0x30000000;
1131         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1132         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1133         case 0x0:
1134             /* No reset */
1135             break;
1136         case 0x1: /* Core reset */
1137             ppc40x_core_reset(cpu);
1138             break;
1139         case 0x2: /* Chip reset */
1140             ppc40x_chip_reset(cpu);
1141             break;
1142         case 0x3: /* System reset */
1143             ppc40x_system_reset(cpu);
1144             break;
1145         }
1146     }
1147 }
1148 
1149 void store_40x_pit (CPUPPCState *env, target_ulong val)
1150 {
1151     ppc_tb_t *tb_env;
1152     ppc40x_timer_t *ppc40x_timer;
1153 
1154     tb_env = env->tb_env;
1155     ppc40x_timer = tb_env->opaque;
1156     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1157     ppc40x_timer->pit_reload = val;
1158     start_stop_pit(env, tb_env, 0);
1159 }
1160 
1161 target_ulong load_40x_pit (CPUPPCState *env)
1162 {
1163     return cpu_ppc_load_decr(env);
1164 }
1165 
1166 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1167 {
1168     CPUPPCState *env = opaque;
1169     ppc_tb_t *tb_env = env->tb_env;
1170 
1171     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1172                 freq);
1173     tb_env->tb_freq = freq;
1174     tb_env->decr_freq = freq;
1175     /* XXX: we should also update all timers */
1176 }
1177 
1178 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1179                                   unsigned int decr_excp)
1180 {
1181     ppc_tb_t *tb_env;
1182     ppc40x_timer_t *ppc40x_timer;
1183 
1184     tb_env = g_malloc0(sizeof(ppc_tb_t));
1185     env->tb_env = tb_env;
1186     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1187     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1188     tb_env->tb_freq = freq;
1189     tb_env->decr_freq = freq;
1190     tb_env->opaque = ppc40x_timer;
1191     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1192     if (ppc40x_timer != NULL) {
1193         /* We use decr timer for PIT */
1194         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1195         ppc40x_timer->fit_timer =
1196             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1197         ppc40x_timer->wdt_timer =
1198             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1199         ppc40x_timer->decr_excp = decr_excp;
1200     }
1201 
1202     return &ppc_40x_set_tb_clk;
1203 }
1204 
1205 /*****************************************************************************/
1206 /* Embedded PowerPC Device Control Registers */
1207 typedef struct ppc_dcrn_t ppc_dcrn_t;
1208 struct ppc_dcrn_t {
1209     dcr_read_cb dcr_read;
1210     dcr_write_cb dcr_write;
1211     void *opaque;
1212 };
1213 
1214 /* XXX: on 460, DCR addresses are 32 bits wide,
1215  *      using DCRIPR to get the 22 upper bits of the DCR address
1216  */
1217 #define DCRN_NB 1024
1218 struct ppc_dcr_t {
1219     ppc_dcrn_t dcrn[DCRN_NB];
1220     int (*read_error)(int dcrn);
1221     int (*write_error)(int dcrn);
1222 };
1223 
1224 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1225 {
1226     ppc_dcrn_t *dcr;
1227 
1228     if (dcrn < 0 || dcrn >= DCRN_NB)
1229         goto error;
1230     dcr = &dcr_env->dcrn[dcrn];
1231     if (dcr->dcr_read == NULL)
1232         goto error;
1233     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1234 
1235     return 0;
1236 
1237  error:
1238     if (dcr_env->read_error != NULL)
1239         return (*dcr_env->read_error)(dcrn);
1240 
1241     return -1;
1242 }
1243 
1244 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1245 {
1246     ppc_dcrn_t *dcr;
1247 
1248     if (dcrn < 0 || dcrn >= DCRN_NB)
1249         goto error;
1250     dcr = &dcr_env->dcrn[dcrn];
1251     if (dcr->dcr_write == NULL)
1252         goto error;
1253     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1254 
1255     return 0;
1256 
1257  error:
1258     if (dcr_env->write_error != NULL)
1259         return (*dcr_env->write_error)(dcrn);
1260 
1261     return -1;
1262 }
1263 
1264 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1265                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1266 {
1267     ppc_dcr_t *dcr_env;
1268     ppc_dcrn_t *dcr;
1269 
1270     dcr_env = env->dcr_env;
1271     if (dcr_env == NULL)
1272         return -1;
1273     if (dcrn < 0 || dcrn >= DCRN_NB)
1274         return -1;
1275     dcr = &dcr_env->dcrn[dcrn];
1276     if (dcr->opaque != NULL ||
1277         dcr->dcr_read != NULL ||
1278         dcr->dcr_write != NULL)
1279         return -1;
1280     dcr->opaque = opaque;
1281     dcr->dcr_read = dcr_read;
1282     dcr->dcr_write = dcr_write;
1283 
1284     return 0;
1285 }
1286 
1287 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1288                   int (*write_error)(int dcrn))
1289 {
1290     ppc_dcr_t *dcr_env;
1291 
1292     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1293     dcr_env->read_error = read_error;
1294     dcr_env->write_error = write_error;
1295     env->dcr_env = dcr_env;
1296 
1297     return 0;
1298 }
1299 
1300 /*****************************************************************************/
1301 /* Debug port */
1302 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1303 {
1304     addr &= 0xF;
1305     switch (addr) {
1306     case 0:
1307         printf("%c", val);
1308         break;
1309     case 1:
1310         printf("\n");
1311         fflush(stdout);
1312         break;
1313     case 2:
1314         printf("Set loglevel to %04" PRIx32 "\n", val);
1315         qemu_set_log(val | 0x100);
1316         break;
1317     }
1318 }
1319 
1320 /* CPU device-tree ID helpers */
1321 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1322 {
1323     return cpu->cpu_dt_id;
1324 }
1325 
1326 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1327 {
1328     CPUState *cs;
1329 
1330     CPU_FOREACH(cs) {
1331         PowerPCCPU *cpu = POWERPC_CPU(cs);
1332 
1333         if (cpu->cpu_dt_id == cpu_dt_id) {
1334             return cpu;
1335         }
1336     }
1337 
1338     return NULL;
1339 }
1340