xref: /openbmc/qemu/hw/ppc/ppc.c (revision b14df228)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
42 
43 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
44 {
45     CPUState *cs = CPU(cpu);
46     CPUPPCState *env = &cpu->env;
47     unsigned int old_pending;
48     bool locked = false;
49 
50     /* We may already have the BQL if coming from the reset path */
51     if (!qemu_mutex_iothread_locked()) {
52         locked = true;
53         qemu_mutex_lock_iothread();
54     }
55 
56     old_pending = env->pending_interrupts;
57 
58     if (level) {
59         env->pending_interrupts |= 1 << n_IRQ;
60         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
61     } else {
62         env->pending_interrupts &= ~(1 << n_IRQ);
63         if (env->pending_interrupts == 0) {
64             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
65         }
66     }
67 
68     if (old_pending != env->pending_interrupts) {
69         kvmppc_set_interrupt(cpu, n_IRQ, level);
70     }
71 
72 
73     trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts,
74                            CPU(cpu)->interrupt_request);
75 
76     if (locked) {
77         qemu_mutex_unlock_iothread();
78     }
79 }
80 
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque, int pin, int level)
83 {
84     PowerPCCPU *cpu = opaque;
85     CPUPPCState *env = &cpu->env;
86     int cur_level;
87 
88     trace_ppc_irq_set(env, pin, level);
89 
90     cur_level = (env->irq_input_state >> pin) & 1;
91     /* Don't generate spurious events */
92     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
93         CPUState *cs = CPU(cpu);
94 
95         switch (pin) {
96         case PPC6xx_INPUT_TBEN:
97             /* Level sensitive - active high */
98             trace_ppc_irq_set_state("time base", level);
99             if (level) {
100                 cpu_ppc_tb_start(env);
101             } else {
102                 cpu_ppc_tb_stop(env);
103             }
104             break;
105         case PPC6xx_INPUT_INT:
106             /* Level sensitive - active high */
107             trace_ppc_irq_set_state("external IRQ", level);
108             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
109             break;
110         case PPC6xx_INPUT_SMI:
111             /* Level sensitive - active high */
112             trace_ppc_irq_set_state("SMI IRQ", level);
113             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
114             break;
115         case PPC6xx_INPUT_MCP:
116             /* Negative edge sensitive */
117             /* XXX: TODO: actual reaction may depends on HID0 status
118              *            603/604/740/750: check HID0[EMCP]
119              */
120             if (cur_level == 1 && level == 0) {
121                 trace_ppc_irq_set_state("machine check", 1);
122                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
123             }
124             break;
125         case PPC6xx_INPUT_CKSTP_IN:
126             /* Level sensitive - active low */
127             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128             /* XXX: Note that the only way to restart the CPU is to reset it */
129             if (level) {
130                 trace_ppc_irq_cpu("stop");
131                 cs->halted = 1;
132             }
133             break;
134         case PPC6xx_INPUT_HRESET:
135             /* Level sensitive - active low */
136             if (level) {
137                 trace_ppc_irq_reset("CPU");
138                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
139             }
140             break;
141         case PPC6xx_INPUT_SRESET:
142             trace_ppc_irq_set_state("RESET IRQ", level);
143             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
144             break;
145         default:
146             g_assert_not_reached();
147         }
148         if (level)
149             env->irq_input_state |= 1 << pin;
150         else
151             env->irq_input_state &= ~(1 << pin);
152     }
153 }
154 
155 void ppc6xx_irq_init(PowerPCCPU *cpu)
156 {
157     qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
158 }
159 
160 #if defined(TARGET_PPC64)
161 /* PowerPC 970 internal IRQ controller */
162 static void ppc970_set_irq(void *opaque, int pin, int level)
163 {
164     PowerPCCPU *cpu = opaque;
165     CPUPPCState *env = &cpu->env;
166     int cur_level;
167 
168     trace_ppc_irq_set(env, pin, level);
169 
170     cur_level = (env->irq_input_state >> pin) & 1;
171     /* Don't generate spurious events */
172     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
173         CPUState *cs = CPU(cpu);
174 
175         switch (pin) {
176         case PPC970_INPUT_INT:
177             /* Level sensitive - active high */
178             trace_ppc_irq_set_state("external IRQ", level);
179             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
180             break;
181         case PPC970_INPUT_THINT:
182             /* Level sensitive - active high */
183             trace_ppc_irq_set_state("SMI IRQ", level);
184             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
185             break;
186         case PPC970_INPUT_MCP:
187             /* Negative edge sensitive */
188             /* XXX: TODO: actual reaction may depends on HID0 status
189              *            603/604/740/750: check HID0[EMCP]
190              */
191             if (cur_level == 1 && level == 0) {
192                 trace_ppc_irq_set_state("machine check", 1);
193                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
194             }
195             break;
196         case PPC970_INPUT_CKSTP:
197             /* Level sensitive - active low */
198             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
199             if (level) {
200                 trace_ppc_irq_cpu("stop");
201                 cs->halted = 1;
202             } else {
203                 trace_ppc_irq_cpu("restart");
204                 cs->halted = 0;
205                 qemu_cpu_kick(cs);
206             }
207             break;
208         case PPC970_INPUT_HRESET:
209             /* Level sensitive - active low */
210             if (level) {
211                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
212             }
213             break;
214         case PPC970_INPUT_SRESET:
215             trace_ppc_irq_set_state("RESET IRQ", level);
216             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
217             break;
218         case PPC970_INPUT_TBEN:
219             trace_ppc_irq_set_state("TBEN IRQ", level);
220             /* XXX: TODO */
221             break;
222         default:
223             g_assert_not_reached();
224         }
225         if (level)
226             env->irq_input_state |= 1 << pin;
227         else
228             env->irq_input_state &= ~(1 << pin);
229     }
230 }
231 
232 void ppc970_irq_init(PowerPCCPU *cpu)
233 {
234     qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
235 }
236 
237 /* POWER7 internal IRQ controller */
238 static void power7_set_irq(void *opaque, int pin, int level)
239 {
240     PowerPCCPU *cpu = opaque;
241 
242     trace_ppc_irq_set(&cpu->env, pin, level);
243 
244     switch (pin) {
245     case POWER7_INPUT_INT:
246         /* Level sensitive - active high */
247         trace_ppc_irq_set_state("external IRQ", level);
248         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
249         break;
250     default:
251         g_assert_not_reached();
252     }
253 }
254 
255 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
256 {
257     qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
258 }
259 
260 /* POWER9 internal IRQ controller */
261 static void power9_set_irq(void *opaque, int pin, int level)
262 {
263     PowerPCCPU *cpu = opaque;
264 
265     trace_ppc_irq_set(&cpu->env, pin, level);
266 
267     switch (pin) {
268     case POWER9_INPUT_INT:
269         /* Level sensitive - active high */
270         trace_ppc_irq_set_state("external IRQ", level);
271         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
272         break;
273     case POWER9_INPUT_HINT:
274         /* Level sensitive - active high */
275         trace_ppc_irq_set_state("HV external IRQ", level);
276         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
277         break;
278     default:
279         g_assert_not_reached();
280         return;
281     }
282 }
283 
284 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
285 {
286     qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
287 }
288 #endif /* defined(TARGET_PPC64) */
289 
290 void ppc40x_core_reset(PowerPCCPU *cpu)
291 {
292     CPUPPCState *env = &cpu->env;
293     target_ulong dbsr;
294 
295     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
296     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
297     dbsr = env->spr[SPR_40x_DBSR];
298     dbsr &= ~0x00000300;
299     dbsr |= 0x00000100;
300     env->spr[SPR_40x_DBSR] = dbsr;
301 }
302 
303 void ppc40x_chip_reset(PowerPCCPU *cpu)
304 {
305     CPUPPCState *env = &cpu->env;
306     target_ulong dbsr;
307 
308     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
309     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
310     /* XXX: TODO reset all internal peripherals */
311     dbsr = env->spr[SPR_40x_DBSR];
312     dbsr &= ~0x00000300;
313     dbsr |= 0x00000200;
314     env->spr[SPR_40x_DBSR] = dbsr;
315 }
316 
317 void ppc40x_system_reset(PowerPCCPU *cpu)
318 {
319     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
320     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
321 }
322 
323 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
324 {
325     PowerPCCPU *cpu = env_archcpu(env);
326 
327     qemu_mutex_lock_iothread();
328 
329     switch ((val >> 28) & 0x3) {
330     case 0x0:
331         /* No action */
332         break;
333     case 0x1:
334         /* Core reset */
335         ppc40x_core_reset(cpu);
336         break;
337     case 0x2:
338         /* Chip reset */
339         ppc40x_chip_reset(cpu);
340         break;
341     case 0x3:
342         /* System reset */
343         ppc40x_system_reset(cpu);
344         break;
345     }
346 
347     qemu_mutex_unlock_iothread();
348 }
349 
350 /* PowerPC 40x internal IRQ controller */
351 static void ppc40x_set_irq(void *opaque, int pin, int level)
352 {
353     PowerPCCPU *cpu = opaque;
354     CPUPPCState *env = &cpu->env;
355     int cur_level;
356 
357     trace_ppc_irq_set(env, pin, level);
358 
359     cur_level = (env->irq_input_state >> pin) & 1;
360     /* Don't generate spurious events */
361     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
362         CPUState *cs = CPU(cpu);
363 
364         switch (pin) {
365         case PPC40x_INPUT_RESET_SYS:
366             if (level) {
367                 trace_ppc_irq_reset("system");
368                 ppc40x_system_reset(cpu);
369             }
370             break;
371         case PPC40x_INPUT_RESET_CHIP:
372             if (level) {
373                 trace_ppc_irq_reset("chip");
374                 ppc40x_chip_reset(cpu);
375             }
376             break;
377         case PPC40x_INPUT_RESET_CORE:
378             /* XXX: TODO: update DBSR[MRR] */
379             if (level) {
380                 trace_ppc_irq_reset("core");
381                 ppc40x_core_reset(cpu);
382             }
383             break;
384         case PPC40x_INPUT_CINT:
385             /* Level sensitive - active high */
386             trace_ppc_irq_set_state("critical IRQ", level);
387             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
388             break;
389         case PPC40x_INPUT_INT:
390             /* Level sensitive - active high */
391             trace_ppc_irq_set_state("external IRQ", level);
392             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
393             break;
394         case PPC40x_INPUT_HALT:
395             /* Level sensitive - active low */
396             if (level) {
397                 trace_ppc_irq_cpu("stop");
398                 cs->halted = 1;
399             } else {
400                 trace_ppc_irq_cpu("restart");
401                 cs->halted = 0;
402                 qemu_cpu_kick(cs);
403             }
404             break;
405         case PPC40x_INPUT_DEBUG:
406             /* Level sensitive - active high */
407             trace_ppc_irq_set_state("debug pin", level);
408             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
409             break;
410         default:
411             g_assert_not_reached();
412         }
413         if (level)
414             env->irq_input_state |= 1 << pin;
415         else
416             env->irq_input_state &= ~(1 << pin);
417     }
418 }
419 
420 void ppc40x_irq_init(PowerPCCPU *cpu)
421 {
422     qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
423 }
424 
425 /* PowerPC E500 internal IRQ controller */
426 static void ppce500_set_irq(void *opaque, int pin, int level)
427 {
428     PowerPCCPU *cpu = opaque;
429     CPUPPCState *env = &cpu->env;
430     int cur_level;
431 
432     trace_ppc_irq_set(env, pin, level);
433 
434     cur_level = (env->irq_input_state >> pin) & 1;
435     /* Don't generate spurious events */
436     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
437         switch (pin) {
438         case PPCE500_INPUT_MCK:
439             if (level) {
440                 trace_ppc_irq_reset("system");
441                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
442             }
443             break;
444         case PPCE500_INPUT_RESET_CORE:
445             if (level) {
446                 trace_ppc_irq_reset("core");
447                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
448             }
449             break;
450         case PPCE500_INPUT_CINT:
451             /* Level sensitive - active high */
452             trace_ppc_irq_set_state("critical IRQ", level);
453             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
454             break;
455         case PPCE500_INPUT_INT:
456             /* Level sensitive - active high */
457             trace_ppc_irq_set_state("core IRQ", level);
458             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
459             break;
460         case PPCE500_INPUT_DEBUG:
461             /* Level sensitive - active high */
462             trace_ppc_irq_set_state("debug pin", level);
463             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
464             break;
465         default:
466             g_assert_not_reached();
467         }
468         if (level)
469             env->irq_input_state |= 1 << pin;
470         else
471             env->irq_input_state &= ~(1 << pin);
472     }
473 }
474 
475 void ppce500_irq_init(PowerPCCPU *cpu)
476 {
477     qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
478 }
479 
480 /* Enable or Disable the E500 EPR capability */
481 void ppce500_set_mpic_proxy(bool enabled)
482 {
483     CPUState *cs;
484 
485     CPU_FOREACH(cs) {
486         PowerPCCPU *cpu = POWERPC_CPU(cs);
487 
488         cpu->env.mpic_proxy = enabled;
489         if (kvm_enabled()) {
490             kvmppc_set_mpic_proxy(cpu, enabled);
491         }
492     }
493 }
494 
495 /*****************************************************************************/
496 /* PowerPC time base and decrementer emulation */
497 
498 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
499 {
500     /* TB time in tb periods */
501     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
502 }
503 
504 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
505 {
506     ppc_tb_t *tb_env = env->tb_env;
507     uint64_t tb;
508 
509     if (kvm_enabled()) {
510         return env->spr[SPR_TBL];
511     }
512 
513     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
514     trace_ppc_tb_load(tb);
515 
516     return tb;
517 }
518 
519 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
520 {
521     ppc_tb_t *tb_env = env->tb_env;
522     uint64_t tb;
523 
524     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
525     trace_ppc_tb_load(tb);
526 
527     return tb >> 32;
528 }
529 
530 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
531 {
532     if (kvm_enabled()) {
533         return env->spr[SPR_TBU];
534     }
535 
536     return _cpu_ppc_load_tbu(env);
537 }
538 
539 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
540                                     int64_t *tb_offsetp, uint64_t value)
541 {
542     *tb_offsetp = value -
543         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
544 
545     trace_ppc_tb_store(value, *tb_offsetp);
546 }
547 
548 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
549 {
550     ppc_tb_t *tb_env = env->tb_env;
551     uint64_t tb;
552 
553     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
554     tb &= 0xFFFFFFFF00000000ULL;
555     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
556                      &tb_env->tb_offset, tb | (uint64_t)value);
557 }
558 
559 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
560 {
561     ppc_tb_t *tb_env = env->tb_env;
562     uint64_t tb;
563 
564     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
565     tb &= 0x00000000FFFFFFFFULL;
566     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
567                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
568 }
569 
570 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
571 {
572     _cpu_ppc_store_tbu(env, value);
573 }
574 
575 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
576 {
577     ppc_tb_t *tb_env = env->tb_env;
578     uint64_t tb;
579 
580     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
581     trace_ppc_tb_load(tb);
582 
583     return tb;
584 }
585 
586 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
587 {
588     ppc_tb_t *tb_env = env->tb_env;
589     uint64_t tb;
590 
591     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
592     trace_ppc_tb_load(tb);
593 
594     return tb >> 32;
595 }
596 
597 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
598 {
599     ppc_tb_t *tb_env = env->tb_env;
600     uint64_t tb;
601 
602     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
603     tb &= 0xFFFFFFFF00000000ULL;
604     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
605                      &tb_env->atb_offset, tb | (uint64_t)value);
606 }
607 
608 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
609 {
610     ppc_tb_t *tb_env = env->tb_env;
611     uint64_t tb;
612 
613     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
614     tb &= 0x00000000FFFFFFFFULL;
615     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
616                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
617 }
618 
619 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
620 {
621     ppc_tb_t *tb_env = env->tb_env;
622 
623     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
624                           tb_env->vtb_offset);
625 }
626 
627 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
628 {
629     ppc_tb_t *tb_env = env->tb_env;
630 
631     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
632                      &tb_env->vtb_offset, value);
633 }
634 
635 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
636 {
637     ppc_tb_t *tb_env = env->tb_env;
638     uint64_t tb;
639 
640     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
641                         tb_env->tb_offset);
642     tb &= 0xFFFFFFUL;
643     tb |= (value & ~0xFFFFFFUL);
644     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
645                      &tb_env->tb_offset, tb);
646 }
647 
648 static void cpu_ppc_tb_stop (CPUPPCState *env)
649 {
650     ppc_tb_t *tb_env = env->tb_env;
651     uint64_t tb, atb, vmclk;
652 
653     /* If the time base is already frozen, do nothing */
654     if (tb_env->tb_freq != 0) {
655         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
656         /* Get the time base */
657         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
658         /* Get the alternate time base */
659         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
660         /* Store the time base value (ie compute the current offset) */
661         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
662         /* Store the alternate time base value (compute the current offset) */
663         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
664         /* Set the time base frequency to zero */
665         tb_env->tb_freq = 0;
666         /* Now, the time bases are frozen to tb_offset / atb_offset value */
667     }
668 }
669 
670 static void cpu_ppc_tb_start (CPUPPCState *env)
671 {
672     ppc_tb_t *tb_env = env->tb_env;
673     uint64_t tb, atb, vmclk;
674 
675     /* If the time base is not frozen, do nothing */
676     if (tb_env->tb_freq == 0) {
677         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
678         /* Get the time base from tb_offset */
679         tb = tb_env->tb_offset;
680         /* Get the alternate time base from atb_offset */
681         atb = tb_env->atb_offset;
682         /* Restore the tb frequency from the decrementer frequency */
683         tb_env->tb_freq = tb_env->decr_freq;
684         /* Store the time base value */
685         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
686         /* Store the alternate time base value */
687         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
688     }
689 }
690 
691 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
692 {
693     ppc_tb_t *tb_env = env->tb_env;
694     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
695     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
696 }
697 
698 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
699 {
700     ppc_tb_t *tb_env = env->tb_env;
701     int64_t decr, diff;
702 
703     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
704     if (diff >= 0) {
705         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
706     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
707         decr = 0;
708     }  else {
709         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
710     }
711     trace_ppc_decr_load(decr);
712 
713     return decr;
714 }
715 
716 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
717 {
718     ppc_tb_t *tb_env = env->tb_env;
719     uint64_t decr;
720 
721     if (kvm_enabled()) {
722         return env->spr[SPR_DECR];
723     }
724 
725     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
726 
727     /*
728      * If large decrementer is enabled then the decrementer is signed extened
729      * to 64 bits, otherwise it is a 32 bit value.
730      */
731     if (env->spr[SPR_LPCR] & LPCR_LD) {
732         return decr;
733     }
734     return (uint32_t) decr;
735 }
736 
737 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
738 {
739     PowerPCCPU *cpu = env_archcpu(env);
740     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
741     ppc_tb_t *tb_env = env->tb_env;
742     uint64_t hdecr;
743 
744     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
745 
746     /*
747      * If we have a large decrementer (POWER9 or later) then hdecr is sign
748      * extended to 64 bits, otherwise it is 32 bits.
749      */
750     if (pcc->lrg_decr_bits > 32) {
751         return hdecr;
752     }
753     return (uint32_t) hdecr;
754 }
755 
756 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
757 {
758     ppc_tb_t *tb_env = env->tb_env;
759 
760     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
761                           tb_env->purr_offset);
762 }
763 
764 /* When decrementer expires,
765  * all we need to do is generate or queue a CPU exception
766  */
767 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
768 {
769     /* Raise it */
770     trace_ppc_decr_excp("raise");
771     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
772 }
773 
774 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
775 {
776     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
777 }
778 
779 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
780 {
781     CPUPPCState *env = &cpu->env;
782 
783     /* Raise it */
784     trace_ppc_decr_excp("raise HV");
785 
786     /* The architecture specifies that we don't deliver HDEC
787      * interrupts in a PM state. Not only they don't cause a
788      * wakeup but they also get effectively discarded.
789      */
790     if (!env->resume_as_sreset) {
791         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
792     }
793 }
794 
795 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
796 {
797     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
798 }
799 
800 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
801                                  QEMUTimer *timer,
802                                  void (*raise_excp)(void *),
803                                  void (*lower_excp)(PowerPCCPU *),
804                                  target_ulong decr, target_ulong value,
805                                  int nr_bits)
806 {
807     CPUPPCState *env = &cpu->env;
808     ppc_tb_t *tb_env = env->tb_env;
809     uint64_t now, next;
810     int64_t signed_value;
811     int64_t signed_decr;
812 
813     /* Truncate value to decr_width and sign extend for simplicity */
814     signed_value = sextract64(value, 0, nr_bits);
815     signed_decr = sextract64(decr, 0, nr_bits);
816 
817     trace_ppc_decr_store(nr_bits, decr, value);
818 
819     if (kvm_enabled()) {
820         /* KVM handles decrementer exceptions, we don't need our own timer */
821         return;
822     }
823 
824     /*
825      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
826      * interrupt.
827      *
828      * If we get a really small DEC value, we can assume that by the time we
829      * handled it we should inject an interrupt already.
830      *
831      * On MSB level based DEC implementations the MSB always means the interrupt
832      * is pending, so raise it on those.
833      *
834      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
835      * an edge interrupt, so raise it here too.
836      */
837     if ((value < 3) ||
838         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
839         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
840           && signed_decr >= 0)) {
841         (*raise_excp)(cpu);
842         return;
843     }
844 
845     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
846     if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
847         (*lower_excp)(cpu);
848     }
849 
850     /* Calculate the next timer event */
851     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
852     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
853     *nextp = next;
854 
855     /* Adjust timer */
856     timer_mod(timer, next);
857 }
858 
859 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
860                                        target_ulong value, int nr_bits)
861 {
862     ppc_tb_t *tb_env = cpu->env.tb_env;
863 
864     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
865                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
866                          value, nr_bits);
867 }
868 
869 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
870 {
871     PowerPCCPU *cpu = env_archcpu(env);
872     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
873     int nr_bits = 32;
874 
875     if (env->spr[SPR_LPCR] & LPCR_LD) {
876         nr_bits = pcc->lrg_decr_bits;
877     }
878 
879     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
880 }
881 
882 static void cpu_ppc_decr_cb(void *opaque)
883 {
884     PowerPCCPU *cpu = opaque;
885 
886     cpu_ppc_decr_excp(cpu);
887 }
888 
889 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
890                                         target_ulong value, int nr_bits)
891 {
892     ppc_tb_t *tb_env = cpu->env.tb_env;
893 
894     if (tb_env->hdecr_timer != NULL) {
895         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
896                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
897                              hdecr, value, nr_bits);
898     }
899 }
900 
901 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
902 {
903     PowerPCCPU *cpu = env_archcpu(env);
904     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
905 
906     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
907                          pcc->lrg_decr_bits);
908 }
909 
910 static void cpu_ppc_hdecr_cb(void *opaque)
911 {
912     PowerPCCPU *cpu = opaque;
913 
914     cpu_ppc_hdecr_excp(cpu);
915 }
916 
917 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
918 {
919     ppc_tb_t *tb_env = env->tb_env;
920 
921     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                      &tb_env->purr_offset, value);
923 }
924 
925 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
926 {
927     CPUPPCState *env = opaque;
928     PowerPCCPU *cpu = env_archcpu(env);
929     ppc_tb_t *tb_env = env->tb_env;
930 
931     tb_env->tb_freq = freq;
932     tb_env->decr_freq = freq;
933     /* There is a bug in Linux 2.4 kernels:
934      * if a decrementer exception is pending when it enables msr_ee at startup,
935      * it's not ready to handle it...
936      */
937     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
938     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
939     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
940 }
941 
942 static void timebase_save(PPCTimebase *tb)
943 {
944     uint64_t ticks = cpu_get_host_ticks();
945     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
946 
947     if (!first_ppc_cpu->env.tb_env) {
948         error_report("No timebase object");
949         return;
950     }
951 
952     /* not used anymore, we keep it for compatibility */
953     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
954     /*
955      * tb_offset is only expected to be changed by QEMU so
956      * there is no need to update it from KVM here
957      */
958     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
959 
960     tb->runstate_paused =
961         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
962 }
963 
964 static void timebase_load(PPCTimebase *tb)
965 {
966     CPUState *cpu;
967     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
968     int64_t tb_off_adj, tb_off;
969     unsigned long freq;
970 
971     if (!first_ppc_cpu->env.tb_env) {
972         error_report("No timebase object");
973         return;
974     }
975 
976     freq = first_ppc_cpu->env.tb_env->tb_freq;
977 
978     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
979 
980     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
981     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
982                         (tb_off_adj - tb_off) / freq);
983 
984     /* Set new offset to all CPUs */
985     CPU_FOREACH(cpu) {
986         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
987         pcpu->env.tb_env->tb_offset = tb_off_adj;
988         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
989     }
990 }
991 
992 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
993                                    RunState state)
994 {
995     PPCTimebase *tb = opaque;
996 
997     if (running) {
998         timebase_load(tb);
999     } else {
1000         timebase_save(tb);
1001     }
1002 }
1003 
1004 /*
1005  * When migrating a running guest, read the clock just
1006  * before migration, so that the guest clock counts
1007  * during the events between:
1008  *
1009  *  * vm_stop()
1010  *  *
1011  *  * pre_save()
1012  *
1013  *  This reduces clock difference on migration from 5s
1014  *  to 0.1s (when max_downtime == 5s), because sending the
1015  *  final pages of memory (which happens between vm_stop()
1016  *  and pre_save()) takes max_downtime.
1017  */
1018 static int timebase_pre_save(void *opaque)
1019 {
1020     PPCTimebase *tb = opaque;
1021 
1022     /* guest_timebase won't be overridden in case of paused guest or savevm */
1023     if (!tb->runstate_paused) {
1024         timebase_save(tb);
1025     }
1026 
1027     return 0;
1028 }
1029 
1030 const VMStateDescription vmstate_ppc_timebase = {
1031     .name = "timebase",
1032     .version_id = 1,
1033     .minimum_version_id = 1,
1034     .pre_save = timebase_pre_save,
1035     .fields      = (VMStateField []) {
1036         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1037         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1038         VMSTATE_END_OF_LIST()
1039     },
1040 };
1041 
1042 /* Set up (once) timebase frequency (in Hz) */
1043 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1044 {
1045     PowerPCCPU *cpu = env_archcpu(env);
1046     ppc_tb_t *tb_env;
1047 
1048     tb_env = g_new0(ppc_tb_t, 1);
1049     env->tb_env = tb_env;
1050     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1051     if (is_book3s_arch2x(env)) {
1052         /* All Book3S 64bit CPUs implement level based DEC logic */
1053         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1054     }
1055     /* Create new timer */
1056     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1057     if (env->has_hv_mode && !cpu->vhyp) {
1058         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1059                                                 cpu);
1060     } else {
1061         tb_env->hdecr_timer = NULL;
1062     }
1063     cpu_ppc_set_tb_clk(env, freq);
1064 
1065     return &cpu_ppc_set_tb_clk;
1066 }
1067 
1068 void cpu_ppc_tb_free(CPUPPCState *env)
1069 {
1070     timer_free(env->tb_env->decr_timer);
1071     timer_free(env->tb_env->hdecr_timer);
1072     g_free(env->tb_env);
1073 }
1074 
1075 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1076 void cpu_ppc_hdecr_init(CPUPPCState *env)
1077 {
1078     PowerPCCPU *cpu = env_archcpu(env);
1079 
1080     assert(env->tb_env->hdecr_timer == NULL);
1081 
1082     env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1083                                             &cpu_ppc_hdecr_cb, cpu);
1084 }
1085 
1086 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1087 {
1088     PowerPCCPU *cpu = env_archcpu(env);
1089 
1090     timer_free(env->tb_env->hdecr_timer);
1091     env->tb_env->hdecr_timer = NULL;
1092 
1093     cpu_ppc_hdecr_lower(cpu);
1094 }
1095 
1096 /*****************************************************************************/
1097 /* PowerPC 40x timers */
1098 
1099 /* PIT, FIT & WDT */
1100 typedef struct ppc40x_timer_t ppc40x_timer_t;
1101 struct ppc40x_timer_t {
1102     uint64_t pit_reload;  /* PIT auto-reload value        */
1103     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1104     QEMUTimer *fit_timer;
1105     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1106     QEMUTimer *wdt_timer;
1107 
1108     /* 405 have the PIT, 440 have a DECR.  */
1109     unsigned int decr_excp;
1110 };
1111 
1112 /* Fixed interval timer */
1113 static void cpu_4xx_fit_cb (void *opaque)
1114 {
1115     PowerPCCPU *cpu = opaque;
1116     CPUPPCState *env = &cpu->env;
1117     ppc_tb_t *tb_env;
1118     ppc40x_timer_t *ppc40x_timer;
1119     uint64_t now, next;
1120 
1121     tb_env = env->tb_env;
1122     ppc40x_timer = tb_env->opaque;
1123     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1124     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1125     case 0:
1126         next = 1 << 9;
1127         break;
1128     case 1:
1129         next = 1 << 13;
1130         break;
1131     case 2:
1132         next = 1 << 17;
1133         break;
1134     case 3:
1135         next = 1 << 21;
1136         break;
1137     default:
1138         /* Cannot occur, but makes gcc happy */
1139         return;
1140     }
1141     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1142     if (next == now)
1143         next++;
1144     timer_mod(ppc40x_timer->fit_timer, next);
1145     env->spr[SPR_40x_TSR] |= 1 << 26;
1146     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1147         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1148     }
1149     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1150                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1151 }
1152 
1153 /* Programmable interval timer */
1154 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1155 {
1156     ppc40x_timer_t *ppc40x_timer;
1157     uint64_t now, next;
1158 
1159     ppc40x_timer = tb_env->opaque;
1160     if (ppc40x_timer->pit_reload <= 1 ||
1161         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1162         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1163         /* Stop PIT */
1164         trace_ppc4xx_pit_stop();
1165         timer_del(tb_env->decr_timer);
1166     } else {
1167         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1168         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1169         next = now + muldiv64(ppc40x_timer->pit_reload,
1170                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1171         if (is_excp)
1172             next += tb_env->decr_next - now;
1173         if (next == now)
1174             next++;
1175         timer_mod(tb_env->decr_timer, next);
1176         tb_env->decr_next = next;
1177     }
1178 }
1179 
1180 static void cpu_4xx_pit_cb (void *opaque)
1181 {
1182     PowerPCCPU *cpu = opaque;
1183     CPUPPCState *env = &cpu->env;
1184     ppc_tb_t *tb_env;
1185     ppc40x_timer_t *ppc40x_timer;
1186 
1187     tb_env = env->tb_env;
1188     ppc40x_timer = tb_env->opaque;
1189     env->spr[SPR_40x_TSR] |= 1 << 27;
1190     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1191         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1192     }
1193     start_stop_pit(env, tb_env, 1);
1194     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1195            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1196            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1197            ppc40x_timer->pit_reload);
1198 }
1199 
1200 /* Watchdog timer */
1201 static void cpu_4xx_wdt_cb (void *opaque)
1202 {
1203     PowerPCCPU *cpu = opaque;
1204     CPUPPCState *env = &cpu->env;
1205     ppc_tb_t *tb_env;
1206     ppc40x_timer_t *ppc40x_timer;
1207     uint64_t now, next;
1208 
1209     tb_env = env->tb_env;
1210     ppc40x_timer = tb_env->opaque;
1211     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1212     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1213     case 0:
1214         next = 1 << 17;
1215         break;
1216     case 1:
1217         next = 1 << 21;
1218         break;
1219     case 2:
1220         next = 1 << 25;
1221         break;
1222     case 3:
1223         next = 1 << 29;
1224         break;
1225     default:
1226         /* Cannot occur, but makes gcc happy */
1227         return;
1228     }
1229     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1230     if (next == now)
1231         next++;
1232     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1233     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1234     case 0x0:
1235     case 0x1:
1236         timer_mod(ppc40x_timer->wdt_timer, next);
1237         ppc40x_timer->wdt_next = next;
1238         env->spr[SPR_40x_TSR] |= 1U << 31;
1239         break;
1240     case 0x2:
1241         timer_mod(ppc40x_timer->wdt_timer, next);
1242         ppc40x_timer->wdt_next = next;
1243         env->spr[SPR_40x_TSR] |= 1 << 30;
1244         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1245             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1246         }
1247         break;
1248     case 0x3:
1249         env->spr[SPR_40x_TSR] &= ~0x30000000;
1250         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1251         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1252         case 0x0:
1253             /* No reset */
1254             break;
1255         case 0x1: /* Core reset */
1256             ppc40x_core_reset(cpu);
1257             break;
1258         case 0x2: /* Chip reset */
1259             ppc40x_chip_reset(cpu);
1260             break;
1261         case 0x3: /* System reset */
1262             ppc40x_system_reset(cpu);
1263             break;
1264         }
1265     }
1266 }
1267 
1268 void store_40x_pit (CPUPPCState *env, target_ulong val)
1269 {
1270     ppc_tb_t *tb_env;
1271     ppc40x_timer_t *ppc40x_timer;
1272 
1273     tb_env = env->tb_env;
1274     ppc40x_timer = tb_env->opaque;
1275     trace_ppc40x_store_pit(val);
1276     ppc40x_timer->pit_reload = val;
1277     start_stop_pit(env, tb_env, 0);
1278 }
1279 
1280 target_ulong load_40x_pit (CPUPPCState *env)
1281 {
1282     return cpu_ppc_load_decr(env);
1283 }
1284 
1285 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1286 {
1287     PowerPCCPU *cpu = env_archcpu(env);
1288 
1289     trace_ppc40x_store_tcr(val);
1290 
1291     env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1292     if (val & 0x80000000) {
1293         ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1294     }
1295 }
1296 
1297 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1298 {
1299     PowerPCCPU *cpu = env_archcpu(env);
1300     ppc_tb_t *tb_env;
1301 
1302     trace_ppc40x_store_tsr(val);
1303 
1304     tb_env = env->tb_env;
1305     env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1306     start_stop_pit(env, tb_env, 1);
1307     cpu_4xx_wdt_cb(cpu);
1308 }
1309 
1310 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1311 {
1312     CPUPPCState *env = opaque;
1313     ppc_tb_t *tb_env = env->tb_env;
1314 
1315     trace_ppc40x_set_tb_clk(freq);
1316     tb_env->tb_freq = freq;
1317     tb_env->decr_freq = freq;
1318     /* XXX: we should also update all timers */
1319 }
1320 
1321 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1322                                   unsigned int decr_excp)
1323 {
1324     ppc_tb_t *tb_env;
1325     ppc40x_timer_t *ppc40x_timer;
1326     PowerPCCPU *cpu = env_archcpu(env);
1327 
1328     trace_ppc40x_timers_init(freq);
1329 
1330     tb_env = g_new0(ppc_tb_t, 1);
1331     ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1332 
1333     env->tb_env = tb_env;
1334     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1335     tb_env->tb_freq = freq;
1336     tb_env->decr_freq = freq;
1337     tb_env->opaque = ppc40x_timer;
1338 
1339     /* We use decr timer for PIT */
1340     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1341     ppc40x_timer->fit_timer =
1342         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1343     ppc40x_timer->wdt_timer =
1344         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1345     ppc40x_timer->decr_excp = decr_excp;
1346 
1347     return &ppc_40x_set_tb_clk;
1348 }
1349 
1350 /*****************************************************************************/
1351 /* Embedded PowerPC Device Control Registers */
1352 typedef struct ppc_dcrn_t ppc_dcrn_t;
1353 struct ppc_dcrn_t {
1354     dcr_read_cb dcr_read;
1355     dcr_write_cb dcr_write;
1356     void *opaque;
1357 };
1358 
1359 /* XXX: on 460, DCR addresses are 32 bits wide,
1360  *      using DCRIPR to get the 22 upper bits of the DCR address
1361  */
1362 #define DCRN_NB 1024
1363 struct ppc_dcr_t {
1364     ppc_dcrn_t dcrn[DCRN_NB];
1365     int (*read_error)(int dcrn);
1366     int (*write_error)(int dcrn);
1367 };
1368 
1369 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1370 {
1371     ppc_dcrn_t *dcr;
1372 
1373     if (dcrn < 0 || dcrn >= DCRN_NB)
1374         goto error;
1375     dcr = &dcr_env->dcrn[dcrn];
1376     if (dcr->dcr_read == NULL)
1377         goto error;
1378     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1379     trace_ppc_dcr_read(dcrn, *valp);
1380 
1381     return 0;
1382 
1383  error:
1384     if (dcr_env->read_error != NULL)
1385         return (*dcr_env->read_error)(dcrn);
1386 
1387     return -1;
1388 }
1389 
1390 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1391 {
1392     ppc_dcrn_t *dcr;
1393 
1394     if (dcrn < 0 || dcrn >= DCRN_NB)
1395         goto error;
1396     dcr = &dcr_env->dcrn[dcrn];
1397     if (dcr->dcr_write == NULL)
1398         goto error;
1399     trace_ppc_dcr_write(dcrn, val);
1400     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1401 
1402     return 0;
1403 
1404  error:
1405     if (dcr_env->write_error != NULL)
1406         return (*dcr_env->write_error)(dcrn);
1407 
1408     return -1;
1409 }
1410 
1411 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1412                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1413 {
1414     ppc_dcr_t *dcr_env;
1415     ppc_dcrn_t *dcr;
1416 
1417     dcr_env = env->dcr_env;
1418     if (dcr_env == NULL)
1419         return -1;
1420     if (dcrn < 0 || dcrn >= DCRN_NB)
1421         return -1;
1422     dcr = &dcr_env->dcrn[dcrn];
1423     if (dcr->opaque != NULL ||
1424         dcr->dcr_read != NULL ||
1425         dcr->dcr_write != NULL)
1426         return -1;
1427     dcr->opaque = opaque;
1428     dcr->dcr_read = dcr_read;
1429     dcr->dcr_write = dcr_write;
1430 
1431     return 0;
1432 }
1433 
1434 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1435                   int (*write_error)(int dcrn))
1436 {
1437     ppc_dcr_t *dcr_env;
1438 
1439     dcr_env = g_new0(ppc_dcr_t, 1);
1440     dcr_env->read_error = read_error;
1441     dcr_env->write_error = write_error;
1442     env->dcr_env = dcr_env;
1443 
1444     return 0;
1445 }
1446 
1447 /*****************************************************************************/
1448 
1449 int ppc_cpu_pir(PowerPCCPU *cpu)
1450 {
1451     CPUPPCState *env = &cpu->env;
1452     return env->spr_cb[SPR_PIR].default_value;
1453 }
1454 
1455 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1456 {
1457     CPUState *cs;
1458 
1459     CPU_FOREACH(cs) {
1460         PowerPCCPU *cpu = POWERPC_CPU(cs);
1461 
1462         if (ppc_cpu_pir(cpu) == pir) {
1463             return cpu;
1464         }
1465     }
1466 
1467     return NULL;
1468 }
1469 
1470 void ppc_irq_reset(PowerPCCPU *cpu)
1471 {
1472     CPUPPCState *env = &cpu->env;
1473 
1474     env->irq_input_state = 0;
1475     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1476 }
1477