xref: /openbmc/qemu/hw/ppc/ppc.c (revision af531756)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
42 
43 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
44 {
45     CPUState *cs = CPU(cpu);
46     CPUPPCState *env = &cpu->env;
47     unsigned int old_pending;
48     bool locked = false;
49 
50     /* We may already have the BQL if coming from the reset path */
51     if (!qemu_mutex_iothread_locked()) {
52         locked = true;
53         qemu_mutex_lock_iothread();
54     }
55 
56     old_pending = env->pending_interrupts;
57 
58     if (level) {
59         env->pending_interrupts |= 1 << n_IRQ;
60         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
61     } else {
62         env->pending_interrupts &= ~(1 << n_IRQ);
63         if (env->pending_interrupts == 0) {
64             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
65         }
66     }
67 
68     if (old_pending != env->pending_interrupts) {
69         kvmppc_set_interrupt(cpu, n_IRQ, level);
70     }
71 
72 
73     trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts,
74                            CPU(cpu)->interrupt_request);
75 
76     if (locked) {
77         qemu_mutex_unlock_iothread();
78     }
79 }
80 
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque, int pin, int level)
83 {
84     PowerPCCPU *cpu = opaque;
85     CPUPPCState *env = &cpu->env;
86     int cur_level;
87 
88     trace_ppc_irq_set(env, pin, level);
89 
90     cur_level = (env->irq_input_state >> pin) & 1;
91     /* Don't generate spurious events */
92     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
93         CPUState *cs = CPU(cpu);
94 
95         switch (pin) {
96         case PPC6xx_INPUT_TBEN:
97             /* Level sensitive - active high */
98             trace_ppc_irq_set_state("time base", level);
99             if (level) {
100                 cpu_ppc_tb_start(env);
101             } else {
102                 cpu_ppc_tb_stop(env);
103             }
104             break;
105         case PPC6xx_INPUT_INT:
106             /* Level sensitive - active high */
107             trace_ppc_irq_set_state("external IRQ", level);
108             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
109             break;
110         case PPC6xx_INPUT_SMI:
111             /* Level sensitive - active high */
112             trace_ppc_irq_set_state("SMI IRQ", level);
113             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
114             break;
115         case PPC6xx_INPUT_MCP:
116             /* Negative edge sensitive */
117             /* XXX: TODO: actual reaction may depends on HID0 status
118              *            603/604/740/750: check HID0[EMCP]
119              */
120             if (cur_level == 1 && level == 0) {
121                 trace_ppc_irq_set_state("machine check", 1);
122                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
123             }
124             break;
125         case PPC6xx_INPUT_CKSTP_IN:
126             /* Level sensitive - active low */
127             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128             /* XXX: Note that the only way to restart the CPU is to reset it */
129             if (level) {
130                 trace_ppc_irq_cpu("stop");
131                 cs->halted = 1;
132             }
133             break;
134         case PPC6xx_INPUT_HRESET:
135             /* Level sensitive - active low */
136             if (level) {
137                 trace_ppc_irq_reset("CPU");
138                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
139             }
140             break;
141         case PPC6xx_INPUT_SRESET:
142             trace_ppc_irq_set_state("RESET IRQ", level);
143             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
144             break;
145         default:
146             g_assert_not_reached();
147         }
148         if (level)
149             env->irq_input_state |= 1 << pin;
150         else
151             env->irq_input_state &= ~(1 << pin);
152     }
153 }
154 
155 void ppc6xx_irq_init(PowerPCCPU *cpu)
156 {
157     CPUPPCState *env = &cpu->env;
158 
159     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
160                                                   PPC6xx_INPUT_NB);
161 }
162 
163 #if defined(TARGET_PPC64)
164 /* PowerPC 970 internal IRQ controller */
165 static void ppc970_set_irq(void *opaque, int pin, int level)
166 {
167     PowerPCCPU *cpu = opaque;
168     CPUPPCState *env = &cpu->env;
169     int cur_level;
170 
171     trace_ppc_irq_set(env, pin, level);
172 
173     cur_level = (env->irq_input_state >> pin) & 1;
174     /* Don't generate spurious events */
175     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
176         CPUState *cs = CPU(cpu);
177 
178         switch (pin) {
179         case PPC970_INPUT_INT:
180             /* Level sensitive - active high */
181             trace_ppc_irq_set_state("external IRQ", level);
182             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
183             break;
184         case PPC970_INPUT_THINT:
185             /* Level sensitive - active high */
186             trace_ppc_irq_set_state("SMI IRQ", level);
187             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
188             break;
189         case PPC970_INPUT_MCP:
190             /* Negative edge sensitive */
191             /* XXX: TODO: actual reaction may depends on HID0 status
192              *            603/604/740/750: check HID0[EMCP]
193              */
194             if (cur_level == 1 && level == 0) {
195                 trace_ppc_irq_set_state("machine check", 1);
196                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
197             }
198             break;
199         case PPC970_INPUT_CKSTP:
200             /* Level sensitive - active low */
201             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
202             if (level) {
203                 trace_ppc_irq_cpu("stop");
204                 cs->halted = 1;
205             } else {
206                 trace_ppc_irq_cpu("restart");
207                 cs->halted = 0;
208                 qemu_cpu_kick(cs);
209             }
210             break;
211         case PPC970_INPUT_HRESET:
212             /* Level sensitive - active low */
213             if (level) {
214                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
215             }
216             break;
217         case PPC970_INPUT_SRESET:
218             trace_ppc_irq_set_state("RESET IRQ", level);
219             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
220             break;
221         case PPC970_INPUT_TBEN:
222             trace_ppc_irq_set_state("TBEN IRQ", level);
223             /* XXX: TODO */
224             break;
225         default:
226             g_assert_not_reached();
227         }
228         if (level)
229             env->irq_input_state |= 1 << pin;
230         else
231             env->irq_input_state &= ~(1 << pin);
232     }
233 }
234 
235 void ppc970_irq_init(PowerPCCPU *cpu)
236 {
237     CPUPPCState *env = &cpu->env;
238 
239     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
240                                                   PPC970_INPUT_NB);
241 }
242 
243 /* POWER7 internal IRQ controller */
244 static void power7_set_irq(void *opaque, int pin, int level)
245 {
246     PowerPCCPU *cpu = opaque;
247 
248     trace_ppc_irq_set(&cpu->env, pin, level);
249 
250     switch (pin) {
251     case POWER7_INPUT_INT:
252         /* Level sensitive - active high */
253         trace_ppc_irq_set_state("external IRQ", level);
254         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
255         break;
256     default:
257         g_assert_not_reached();
258     }
259 }
260 
261 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
262 {
263     CPUPPCState *env = &cpu->env;
264 
265     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
266                                                   POWER7_INPUT_NB);
267 }
268 
269 /* POWER9 internal IRQ controller */
270 static void power9_set_irq(void *opaque, int pin, int level)
271 {
272     PowerPCCPU *cpu = opaque;
273 
274     trace_ppc_irq_set(&cpu->env, pin, level);
275 
276     switch (pin) {
277     case POWER9_INPUT_INT:
278         /* Level sensitive - active high */
279         trace_ppc_irq_set_state("external IRQ", level);
280         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
281         break;
282     case POWER9_INPUT_HINT:
283         /* Level sensitive - active high */
284         trace_ppc_irq_set_state("HV external IRQ", level);
285         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
286         break;
287     default:
288         g_assert_not_reached();
289         return;
290     }
291 }
292 
293 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
294 {
295     CPUPPCState *env = &cpu->env;
296 
297     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
298                                                   POWER9_INPUT_NB);
299 }
300 #endif /* defined(TARGET_PPC64) */
301 
302 void ppc40x_core_reset(PowerPCCPU *cpu)
303 {
304     CPUPPCState *env = &cpu->env;
305     target_ulong dbsr;
306 
307     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
308     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
309     dbsr = env->spr[SPR_40x_DBSR];
310     dbsr &= ~0x00000300;
311     dbsr |= 0x00000100;
312     env->spr[SPR_40x_DBSR] = dbsr;
313 }
314 
315 void ppc40x_chip_reset(PowerPCCPU *cpu)
316 {
317     CPUPPCState *env = &cpu->env;
318     target_ulong dbsr;
319 
320     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
321     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
322     /* XXX: TODO reset all internal peripherals */
323     dbsr = env->spr[SPR_40x_DBSR];
324     dbsr &= ~0x00000300;
325     dbsr |= 0x00000200;
326     env->spr[SPR_40x_DBSR] = dbsr;
327 }
328 
329 void ppc40x_system_reset(PowerPCCPU *cpu)
330 {
331     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
332     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
333 }
334 
335 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
336 {
337     PowerPCCPU *cpu = env_archcpu(env);
338 
339     qemu_mutex_lock_iothread();
340 
341     switch ((val >> 28) & 0x3) {
342     case 0x0:
343         /* No action */
344         break;
345     case 0x1:
346         /* Core reset */
347         ppc40x_core_reset(cpu);
348         break;
349     case 0x2:
350         /* Chip reset */
351         ppc40x_chip_reset(cpu);
352         break;
353     case 0x3:
354         /* System reset */
355         ppc40x_system_reset(cpu);
356         break;
357     }
358 
359     qemu_mutex_unlock_iothread();
360 }
361 
362 /* PowerPC 40x internal IRQ controller */
363 static void ppc40x_set_irq(void *opaque, int pin, int level)
364 {
365     PowerPCCPU *cpu = opaque;
366     CPUPPCState *env = &cpu->env;
367     int cur_level;
368 
369     trace_ppc_irq_set(env, pin, level);
370 
371     cur_level = (env->irq_input_state >> pin) & 1;
372     /* Don't generate spurious events */
373     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
374         CPUState *cs = CPU(cpu);
375 
376         switch (pin) {
377         case PPC40x_INPUT_RESET_SYS:
378             if (level) {
379                 trace_ppc_irq_reset("system");
380                 ppc40x_system_reset(cpu);
381             }
382             break;
383         case PPC40x_INPUT_RESET_CHIP:
384             if (level) {
385                 trace_ppc_irq_reset("chip");
386                 ppc40x_chip_reset(cpu);
387             }
388             break;
389         case PPC40x_INPUT_RESET_CORE:
390             /* XXX: TODO: update DBSR[MRR] */
391             if (level) {
392                 trace_ppc_irq_reset("core");
393                 ppc40x_core_reset(cpu);
394             }
395             break;
396         case PPC40x_INPUT_CINT:
397             /* Level sensitive - active high */
398             trace_ppc_irq_set_state("critical IRQ", level);
399             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
400             break;
401         case PPC40x_INPUT_INT:
402             /* Level sensitive - active high */
403             trace_ppc_irq_set_state("external IRQ", level);
404             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
405             break;
406         case PPC40x_INPUT_HALT:
407             /* Level sensitive - active low */
408             if (level) {
409                 trace_ppc_irq_cpu("stop");
410                 cs->halted = 1;
411             } else {
412                 trace_ppc_irq_cpu("restart");
413                 cs->halted = 0;
414                 qemu_cpu_kick(cs);
415             }
416             break;
417         case PPC40x_INPUT_DEBUG:
418             /* Level sensitive - active high */
419             trace_ppc_irq_set_state("debug pin", level);
420             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
421             break;
422         default:
423             g_assert_not_reached();
424         }
425         if (level)
426             env->irq_input_state |= 1 << pin;
427         else
428             env->irq_input_state &= ~(1 << pin);
429     }
430 }
431 
432 void ppc40x_irq_init(PowerPCCPU *cpu)
433 {
434     CPUPPCState *env = &cpu->env;
435 
436     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
437                                                   cpu, PPC40x_INPUT_NB);
438 }
439 
440 /* PowerPC E500 internal IRQ controller */
441 static void ppce500_set_irq(void *opaque, int pin, int level)
442 {
443     PowerPCCPU *cpu = opaque;
444     CPUPPCState *env = &cpu->env;
445     int cur_level;
446 
447     trace_ppc_irq_set(env, pin, level);
448 
449     cur_level = (env->irq_input_state >> pin) & 1;
450     /* Don't generate spurious events */
451     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
452         switch (pin) {
453         case PPCE500_INPUT_MCK:
454             if (level) {
455                 trace_ppc_irq_reset("system");
456                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
457             }
458             break;
459         case PPCE500_INPUT_RESET_CORE:
460             if (level) {
461                 trace_ppc_irq_reset("core");
462                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
463             }
464             break;
465         case PPCE500_INPUT_CINT:
466             /* Level sensitive - active high */
467             trace_ppc_irq_set_state("critical IRQ", level);
468             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
469             break;
470         case PPCE500_INPUT_INT:
471             /* Level sensitive - active high */
472             trace_ppc_irq_set_state("core IRQ", level);
473             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
474             break;
475         case PPCE500_INPUT_DEBUG:
476             /* Level sensitive - active high */
477             trace_ppc_irq_set_state("debug pin", level);
478             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
479             break;
480         default:
481             g_assert_not_reached();
482         }
483         if (level)
484             env->irq_input_state |= 1 << pin;
485         else
486             env->irq_input_state &= ~(1 << pin);
487     }
488 }
489 
490 void ppce500_irq_init(PowerPCCPU *cpu)
491 {
492     CPUPPCState *env = &cpu->env;
493 
494     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
495                                                   cpu, PPCE500_INPUT_NB);
496 }
497 
498 /* Enable or Disable the E500 EPR capability */
499 void ppce500_set_mpic_proxy(bool enabled)
500 {
501     CPUState *cs;
502 
503     CPU_FOREACH(cs) {
504         PowerPCCPU *cpu = POWERPC_CPU(cs);
505 
506         cpu->env.mpic_proxy = enabled;
507         if (kvm_enabled()) {
508             kvmppc_set_mpic_proxy(cpu, enabled);
509         }
510     }
511 }
512 
513 /*****************************************************************************/
514 /* PowerPC time base and decrementer emulation */
515 
516 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
517 {
518     /* TB time in tb periods */
519     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
520 }
521 
522 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
523 {
524     ppc_tb_t *tb_env = env->tb_env;
525     uint64_t tb;
526 
527     if (kvm_enabled()) {
528         return env->spr[SPR_TBL];
529     }
530 
531     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
532     trace_ppc_tb_load(tb);
533 
534     return tb;
535 }
536 
537 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
538 {
539     ppc_tb_t *tb_env = env->tb_env;
540     uint64_t tb;
541 
542     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
543     trace_ppc_tb_load(tb);
544 
545     return tb >> 32;
546 }
547 
548 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
549 {
550     if (kvm_enabled()) {
551         return env->spr[SPR_TBU];
552     }
553 
554     return _cpu_ppc_load_tbu(env);
555 }
556 
557 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
558                                     int64_t *tb_offsetp, uint64_t value)
559 {
560     *tb_offsetp = value -
561         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
562 
563     trace_ppc_tb_store(value, *tb_offsetp);
564 }
565 
566 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
567 {
568     ppc_tb_t *tb_env = env->tb_env;
569     uint64_t tb;
570 
571     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
572     tb &= 0xFFFFFFFF00000000ULL;
573     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
574                      &tb_env->tb_offset, tb | (uint64_t)value);
575 }
576 
577 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
578 {
579     ppc_tb_t *tb_env = env->tb_env;
580     uint64_t tb;
581 
582     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
583     tb &= 0x00000000FFFFFFFFULL;
584     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
585                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
586 }
587 
588 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
589 {
590     _cpu_ppc_store_tbu(env, value);
591 }
592 
593 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
594 {
595     ppc_tb_t *tb_env = env->tb_env;
596     uint64_t tb;
597 
598     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
599     trace_ppc_tb_load(tb);
600 
601     return tb;
602 }
603 
604 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
605 {
606     ppc_tb_t *tb_env = env->tb_env;
607     uint64_t tb;
608 
609     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
610     trace_ppc_tb_load(tb);
611 
612     return tb >> 32;
613 }
614 
615 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
616 {
617     ppc_tb_t *tb_env = env->tb_env;
618     uint64_t tb;
619 
620     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
621     tb &= 0xFFFFFFFF00000000ULL;
622     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
623                      &tb_env->atb_offset, tb | (uint64_t)value);
624 }
625 
626 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
627 {
628     ppc_tb_t *tb_env = env->tb_env;
629     uint64_t tb;
630 
631     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
632     tb &= 0x00000000FFFFFFFFULL;
633     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
635 }
636 
637 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
638 {
639     ppc_tb_t *tb_env = env->tb_env;
640 
641     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
642                           tb_env->vtb_offset);
643 }
644 
645 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
646 {
647     ppc_tb_t *tb_env = env->tb_env;
648 
649     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
650                      &tb_env->vtb_offset, value);
651 }
652 
653 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
654 {
655     ppc_tb_t *tb_env = env->tb_env;
656     uint64_t tb;
657 
658     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
659                         tb_env->tb_offset);
660     tb &= 0xFFFFFFUL;
661     tb |= (value & ~0xFFFFFFUL);
662     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
663                      &tb_env->tb_offset, tb);
664 }
665 
666 static void cpu_ppc_tb_stop (CPUPPCState *env)
667 {
668     ppc_tb_t *tb_env = env->tb_env;
669     uint64_t tb, atb, vmclk;
670 
671     /* If the time base is already frozen, do nothing */
672     if (tb_env->tb_freq != 0) {
673         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
674         /* Get the time base */
675         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
676         /* Get the alternate time base */
677         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
678         /* Store the time base value (ie compute the current offset) */
679         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
680         /* Store the alternate time base value (compute the current offset) */
681         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
682         /* Set the time base frequency to zero */
683         tb_env->tb_freq = 0;
684         /* Now, the time bases are frozen to tb_offset / atb_offset value */
685     }
686 }
687 
688 static void cpu_ppc_tb_start (CPUPPCState *env)
689 {
690     ppc_tb_t *tb_env = env->tb_env;
691     uint64_t tb, atb, vmclk;
692 
693     /* If the time base is not frozen, do nothing */
694     if (tb_env->tb_freq == 0) {
695         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
696         /* Get the time base from tb_offset */
697         tb = tb_env->tb_offset;
698         /* Get the alternate time base from atb_offset */
699         atb = tb_env->atb_offset;
700         /* Restore the tb frequency from the decrementer frequency */
701         tb_env->tb_freq = tb_env->decr_freq;
702         /* Store the time base value */
703         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
704         /* Store the alternate time base value */
705         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
706     }
707 }
708 
709 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
710 {
711     ppc_tb_t *tb_env = env->tb_env;
712     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
713     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
714 }
715 
716 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
717 {
718     ppc_tb_t *tb_env = env->tb_env;
719     int64_t decr, diff;
720 
721     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
722     if (diff >= 0) {
723         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
724     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
725         decr = 0;
726     }  else {
727         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
728     }
729     trace_ppc_decr_load(decr);
730 
731     return decr;
732 }
733 
734 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
735 {
736     ppc_tb_t *tb_env = env->tb_env;
737     uint64_t decr;
738 
739     if (kvm_enabled()) {
740         return env->spr[SPR_DECR];
741     }
742 
743     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
744 
745     /*
746      * If large decrementer is enabled then the decrementer is signed extened
747      * to 64 bits, otherwise it is a 32 bit value.
748      */
749     if (env->spr[SPR_LPCR] & LPCR_LD) {
750         return decr;
751     }
752     return (uint32_t) decr;
753 }
754 
755 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
756 {
757     PowerPCCPU *cpu = env_archcpu(env);
758     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
759     ppc_tb_t *tb_env = env->tb_env;
760     uint64_t hdecr;
761 
762     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
763 
764     /*
765      * If we have a large decrementer (POWER9 or later) then hdecr is sign
766      * extended to 64 bits, otherwise it is 32 bits.
767      */
768     if (pcc->lrg_decr_bits > 32) {
769         return hdecr;
770     }
771     return (uint32_t) hdecr;
772 }
773 
774 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
775 {
776     ppc_tb_t *tb_env = env->tb_env;
777 
778     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
779                           tb_env->purr_offset);
780 }
781 
782 /* When decrementer expires,
783  * all we need to do is generate or queue a CPU exception
784  */
785 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
786 {
787     /* Raise it */
788     trace_ppc_decr_excp("raise");
789     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
790 }
791 
792 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
793 {
794     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
795 }
796 
797 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
798 {
799     CPUPPCState *env = &cpu->env;
800 
801     /* Raise it */
802     trace_ppc_decr_excp("raise HV");
803 
804     /* The architecture specifies that we don't deliver HDEC
805      * interrupts in a PM state. Not only they don't cause a
806      * wakeup but they also get effectively discarded.
807      */
808     if (!env->resume_as_sreset) {
809         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
810     }
811 }
812 
813 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
814 {
815     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
816 }
817 
818 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
819                                  QEMUTimer *timer,
820                                  void (*raise_excp)(void *),
821                                  void (*lower_excp)(PowerPCCPU *),
822                                  target_ulong decr, target_ulong value,
823                                  int nr_bits)
824 {
825     CPUPPCState *env = &cpu->env;
826     ppc_tb_t *tb_env = env->tb_env;
827     uint64_t now, next;
828     int64_t signed_value;
829     int64_t signed_decr;
830 
831     /* Truncate value to decr_width and sign extend for simplicity */
832     signed_value = sextract64(value, 0, nr_bits);
833     signed_decr = sextract64(decr, 0, nr_bits);
834 
835     trace_ppc_decr_store(nr_bits, decr, value);
836 
837     if (kvm_enabled()) {
838         /* KVM handles decrementer exceptions, we don't need our own timer */
839         return;
840     }
841 
842     /*
843      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
844      * interrupt.
845      *
846      * If we get a really small DEC value, we can assume that by the time we
847      * handled it we should inject an interrupt already.
848      *
849      * On MSB level based DEC implementations the MSB always means the interrupt
850      * is pending, so raise it on those.
851      *
852      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
853      * an edge interrupt, so raise it here too.
854      */
855     if ((value < 3) ||
856         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
857         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
858           && signed_decr >= 0)) {
859         (*raise_excp)(cpu);
860         return;
861     }
862 
863     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
864     if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
865         (*lower_excp)(cpu);
866     }
867 
868     /* Calculate the next timer event */
869     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
870     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
871     *nextp = next;
872 
873     /* Adjust timer */
874     timer_mod(timer, next);
875 }
876 
877 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
878                                        target_ulong value, int nr_bits)
879 {
880     ppc_tb_t *tb_env = cpu->env.tb_env;
881 
882     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
883                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
884                          value, nr_bits);
885 }
886 
887 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
888 {
889     PowerPCCPU *cpu = env_archcpu(env);
890     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
891     int nr_bits = 32;
892 
893     if (env->spr[SPR_LPCR] & LPCR_LD) {
894         nr_bits = pcc->lrg_decr_bits;
895     }
896 
897     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
898 }
899 
900 static void cpu_ppc_decr_cb(void *opaque)
901 {
902     PowerPCCPU *cpu = opaque;
903 
904     cpu_ppc_decr_excp(cpu);
905 }
906 
907 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
908                                         target_ulong value, int nr_bits)
909 {
910     ppc_tb_t *tb_env = cpu->env.tb_env;
911 
912     if (tb_env->hdecr_timer != NULL) {
913         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
914                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
915                              hdecr, value, nr_bits);
916     }
917 }
918 
919 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
920 {
921     PowerPCCPU *cpu = env_archcpu(env);
922     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
923 
924     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
925                          pcc->lrg_decr_bits);
926 }
927 
928 static void cpu_ppc_hdecr_cb(void *opaque)
929 {
930     PowerPCCPU *cpu = opaque;
931 
932     cpu_ppc_hdecr_excp(cpu);
933 }
934 
935 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
936 {
937     ppc_tb_t *tb_env = env->tb_env;
938 
939     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
940                      &tb_env->purr_offset, value);
941 }
942 
943 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
944 {
945     CPUPPCState *env = opaque;
946     PowerPCCPU *cpu = env_archcpu(env);
947     ppc_tb_t *tb_env = env->tb_env;
948 
949     tb_env->tb_freq = freq;
950     tb_env->decr_freq = freq;
951     /* There is a bug in Linux 2.4 kernels:
952      * if a decrementer exception is pending when it enables msr_ee at startup,
953      * it's not ready to handle it...
954      */
955     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
956     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
957     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
958 }
959 
960 static void timebase_save(PPCTimebase *tb)
961 {
962     uint64_t ticks = cpu_get_host_ticks();
963     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
964 
965     if (!first_ppc_cpu->env.tb_env) {
966         error_report("No timebase object");
967         return;
968     }
969 
970     /* not used anymore, we keep it for compatibility */
971     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
972     /*
973      * tb_offset is only expected to be changed by QEMU so
974      * there is no need to update it from KVM here
975      */
976     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
977 
978     tb->runstate_paused =
979         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
980 }
981 
982 static void timebase_load(PPCTimebase *tb)
983 {
984     CPUState *cpu;
985     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
986     int64_t tb_off_adj, tb_off;
987     unsigned long freq;
988 
989     if (!first_ppc_cpu->env.tb_env) {
990         error_report("No timebase object");
991         return;
992     }
993 
994     freq = first_ppc_cpu->env.tb_env->tb_freq;
995 
996     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
997 
998     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
999     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1000                         (tb_off_adj - tb_off) / freq);
1001 
1002     /* Set new offset to all CPUs */
1003     CPU_FOREACH(cpu) {
1004         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1005         pcpu->env.tb_env->tb_offset = tb_off_adj;
1006         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1007     }
1008 }
1009 
1010 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1011                                    RunState state)
1012 {
1013     PPCTimebase *tb = opaque;
1014 
1015     if (running) {
1016         timebase_load(tb);
1017     } else {
1018         timebase_save(tb);
1019     }
1020 }
1021 
1022 /*
1023  * When migrating a running guest, read the clock just
1024  * before migration, so that the guest clock counts
1025  * during the events between:
1026  *
1027  *  * vm_stop()
1028  *  *
1029  *  * pre_save()
1030  *
1031  *  This reduces clock difference on migration from 5s
1032  *  to 0.1s (when max_downtime == 5s), because sending the
1033  *  final pages of memory (which happens between vm_stop()
1034  *  and pre_save()) takes max_downtime.
1035  */
1036 static int timebase_pre_save(void *opaque)
1037 {
1038     PPCTimebase *tb = opaque;
1039 
1040     /* guest_timebase won't be overridden in case of paused guest or savevm */
1041     if (!tb->runstate_paused) {
1042         timebase_save(tb);
1043     }
1044 
1045     return 0;
1046 }
1047 
1048 const VMStateDescription vmstate_ppc_timebase = {
1049     .name = "timebase",
1050     .version_id = 1,
1051     .minimum_version_id = 1,
1052     .minimum_version_id_old = 1,
1053     .pre_save = timebase_pre_save,
1054     .fields      = (VMStateField []) {
1055         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1056         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1057         VMSTATE_END_OF_LIST()
1058     },
1059 };
1060 
1061 /* Set up (once) timebase frequency (in Hz) */
1062 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1063 {
1064     PowerPCCPU *cpu = env_archcpu(env);
1065     ppc_tb_t *tb_env;
1066 
1067     tb_env = g_malloc0(sizeof(ppc_tb_t));
1068     env->tb_env = tb_env;
1069     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1070     if (is_book3s_arch2x(env)) {
1071         /* All Book3S 64bit CPUs implement level based DEC logic */
1072         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1073     }
1074     /* Create new timer */
1075     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1076     if (env->has_hv_mode) {
1077         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1078                                                 cpu);
1079     } else {
1080         tb_env->hdecr_timer = NULL;
1081     }
1082     cpu_ppc_set_tb_clk(env, freq);
1083 
1084     return &cpu_ppc_set_tb_clk;
1085 }
1086 
1087 /* Specific helpers for POWER & PowerPC 601 RTC */
1088 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1089 {
1090     _cpu_ppc_store_tbu(env, value);
1091 }
1092 
1093 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1094 {
1095     return _cpu_ppc_load_tbu(env);
1096 }
1097 
1098 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1099 {
1100     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1101 }
1102 
1103 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1104 {
1105     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1106 }
1107 
1108 /*****************************************************************************/
1109 /* PowerPC 40x timers */
1110 
1111 /* PIT, FIT & WDT */
1112 typedef struct ppc40x_timer_t ppc40x_timer_t;
1113 struct ppc40x_timer_t {
1114     uint64_t pit_reload;  /* PIT auto-reload value        */
1115     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1116     QEMUTimer *fit_timer;
1117     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1118     QEMUTimer *wdt_timer;
1119 
1120     /* 405 have the PIT, 440 have a DECR.  */
1121     unsigned int decr_excp;
1122 };
1123 
1124 /* Fixed interval timer */
1125 static void cpu_4xx_fit_cb (void *opaque)
1126 {
1127     PowerPCCPU *cpu;
1128     CPUPPCState *env;
1129     ppc_tb_t *tb_env;
1130     ppc40x_timer_t *ppc40x_timer;
1131     uint64_t now, next;
1132 
1133     env = opaque;
1134     cpu = env_archcpu(env);
1135     tb_env = env->tb_env;
1136     ppc40x_timer = tb_env->opaque;
1137     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1138     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1139     case 0:
1140         next = 1 << 9;
1141         break;
1142     case 1:
1143         next = 1 << 13;
1144         break;
1145     case 2:
1146         next = 1 << 17;
1147         break;
1148     case 3:
1149         next = 1 << 21;
1150         break;
1151     default:
1152         /* Cannot occur, but makes gcc happy */
1153         return;
1154     }
1155     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1156     if (next == now)
1157         next++;
1158     timer_mod(ppc40x_timer->fit_timer, next);
1159     env->spr[SPR_40x_TSR] |= 1 << 26;
1160     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1161         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1162     }
1163     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1164                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1165 }
1166 
1167 /* Programmable interval timer */
1168 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1169 {
1170     ppc40x_timer_t *ppc40x_timer;
1171     uint64_t now, next;
1172 
1173     ppc40x_timer = tb_env->opaque;
1174     if (ppc40x_timer->pit_reload <= 1 ||
1175         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1176         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1177         /* Stop PIT */
1178         trace_ppc4xx_pit_stop();
1179         timer_del(tb_env->decr_timer);
1180     } else {
1181         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1182         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1183         next = now + muldiv64(ppc40x_timer->pit_reload,
1184                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1185         if (is_excp)
1186             next += tb_env->decr_next - now;
1187         if (next == now)
1188             next++;
1189         timer_mod(tb_env->decr_timer, next);
1190         tb_env->decr_next = next;
1191     }
1192 }
1193 
1194 static void cpu_4xx_pit_cb (void *opaque)
1195 {
1196     PowerPCCPU *cpu;
1197     CPUPPCState *env;
1198     ppc_tb_t *tb_env;
1199     ppc40x_timer_t *ppc40x_timer;
1200 
1201     env = opaque;
1202     cpu = env_archcpu(env);
1203     tb_env = env->tb_env;
1204     ppc40x_timer = tb_env->opaque;
1205     env->spr[SPR_40x_TSR] |= 1 << 27;
1206     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1207         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1208     }
1209     start_stop_pit(env, tb_env, 1);
1210     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1211            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1212            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1213            ppc40x_timer->pit_reload);
1214 }
1215 
1216 /* Watchdog timer */
1217 static void cpu_4xx_wdt_cb (void *opaque)
1218 {
1219     PowerPCCPU *cpu;
1220     CPUPPCState *env;
1221     ppc_tb_t *tb_env;
1222     ppc40x_timer_t *ppc40x_timer;
1223     uint64_t now, next;
1224 
1225     env = opaque;
1226     cpu = env_archcpu(env);
1227     tb_env = env->tb_env;
1228     ppc40x_timer = tb_env->opaque;
1229     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1230     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1231     case 0:
1232         next = 1 << 17;
1233         break;
1234     case 1:
1235         next = 1 << 21;
1236         break;
1237     case 2:
1238         next = 1 << 25;
1239         break;
1240     case 3:
1241         next = 1 << 29;
1242         break;
1243     default:
1244         /* Cannot occur, but makes gcc happy */
1245         return;
1246     }
1247     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1248     if (next == now)
1249         next++;
1250     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1251     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1252     case 0x0:
1253     case 0x1:
1254         timer_mod(ppc40x_timer->wdt_timer, next);
1255         ppc40x_timer->wdt_next = next;
1256         env->spr[SPR_40x_TSR] |= 1U << 31;
1257         break;
1258     case 0x2:
1259         timer_mod(ppc40x_timer->wdt_timer, next);
1260         ppc40x_timer->wdt_next = next;
1261         env->spr[SPR_40x_TSR] |= 1 << 30;
1262         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1263             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1264         }
1265         break;
1266     case 0x3:
1267         env->spr[SPR_40x_TSR] &= ~0x30000000;
1268         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1269         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1270         case 0x0:
1271             /* No reset */
1272             break;
1273         case 0x1: /* Core reset */
1274             ppc40x_core_reset(cpu);
1275             break;
1276         case 0x2: /* Chip reset */
1277             ppc40x_chip_reset(cpu);
1278             break;
1279         case 0x3: /* System reset */
1280             ppc40x_system_reset(cpu);
1281             break;
1282         }
1283     }
1284 }
1285 
1286 void store_40x_pit (CPUPPCState *env, target_ulong val)
1287 {
1288     ppc_tb_t *tb_env;
1289     ppc40x_timer_t *ppc40x_timer;
1290 
1291     tb_env = env->tb_env;
1292     ppc40x_timer = tb_env->opaque;
1293     trace_ppc40x_store_pit(val);
1294     ppc40x_timer->pit_reload = val;
1295     start_stop_pit(env, tb_env, 0);
1296 }
1297 
1298 target_ulong load_40x_pit (CPUPPCState *env)
1299 {
1300     return cpu_ppc_load_decr(env);
1301 }
1302 
1303 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1304 {
1305     CPUPPCState *env = opaque;
1306     ppc_tb_t *tb_env = env->tb_env;
1307 
1308     trace_ppc40x_set_tb_clk(freq);
1309     tb_env->tb_freq = freq;
1310     tb_env->decr_freq = freq;
1311     /* XXX: we should also update all timers */
1312 }
1313 
1314 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1315                                   unsigned int decr_excp)
1316 {
1317     ppc_tb_t *tb_env;
1318     ppc40x_timer_t *ppc40x_timer;
1319 
1320     tb_env = g_malloc0(sizeof(ppc_tb_t));
1321     env->tb_env = tb_env;
1322     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1323     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1324     tb_env->tb_freq = freq;
1325     tb_env->decr_freq = freq;
1326     tb_env->opaque = ppc40x_timer;
1327     trace_ppc40x_timers_init(freq);
1328     if (ppc40x_timer != NULL) {
1329         /* We use decr timer for PIT */
1330         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1331         ppc40x_timer->fit_timer =
1332             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1333         ppc40x_timer->wdt_timer =
1334             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1335         ppc40x_timer->decr_excp = decr_excp;
1336     }
1337 
1338     return &ppc_40x_set_tb_clk;
1339 }
1340 
1341 /*****************************************************************************/
1342 /* Embedded PowerPC Device Control Registers */
1343 typedef struct ppc_dcrn_t ppc_dcrn_t;
1344 struct ppc_dcrn_t {
1345     dcr_read_cb dcr_read;
1346     dcr_write_cb dcr_write;
1347     void *opaque;
1348 };
1349 
1350 /* XXX: on 460, DCR addresses are 32 bits wide,
1351  *      using DCRIPR to get the 22 upper bits of the DCR address
1352  */
1353 #define DCRN_NB 1024
1354 struct ppc_dcr_t {
1355     ppc_dcrn_t dcrn[DCRN_NB];
1356     int (*read_error)(int dcrn);
1357     int (*write_error)(int dcrn);
1358 };
1359 
1360 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1361 {
1362     ppc_dcrn_t *dcr;
1363 
1364     if (dcrn < 0 || dcrn >= DCRN_NB)
1365         goto error;
1366     dcr = &dcr_env->dcrn[dcrn];
1367     if (dcr->dcr_read == NULL)
1368         goto error;
1369     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1370 
1371     return 0;
1372 
1373  error:
1374     if (dcr_env->read_error != NULL)
1375         return (*dcr_env->read_error)(dcrn);
1376 
1377     return -1;
1378 }
1379 
1380 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1381 {
1382     ppc_dcrn_t *dcr;
1383 
1384     if (dcrn < 0 || dcrn >= DCRN_NB)
1385         goto error;
1386     dcr = &dcr_env->dcrn[dcrn];
1387     if (dcr->dcr_write == NULL)
1388         goto error;
1389     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1390 
1391     return 0;
1392 
1393  error:
1394     if (dcr_env->write_error != NULL)
1395         return (*dcr_env->write_error)(dcrn);
1396 
1397     return -1;
1398 }
1399 
1400 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1401                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1402 {
1403     ppc_dcr_t *dcr_env;
1404     ppc_dcrn_t *dcr;
1405 
1406     dcr_env = env->dcr_env;
1407     if (dcr_env == NULL)
1408         return -1;
1409     if (dcrn < 0 || dcrn >= DCRN_NB)
1410         return -1;
1411     dcr = &dcr_env->dcrn[dcrn];
1412     if (dcr->opaque != NULL ||
1413         dcr->dcr_read != NULL ||
1414         dcr->dcr_write != NULL)
1415         return -1;
1416     dcr->opaque = opaque;
1417     dcr->dcr_read = dcr_read;
1418     dcr->dcr_write = dcr_write;
1419 
1420     return 0;
1421 }
1422 
1423 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1424                   int (*write_error)(int dcrn))
1425 {
1426     ppc_dcr_t *dcr_env;
1427 
1428     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1429     dcr_env->read_error = read_error;
1430     dcr_env->write_error = write_error;
1431     env->dcr_env = dcr_env;
1432 
1433     return 0;
1434 }
1435 
1436 /*****************************************************************************/
1437 
1438 int ppc_cpu_pir(PowerPCCPU *cpu)
1439 {
1440     CPUPPCState *env = &cpu->env;
1441     return env->spr_cb[SPR_PIR].default_value;
1442 }
1443 
1444 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1445 {
1446     CPUState *cs;
1447 
1448     CPU_FOREACH(cs) {
1449         PowerPCCPU *cpu = POWERPC_CPU(cs);
1450 
1451         if (ppc_cpu_pir(cpu) == pir) {
1452             return cpu;
1453         }
1454     }
1455 
1456     return NULL;
1457 }
1458 
1459 void ppc_irq_reset(PowerPCCPU *cpu)
1460 {
1461     CPUPPCState *env = &cpu->env;
1462 
1463     env->irq_input_state = 0;
1464     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1465 }
1466