xref: /openbmc/qemu/hw/ppc/ppc.c (revision ac12b601)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 //#define PPC_DEBUG_IRQ
41 //#define PPC_DEBUG_TB
42 
43 #ifdef PPC_DEBUG_IRQ
44 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
45 #else
46 #  define LOG_IRQ(...) do { } while (0)
47 #endif
48 
49 
50 #ifdef PPC_DEBUG_TB
51 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
52 #else
53 #  define LOG_TB(...) do { } while (0)
54 #endif
55 
56 static void cpu_ppc_tb_stop (CPUPPCState *env);
57 static void cpu_ppc_tb_start (CPUPPCState *env);
58 
59 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
60 {
61     CPUState *cs = CPU(cpu);
62     CPUPPCState *env = &cpu->env;
63     unsigned int old_pending;
64     bool locked = false;
65 
66     /* We may already have the BQL if coming from the reset path */
67     if (!qemu_mutex_iothread_locked()) {
68         locked = true;
69         qemu_mutex_lock_iothread();
70     }
71 
72     old_pending = env->pending_interrupts;
73 
74     if (level) {
75         env->pending_interrupts |= 1 << n_IRQ;
76         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
77     } else {
78         env->pending_interrupts &= ~(1 << n_IRQ);
79         if (env->pending_interrupts == 0) {
80             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
81         }
82     }
83 
84     if (old_pending != env->pending_interrupts) {
85         kvmppc_set_interrupt(cpu, n_IRQ, level);
86     }
87 
88 
89     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
90                 "req %08x\n", __func__, env, n_IRQ, level,
91                 env->pending_interrupts, CPU(cpu)->interrupt_request);
92 
93     if (locked) {
94         qemu_mutex_unlock_iothread();
95     }
96 }
97 
98 /* PowerPC 6xx / 7xx internal IRQ controller */
99 static void ppc6xx_set_irq(void *opaque, int pin, int level)
100 {
101     PowerPCCPU *cpu = opaque;
102     CPUPPCState *env = &cpu->env;
103     int cur_level;
104 
105     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
106                 env, pin, level);
107     cur_level = (env->irq_input_state >> pin) & 1;
108     /* Don't generate spurious events */
109     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
110         CPUState *cs = CPU(cpu);
111 
112         switch (pin) {
113         case PPC6xx_INPUT_TBEN:
114             /* Level sensitive - active high */
115             LOG_IRQ("%s: %s the time base\n",
116                         __func__, level ? "start" : "stop");
117             if (level) {
118                 cpu_ppc_tb_start(env);
119             } else {
120                 cpu_ppc_tb_stop(env);
121             }
122             break;
123         case PPC6xx_INPUT_INT:
124             /* Level sensitive - active high */
125             LOG_IRQ("%s: set the external IRQ state to %d\n",
126                         __func__, level);
127             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128             break;
129         case PPC6xx_INPUT_SMI:
130             /* Level sensitive - active high */
131             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                         __func__, level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134             break;
135         case PPC6xx_INPUT_MCP:
136             /* Negative edge sensitive */
137             /* XXX: TODO: actual reaction may depends on HID0 status
138              *            603/604/740/750: check HID0[EMCP]
139              */
140             if (cur_level == 1 && level == 0) {
141                 LOG_IRQ("%s: raise machine check state\n",
142                             __func__);
143                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144             }
145             break;
146         case PPC6xx_INPUT_CKSTP_IN:
147             /* Level sensitive - active low */
148             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149             /* XXX: Note that the only way to restart the CPU is to reset it */
150             if (level) {
151                 LOG_IRQ("%s: stop the CPU\n", __func__);
152                 cs->halted = 1;
153             }
154             break;
155         case PPC6xx_INPUT_HRESET:
156             /* Level sensitive - active low */
157             if (level) {
158                 LOG_IRQ("%s: reset the CPU\n", __func__);
159                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160             }
161             break;
162         case PPC6xx_INPUT_SRESET:
163             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                         __func__, level);
165             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166             break;
167         default:
168             /* Unknown pin - do nothing */
169             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170             return;
171         }
172         if (level)
173             env->irq_input_state |= 1 << pin;
174         else
175             env->irq_input_state &= ~(1 << pin);
176     }
177 }
178 
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
180 {
181     CPUPPCState *env = &cpu->env;
182 
183     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184                                                   PPC6xx_INPUT_NB);
185 }
186 
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
190 {
191     PowerPCCPU *cpu = opaque;
192     CPUPPCState *env = &cpu->env;
193     int cur_level;
194 
195     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196                 env, pin, level);
197     cur_level = (env->irq_input_state >> pin) & 1;
198     /* Don't generate spurious events */
199     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200         CPUState *cs = CPU(cpu);
201 
202         switch (pin) {
203         case PPC970_INPUT_INT:
204             /* Level sensitive - active high */
205             LOG_IRQ("%s: set the external IRQ state to %d\n",
206                         __func__, level);
207             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208             break;
209         case PPC970_INPUT_THINT:
210             /* Level sensitive - active high */
211             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212                         level);
213             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214             break;
215         case PPC970_INPUT_MCP:
216             /* Negative edge sensitive */
217             /* XXX: TODO: actual reaction may depends on HID0 status
218              *            603/604/740/750: check HID0[EMCP]
219              */
220             if (cur_level == 1 && level == 0) {
221                 LOG_IRQ("%s: raise machine check state\n",
222                             __func__);
223                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224             }
225             break;
226         case PPC970_INPUT_CKSTP:
227             /* Level sensitive - active low */
228             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229             if (level) {
230                 LOG_IRQ("%s: stop the CPU\n", __func__);
231                 cs->halted = 1;
232             } else {
233                 LOG_IRQ("%s: restart the CPU\n", __func__);
234                 cs->halted = 0;
235                 qemu_cpu_kick(cs);
236             }
237             break;
238         case PPC970_INPUT_HRESET:
239             /* Level sensitive - active low */
240             if (level) {
241                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242             }
243             break;
244         case PPC970_INPUT_SRESET:
245             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246                         __func__, level);
247             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248             break;
249         case PPC970_INPUT_TBEN:
250             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251                         level);
252             /* XXX: TODO */
253             break;
254         default:
255             /* Unknown pin - do nothing */
256             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257             return;
258         }
259         if (level)
260             env->irq_input_state |= 1 << pin;
261         else
262             env->irq_input_state &= ~(1 << pin);
263     }
264 }
265 
266 void ppc970_irq_init(PowerPCCPU *cpu)
267 {
268     CPUPPCState *env = &cpu->env;
269 
270     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271                                                   PPC970_INPUT_NB);
272 }
273 
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
276 {
277     PowerPCCPU *cpu = opaque;
278 
279     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280             &cpu->env, pin, level);
281 
282     switch (pin) {
283     case POWER7_INPUT_INT:
284         /* Level sensitive - active high */
285         LOG_IRQ("%s: set the external IRQ state to %d\n",
286                 __func__, level);
287         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288         break;
289     default:
290         /* Unknown pin - do nothing */
291         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292         return;
293     }
294 }
295 
296 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
297 {
298     CPUPPCState *env = &cpu->env;
299 
300     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
301                                                   POWER7_INPUT_NB);
302 }
303 
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque, int pin, int level)
306 {
307     PowerPCCPU *cpu = opaque;
308 
309     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
310             &cpu->env, pin, level);
311 
312     switch (pin) {
313     case POWER9_INPUT_INT:
314         /* Level sensitive - active high */
315         LOG_IRQ("%s: set the external IRQ state to %d\n",
316                 __func__, level);
317         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
318         break;
319     case POWER9_INPUT_HINT:
320         /* Level sensitive - active high */
321         LOG_IRQ("%s: set the external IRQ state to %d\n",
322                 __func__, level);
323         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
324         break;
325     default:
326         /* Unknown pin - do nothing */
327         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
328         return;
329     }
330 }
331 
332 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
333 {
334     CPUPPCState *env = &cpu->env;
335 
336     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
337                                                   POWER9_INPUT_NB);
338 }
339 #endif /* defined(TARGET_PPC64) */
340 
341 void ppc40x_core_reset(PowerPCCPU *cpu)
342 {
343     CPUPPCState *env = &cpu->env;
344     target_ulong dbsr;
345 
346     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
347     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
348     dbsr = env->spr[SPR_40x_DBSR];
349     dbsr &= ~0x00000300;
350     dbsr |= 0x00000100;
351     env->spr[SPR_40x_DBSR] = dbsr;
352 }
353 
354 void ppc40x_chip_reset(PowerPCCPU *cpu)
355 {
356     CPUPPCState *env = &cpu->env;
357     target_ulong dbsr;
358 
359     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
360     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
361     /* XXX: TODO reset all internal peripherals */
362     dbsr = env->spr[SPR_40x_DBSR];
363     dbsr &= ~0x00000300;
364     dbsr |= 0x00000200;
365     env->spr[SPR_40x_DBSR] = dbsr;
366 }
367 
368 void ppc40x_system_reset(PowerPCCPU *cpu)
369 {
370     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
371     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372 }
373 
374 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
375 {
376     PowerPCCPU *cpu = env_archcpu(env);
377 
378     switch ((val >> 28) & 0x3) {
379     case 0x0:
380         /* No action */
381         break;
382     case 0x1:
383         /* Core reset */
384         ppc40x_core_reset(cpu);
385         break;
386     case 0x2:
387         /* Chip reset */
388         ppc40x_chip_reset(cpu);
389         break;
390     case 0x3:
391         /* System reset */
392         ppc40x_system_reset(cpu);
393         break;
394     }
395 }
396 
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque, int pin, int level)
399 {
400     PowerPCCPU *cpu = opaque;
401     CPUPPCState *env = &cpu->env;
402     int cur_level;
403 
404     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405                 env, pin, level);
406     cur_level = (env->irq_input_state >> pin) & 1;
407     /* Don't generate spurious events */
408     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409         CPUState *cs = CPU(cpu);
410 
411         switch (pin) {
412         case PPC40x_INPUT_RESET_SYS:
413             if (level) {
414                 LOG_IRQ("%s: reset the PowerPC system\n",
415                             __func__);
416                 ppc40x_system_reset(cpu);
417             }
418             break;
419         case PPC40x_INPUT_RESET_CHIP:
420             if (level) {
421                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
422                 ppc40x_chip_reset(cpu);
423             }
424             break;
425         case PPC40x_INPUT_RESET_CORE:
426             /* XXX: TODO: update DBSR[MRR] */
427             if (level) {
428                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
429                 ppc40x_core_reset(cpu);
430             }
431             break;
432         case PPC40x_INPUT_CINT:
433             /* Level sensitive - active high */
434             LOG_IRQ("%s: set the critical IRQ state to %d\n",
435                         __func__, level);
436             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
437             break;
438         case PPC40x_INPUT_INT:
439             /* Level sensitive - active high */
440             LOG_IRQ("%s: set the external IRQ state to %d\n",
441                         __func__, level);
442             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
443             break;
444         case PPC40x_INPUT_HALT:
445             /* Level sensitive - active low */
446             if (level) {
447                 LOG_IRQ("%s: stop the CPU\n", __func__);
448                 cs->halted = 1;
449             } else {
450                 LOG_IRQ("%s: restart the CPU\n", __func__);
451                 cs->halted = 0;
452                 qemu_cpu_kick(cs);
453             }
454             break;
455         case PPC40x_INPUT_DEBUG:
456             /* Level sensitive - active high */
457             LOG_IRQ("%s: set the debug pin state to %d\n",
458                         __func__, level);
459             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
460             break;
461         default:
462             /* Unknown pin - do nothing */
463             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
464             return;
465         }
466         if (level)
467             env->irq_input_state |= 1 << pin;
468         else
469             env->irq_input_state &= ~(1 << pin);
470     }
471 }
472 
473 void ppc40x_irq_init(PowerPCCPU *cpu)
474 {
475     CPUPPCState *env = &cpu->env;
476 
477     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
478                                                   cpu, PPC40x_INPUT_NB);
479 }
480 
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque, int pin, int level)
483 {
484     PowerPCCPU *cpu = opaque;
485     CPUPPCState *env = &cpu->env;
486     int cur_level;
487 
488     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
489                 env, pin, level);
490     cur_level = (env->irq_input_state >> pin) & 1;
491     /* Don't generate spurious events */
492     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
493         switch (pin) {
494         case PPCE500_INPUT_MCK:
495             if (level) {
496                 LOG_IRQ("%s: reset the PowerPC system\n",
497                             __func__);
498                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
499             }
500             break;
501         case PPCE500_INPUT_RESET_CORE:
502             if (level) {
503                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
504                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
505             }
506             break;
507         case PPCE500_INPUT_CINT:
508             /* Level sensitive - active high */
509             LOG_IRQ("%s: set the critical IRQ state to %d\n",
510                         __func__, level);
511             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
512             break;
513         case PPCE500_INPUT_INT:
514             /* Level sensitive - active high */
515             LOG_IRQ("%s: set the core IRQ state to %d\n",
516                         __func__, level);
517             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
518             break;
519         case PPCE500_INPUT_DEBUG:
520             /* Level sensitive - active high */
521             LOG_IRQ("%s: set the debug pin state to %d\n",
522                         __func__, level);
523             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
524             break;
525         default:
526             /* Unknown pin - do nothing */
527             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
528             return;
529         }
530         if (level)
531             env->irq_input_state |= 1 << pin;
532         else
533             env->irq_input_state &= ~(1 << pin);
534     }
535 }
536 
537 void ppce500_irq_init(PowerPCCPU *cpu)
538 {
539     CPUPPCState *env = &cpu->env;
540 
541     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
542                                                   cpu, PPCE500_INPUT_NB);
543 }
544 
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled)
547 {
548     CPUState *cs;
549 
550     CPU_FOREACH(cs) {
551         PowerPCCPU *cpu = POWERPC_CPU(cs);
552 
553         cpu->env.mpic_proxy = enabled;
554         if (kvm_enabled()) {
555             kvmppc_set_mpic_proxy(cpu, enabled);
556         }
557     }
558 }
559 
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
562 
563 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
564 {
565     /* TB time in tb periods */
566     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
567 }
568 
569 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
570 {
571     ppc_tb_t *tb_env = env->tb_env;
572     uint64_t tb;
573 
574     if (kvm_enabled()) {
575         return env->spr[SPR_TBL];
576     }
577 
578     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
580 
581     return tb;
582 }
583 
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
585 {
586     ppc_tb_t *tb_env = env->tb_env;
587     uint64_t tb;
588 
589     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
591 
592     return tb >> 32;
593 }
594 
595 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
596 {
597     if (kvm_enabled()) {
598         return env->spr[SPR_TBU];
599     }
600 
601     return _cpu_ppc_load_tbu(env);
602 }
603 
604 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
605                                     int64_t *tb_offsetp, uint64_t value)
606 {
607     *tb_offsetp = value -
608         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
609 
610     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
611                 __func__, value, *tb_offsetp);
612 }
613 
614 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
615 {
616     ppc_tb_t *tb_env = env->tb_env;
617     uint64_t tb;
618 
619     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
620     tb &= 0xFFFFFFFF00000000ULL;
621     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
622                      &tb_env->tb_offset, tb | (uint64_t)value);
623 }
624 
625 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
626 {
627     ppc_tb_t *tb_env = env->tb_env;
628     uint64_t tb;
629 
630     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631     tb &= 0x00000000FFFFFFFFULL;
632     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
634 }
635 
636 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
637 {
638     _cpu_ppc_store_tbu(env, value);
639 }
640 
641 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
642 {
643     ppc_tb_t *tb_env = env->tb_env;
644     uint64_t tb;
645 
646     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
647     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
648 
649     return tb;
650 }
651 
652 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
653 {
654     ppc_tb_t *tb_env = env->tb_env;
655     uint64_t tb;
656 
657     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
659 
660     return tb >> 32;
661 }
662 
663 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
664 {
665     ppc_tb_t *tb_env = env->tb_env;
666     uint64_t tb;
667 
668     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669     tb &= 0xFFFFFFFF00000000ULL;
670     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
671                      &tb_env->atb_offset, tb | (uint64_t)value);
672 }
673 
674 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
675 {
676     ppc_tb_t *tb_env = env->tb_env;
677     uint64_t tb;
678 
679     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680     tb &= 0x00000000FFFFFFFFULL;
681     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
683 }
684 
685 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
686 {
687     ppc_tb_t *tb_env = env->tb_env;
688 
689     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
690                           tb_env->vtb_offset);
691 }
692 
693 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
694 {
695     ppc_tb_t *tb_env = env->tb_env;
696 
697     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
698                      &tb_env->vtb_offset, value);
699 }
700 
701 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
702 {
703     ppc_tb_t *tb_env = env->tb_env;
704     uint64_t tb;
705 
706     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
707                         tb_env->tb_offset);
708     tb &= 0xFFFFFFUL;
709     tb |= (value & ~0xFFFFFFUL);
710     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
711                      &tb_env->tb_offset, tb);
712 }
713 
714 static void cpu_ppc_tb_stop (CPUPPCState *env)
715 {
716     ppc_tb_t *tb_env = env->tb_env;
717     uint64_t tb, atb, vmclk;
718 
719     /* If the time base is already frozen, do nothing */
720     if (tb_env->tb_freq != 0) {
721         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
722         /* Get the time base */
723         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
724         /* Get the alternate time base */
725         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
726         /* Store the time base value (ie compute the current offset) */
727         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
728         /* Store the alternate time base value (compute the current offset) */
729         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
730         /* Set the time base frequency to zero */
731         tb_env->tb_freq = 0;
732         /* Now, the time bases are frozen to tb_offset / atb_offset value */
733     }
734 }
735 
736 static void cpu_ppc_tb_start (CPUPPCState *env)
737 {
738     ppc_tb_t *tb_env = env->tb_env;
739     uint64_t tb, atb, vmclk;
740 
741     /* If the time base is not frozen, do nothing */
742     if (tb_env->tb_freq == 0) {
743         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
744         /* Get the time base from tb_offset */
745         tb = tb_env->tb_offset;
746         /* Get the alternate time base from atb_offset */
747         atb = tb_env->atb_offset;
748         /* Restore the tb frequency from the decrementer frequency */
749         tb_env->tb_freq = tb_env->decr_freq;
750         /* Store the time base value */
751         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
752         /* Store the alternate time base value */
753         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
754     }
755 }
756 
757 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
758 {
759     ppc_tb_t *tb_env = env->tb_env;
760     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
761     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
762 }
763 
764 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
765 {
766     ppc_tb_t *tb_env = env->tb_env;
767     int64_t decr, diff;
768 
769     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
770     if (diff >= 0) {
771         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
772     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
773         decr = 0;
774     }  else {
775         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
776     }
777     LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
778 
779     return decr;
780 }
781 
782 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
783 {
784     ppc_tb_t *tb_env = env->tb_env;
785     uint64_t decr;
786 
787     if (kvm_enabled()) {
788         return env->spr[SPR_DECR];
789     }
790 
791     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
792 
793     /*
794      * If large decrementer is enabled then the decrementer is signed extened
795      * to 64 bits, otherwise it is a 32 bit value.
796      */
797     if (env->spr[SPR_LPCR] & LPCR_LD) {
798         return decr;
799     }
800     return (uint32_t) decr;
801 }
802 
803 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
804 {
805     PowerPCCPU *cpu = env_archcpu(env);
806     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
807     ppc_tb_t *tb_env = env->tb_env;
808     uint64_t hdecr;
809 
810     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
811 
812     /*
813      * If we have a large decrementer (POWER9 or later) then hdecr is sign
814      * extended to 64 bits, otherwise it is 32 bits.
815      */
816     if (pcc->lrg_decr_bits > 32) {
817         return hdecr;
818     }
819     return (uint32_t) hdecr;
820 }
821 
822 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
823 {
824     ppc_tb_t *tb_env = env->tb_env;
825 
826     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
827                           tb_env->purr_offset);
828 }
829 
830 /* When decrementer expires,
831  * all we need to do is generate or queue a CPU exception
832  */
833 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
834 {
835     /* Raise it */
836     LOG_TB("raise decrementer exception\n");
837     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
838 }
839 
840 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
841 {
842     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
843 }
844 
845 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
846 {
847     CPUPPCState *env = &cpu->env;
848 
849     /* Raise it */
850     LOG_TB("raise hv decrementer exception\n");
851 
852     /* The architecture specifies that we don't deliver HDEC
853      * interrupts in a PM state. Not only they don't cause a
854      * wakeup but they also get effectively discarded.
855      */
856     if (!env->resume_as_sreset) {
857         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
858     }
859 }
860 
861 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
862 {
863     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
864 }
865 
866 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
867                                  QEMUTimer *timer,
868                                  void (*raise_excp)(void *),
869                                  void (*lower_excp)(PowerPCCPU *),
870                                  target_ulong decr, target_ulong value,
871                                  int nr_bits)
872 {
873     CPUPPCState *env = &cpu->env;
874     ppc_tb_t *tb_env = env->tb_env;
875     uint64_t now, next;
876     bool negative;
877 
878     /* Truncate value to decr_width and sign extend for simplicity */
879     value &= ((1ULL << nr_bits) - 1);
880     negative = !!(value & (1ULL << (nr_bits - 1)));
881     if (negative) {
882         value |= (0xFFFFFFFFULL << nr_bits);
883     }
884 
885     LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
886                 decr, value);
887 
888     if (kvm_enabled()) {
889         /* KVM handles decrementer exceptions, we don't need our own timer */
890         return;
891     }
892 
893     /*
894      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
895      * interrupt.
896      *
897      * If we get a really small DEC value, we can assume that by the time we
898      * handled it we should inject an interrupt already.
899      *
900      * On MSB level based DEC implementations the MSB always means the interrupt
901      * is pending, so raise it on those.
902      *
903      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
904      * an edge interrupt, so raise it here too.
905      */
906     if ((value < 3) ||
907         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
908         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
909           && !(decr & (1ULL << (nr_bits - 1))))) {
910         (*raise_excp)(cpu);
911         return;
912     }
913 
914     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
915     if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
916         (*lower_excp)(cpu);
917     }
918 
919     /* Calculate the next timer event */
920     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
921     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
922     *nextp = next;
923 
924     /* Adjust timer */
925     timer_mod(timer, next);
926 }
927 
928 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
929                                        target_ulong value, int nr_bits)
930 {
931     ppc_tb_t *tb_env = cpu->env.tb_env;
932 
933     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
934                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
935                          value, nr_bits);
936 }
937 
938 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
939 {
940     PowerPCCPU *cpu = env_archcpu(env);
941     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
942     int nr_bits = 32;
943 
944     if (env->spr[SPR_LPCR] & LPCR_LD) {
945         nr_bits = pcc->lrg_decr_bits;
946     }
947 
948     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
949 }
950 
951 static void cpu_ppc_decr_cb(void *opaque)
952 {
953     PowerPCCPU *cpu = opaque;
954 
955     cpu_ppc_decr_excp(cpu);
956 }
957 
958 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
959                                         target_ulong value, int nr_bits)
960 {
961     ppc_tb_t *tb_env = cpu->env.tb_env;
962 
963     if (tb_env->hdecr_timer != NULL) {
964         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
965                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
966                              hdecr, value, nr_bits);
967     }
968 }
969 
970 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
971 {
972     PowerPCCPU *cpu = env_archcpu(env);
973     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
974 
975     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
976                          pcc->lrg_decr_bits);
977 }
978 
979 static void cpu_ppc_hdecr_cb(void *opaque)
980 {
981     PowerPCCPU *cpu = opaque;
982 
983     cpu_ppc_hdecr_excp(cpu);
984 }
985 
986 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
987 {
988     ppc_tb_t *tb_env = env->tb_env;
989 
990     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
991                      &tb_env->purr_offset, value);
992 }
993 
994 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
995 {
996     CPUPPCState *env = opaque;
997     PowerPCCPU *cpu = env_archcpu(env);
998     ppc_tb_t *tb_env = env->tb_env;
999 
1000     tb_env->tb_freq = freq;
1001     tb_env->decr_freq = freq;
1002     /* There is a bug in Linux 2.4 kernels:
1003      * if a decrementer exception is pending when it enables msr_ee at startup,
1004      * it's not ready to handle it...
1005      */
1006     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1007     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1008     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1009 }
1010 
1011 static void timebase_save(PPCTimebase *tb)
1012 {
1013     uint64_t ticks = cpu_get_host_ticks();
1014     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1015 
1016     if (!first_ppc_cpu->env.tb_env) {
1017         error_report("No timebase object");
1018         return;
1019     }
1020 
1021     /* not used anymore, we keep it for compatibility */
1022     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1023     /*
1024      * tb_offset is only expected to be changed by QEMU so
1025      * there is no need to update it from KVM here
1026      */
1027     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1028 
1029     tb->runstate_paused =
1030         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
1031 }
1032 
1033 static void timebase_load(PPCTimebase *tb)
1034 {
1035     CPUState *cpu;
1036     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1037     int64_t tb_off_adj, tb_off;
1038     unsigned long freq;
1039 
1040     if (!first_ppc_cpu->env.tb_env) {
1041         error_report("No timebase object");
1042         return;
1043     }
1044 
1045     freq = first_ppc_cpu->env.tb_env->tb_freq;
1046 
1047     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1048 
1049     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1050     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1051                         (tb_off_adj - tb_off) / freq);
1052 
1053     /* Set new offset to all CPUs */
1054     CPU_FOREACH(cpu) {
1055         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1056         pcpu->env.tb_env->tb_offset = tb_off_adj;
1057         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1058     }
1059 }
1060 
1061 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1062                                    RunState state)
1063 {
1064     PPCTimebase *tb = opaque;
1065 
1066     if (running) {
1067         timebase_load(tb);
1068     } else {
1069         timebase_save(tb);
1070     }
1071 }
1072 
1073 /*
1074  * When migrating a running guest, read the clock just
1075  * before migration, so that the guest clock counts
1076  * during the events between:
1077  *
1078  *  * vm_stop()
1079  *  *
1080  *  * pre_save()
1081  *
1082  *  This reduces clock difference on migration from 5s
1083  *  to 0.1s (when max_downtime == 5s), because sending the
1084  *  final pages of memory (which happens between vm_stop()
1085  *  and pre_save()) takes max_downtime.
1086  */
1087 static int timebase_pre_save(void *opaque)
1088 {
1089     PPCTimebase *tb = opaque;
1090 
1091     /* guest_timebase won't be overridden in case of paused guest or savevm */
1092     if (!tb->runstate_paused) {
1093         timebase_save(tb);
1094     }
1095 
1096     return 0;
1097 }
1098 
1099 const VMStateDescription vmstate_ppc_timebase = {
1100     .name = "timebase",
1101     .version_id = 1,
1102     .minimum_version_id = 1,
1103     .minimum_version_id_old = 1,
1104     .pre_save = timebase_pre_save,
1105     .fields      = (VMStateField []) {
1106         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1107         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1108         VMSTATE_END_OF_LIST()
1109     },
1110 };
1111 
1112 /* Set up (once) timebase frequency (in Hz) */
1113 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1114 {
1115     PowerPCCPU *cpu = env_archcpu(env);
1116     ppc_tb_t *tb_env;
1117 
1118     tb_env = g_malloc0(sizeof(ppc_tb_t));
1119     env->tb_env = tb_env;
1120     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1121     if (is_book3s_arch2x(env)) {
1122         /* All Book3S 64bit CPUs implement level based DEC logic */
1123         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1124     }
1125     /* Create new timer */
1126     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1127     if (env->has_hv_mode) {
1128         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1129                                                 cpu);
1130     } else {
1131         tb_env->hdecr_timer = NULL;
1132     }
1133     cpu_ppc_set_tb_clk(env, freq);
1134 
1135     return &cpu_ppc_set_tb_clk;
1136 }
1137 
1138 /* Specific helpers for POWER & PowerPC 601 RTC */
1139 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1140 {
1141     _cpu_ppc_store_tbu(env, value);
1142 }
1143 
1144 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1145 {
1146     return _cpu_ppc_load_tbu(env);
1147 }
1148 
1149 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1150 {
1151     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1152 }
1153 
1154 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1155 {
1156     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1157 }
1158 
1159 /*****************************************************************************/
1160 /* PowerPC 40x timers */
1161 
1162 /* PIT, FIT & WDT */
1163 typedef struct ppc40x_timer_t ppc40x_timer_t;
1164 struct ppc40x_timer_t {
1165     uint64_t pit_reload;  /* PIT auto-reload value        */
1166     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1167     QEMUTimer *fit_timer;
1168     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1169     QEMUTimer *wdt_timer;
1170 
1171     /* 405 have the PIT, 440 have a DECR.  */
1172     unsigned int decr_excp;
1173 };
1174 
1175 /* Fixed interval timer */
1176 static void cpu_4xx_fit_cb (void *opaque)
1177 {
1178     PowerPCCPU *cpu;
1179     CPUPPCState *env;
1180     ppc_tb_t *tb_env;
1181     ppc40x_timer_t *ppc40x_timer;
1182     uint64_t now, next;
1183 
1184     env = opaque;
1185     cpu = env_archcpu(env);
1186     tb_env = env->tb_env;
1187     ppc40x_timer = tb_env->opaque;
1188     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1189     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1190     case 0:
1191         next = 1 << 9;
1192         break;
1193     case 1:
1194         next = 1 << 13;
1195         break;
1196     case 2:
1197         next = 1 << 17;
1198         break;
1199     case 3:
1200         next = 1 << 21;
1201         break;
1202     default:
1203         /* Cannot occur, but makes gcc happy */
1204         return;
1205     }
1206     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1207     if (next == now)
1208         next++;
1209     timer_mod(ppc40x_timer->fit_timer, next);
1210     env->spr[SPR_40x_TSR] |= 1 << 26;
1211     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1212         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1213     }
1214     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1215            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1216            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1217 }
1218 
1219 /* Programmable interval timer */
1220 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1221 {
1222     ppc40x_timer_t *ppc40x_timer;
1223     uint64_t now, next;
1224 
1225     ppc40x_timer = tb_env->opaque;
1226     if (ppc40x_timer->pit_reload <= 1 ||
1227         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1228         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1229         /* Stop PIT */
1230         LOG_TB("%s: stop PIT\n", __func__);
1231         timer_del(tb_env->decr_timer);
1232     } else {
1233         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1234                     __func__, ppc40x_timer->pit_reload);
1235         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1236         next = now + muldiv64(ppc40x_timer->pit_reload,
1237                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1238         if (is_excp)
1239             next += tb_env->decr_next - now;
1240         if (next == now)
1241             next++;
1242         timer_mod(tb_env->decr_timer, next);
1243         tb_env->decr_next = next;
1244     }
1245 }
1246 
1247 static void cpu_4xx_pit_cb (void *opaque)
1248 {
1249     PowerPCCPU *cpu;
1250     CPUPPCState *env;
1251     ppc_tb_t *tb_env;
1252     ppc40x_timer_t *ppc40x_timer;
1253 
1254     env = opaque;
1255     cpu = env_archcpu(env);
1256     tb_env = env->tb_env;
1257     ppc40x_timer = tb_env->opaque;
1258     env->spr[SPR_40x_TSR] |= 1 << 27;
1259     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1260         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1261     }
1262     start_stop_pit(env, tb_env, 1);
1263     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1264            "%016" PRIx64 "\n", __func__,
1265            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1266            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1267            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1268            ppc40x_timer->pit_reload);
1269 }
1270 
1271 /* Watchdog timer */
1272 static void cpu_4xx_wdt_cb (void *opaque)
1273 {
1274     PowerPCCPU *cpu;
1275     CPUPPCState *env;
1276     ppc_tb_t *tb_env;
1277     ppc40x_timer_t *ppc40x_timer;
1278     uint64_t now, next;
1279 
1280     env = opaque;
1281     cpu = env_archcpu(env);
1282     tb_env = env->tb_env;
1283     ppc40x_timer = tb_env->opaque;
1284     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1285     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1286     case 0:
1287         next = 1 << 17;
1288         break;
1289     case 1:
1290         next = 1 << 21;
1291         break;
1292     case 2:
1293         next = 1 << 25;
1294         break;
1295     case 3:
1296         next = 1 << 29;
1297         break;
1298     default:
1299         /* Cannot occur, but makes gcc happy */
1300         return;
1301     }
1302     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1303     if (next == now)
1304         next++;
1305     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1306            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1307     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1308     case 0x0:
1309     case 0x1:
1310         timer_mod(ppc40x_timer->wdt_timer, next);
1311         ppc40x_timer->wdt_next = next;
1312         env->spr[SPR_40x_TSR] |= 1U << 31;
1313         break;
1314     case 0x2:
1315         timer_mod(ppc40x_timer->wdt_timer, next);
1316         ppc40x_timer->wdt_next = next;
1317         env->spr[SPR_40x_TSR] |= 1 << 30;
1318         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1319             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1320         }
1321         break;
1322     case 0x3:
1323         env->spr[SPR_40x_TSR] &= ~0x30000000;
1324         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1325         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1326         case 0x0:
1327             /* No reset */
1328             break;
1329         case 0x1: /* Core reset */
1330             ppc40x_core_reset(cpu);
1331             break;
1332         case 0x2: /* Chip reset */
1333             ppc40x_chip_reset(cpu);
1334             break;
1335         case 0x3: /* System reset */
1336             ppc40x_system_reset(cpu);
1337             break;
1338         }
1339     }
1340 }
1341 
1342 void store_40x_pit (CPUPPCState *env, target_ulong val)
1343 {
1344     ppc_tb_t *tb_env;
1345     ppc40x_timer_t *ppc40x_timer;
1346 
1347     tb_env = env->tb_env;
1348     ppc40x_timer = tb_env->opaque;
1349     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1350     ppc40x_timer->pit_reload = val;
1351     start_stop_pit(env, tb_env, 0);
1352 }
1353 
1354 target_ulong load_40x_pit (CPUPPCState *env)
1355 {
1356     return cpu_ppc_load_decr(env);
1357 }
1358 
1359 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1360 {
1361     CPUPPCState *env = opaque;
1362     ppc_tb_t *tb_env = env->tb_env;
1363 
1364     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1365                 freq);
1366     tb_env->tb_freq = freq;
1367     tb_env->decr_freq = freq;
1368     /* XXX: we should also update all timers */
1369 }
1370 
1371 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1372                                   unsigned int decr_excp)
1373 {
1374     ppc_tb_t *tb_env;
1375     ppc40x_timer_t *ppc40x_timer;
1376 
1377     tb_env = g_malloc0(sizeof(ppc_tb_t));
1378     env->tb_env = tb_env;
1379     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1380     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1381     tb_env->tb_freq = freq;
1382     tb_env->decr_freq = freq;
1383     tb_env->opaque = ppc40x_timer;
1384     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1385     if (ppc40x_timer != NULL) {
1386         /* We use decr timer for PIT */
1387         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1388         ppc40x_timer->fit_timer =
1389             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1390         ppc40x_timer->wdt_timer =
1391             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1392         ppc40x_timer->decr_excp = decr_excp;
1393     }
1394 
1395     return &ppc_40x_set_tb_clk;
1396 }
1397 
1398 /*****************************************************************************/
1399 /* Embedded PowerPC Device Control Registers */
1400 typedef struct ppc_dcrn_t ppc_dcrn_t;
1401 struct ppc_dcrn_t {
1402     dcr_read_cb dcr_read;
1403     dcr_write_cb dcr_write;
1404     void *opaque;
1405 };
1406 
1407 /* XXX: on 460, DCR addresses are 32 bits wide,
1408  *      using DCRIPR to get the 22 upper bits of the DCR address
1409  */
1410 #define DCRN_NB 1024
1411 struct ppc_dcr_t {
1412     ppc_dcrn_t dcrn[DCRN_NB];
1413     int (*read_error)(int dcrn);
1414     int (*write_error)(int dcrn);
1415 };
1416 
1417 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1418 {
1419     ppc_dcrn_t *dcr;
1420 
1421     if (dcrn < 0 || dcrn >= DCRN_NB)
1422         goto error;
1423     dcr = &dcr_env->dcrn[dcrn];
1424     if (dcr->dcr_read == NULL)
1425         goto error;
1426     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1427 
1428     return 0;
1429 
1430  error:
1431     if (dcr_env->read_error != NULL)
1432         return (*dcr_env->read_error)(dcrn);
1433 
1434     return -1;
1435 }
1436 
1437 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1438 {
1439     ppc_dcrn_t *dcr;
1440 
1441     if (dcrn < 0 || dcrn >= DCRN_NB)
1442         goto error;
1443     dcr = &dcr_env->dcrn[dcrn];
1444     if (dcr->dcr_write == NULL)
1445         goto error;
1446     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1447 
1448     return 0;
1449 
1450  error:
1451     if (dcr_env->write_error != NULL)
1452         return (*dcr_env->write_error)(dcrn);
1453 
1454     return -1;
1455 }
1456 
1457 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1458                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1459 {
1460     ppc_dcr_t *dcr_env;
1461     ppc_dcrn_t *dcr;
1462 
1463     dcr_env = env->dcr_env;
1464     if (dcr_env == NULL)
1465         return -1;
1466     if (dcrn < 0 || dcrn >= DCRN_NB)
1467         return -1;
1468     dcr = &dcr_env->dcrn[dcrn];
1469     if (dcr->opaque != NULL ||
1470         dcr->dcr_read != NULL ||
1471         dcr->dcr_write != NULL)
1472         return -1;
1473     dcr->opaque = opaque;
1474     dcr->dcr_read = dcr_read;
1475     dcr->dcr_write = dcr_write;
1476 
1477     return 0;
1478 }
1479 
1480 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1481                   int (*write_error)(int dcrn))
1482 {
1483     ppc_dcr_t *dcr_env;
1484 
1485     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1486     dcr_env->read_error = read_error;
1487     dcr_env->write_error = write_error;
1488     env->dcr_env = dcr_env;
1489 
1490     return 0;
1491 }
1492 
1493 /*****************************************************************************/
1494 
1495 int ppc_cpu_pir(PowerPCCPU *cpu)
1496 {
1497     CPUPPCState *env = &cpu->env;
1498     return env->spr_cb[SPR_PIR].default_value;
1499 }
1500 
1501 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1502 {
1503     CPUState *cs;
1504 
1505     CPU_FOREACH(cs) {
1506         PowerPCCPU *cpu = POWERPC_CPU(cs);
1507 
1508         if (ppc_cpu_pir(cpu) == pir) {
1509             return cpu;
1510         }
1511     }
1512 
1513     return NULL;
1514 }
1515 
1516 void ppc_irq_reset(PowerPCCPU *cpu)
1517 {
1518     CPUPPCState *env = &cpu->env;
1519 
1520     env->irq_input_state = 0;
1521     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1522 }
1523