1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/ppc/ppc.h" 28 #include "hw/ppc/ppc_e500.h" 29 #include "qemu/timer.h" 30 #include "sysemu/cpus.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/error-report.h" 34 #include "sysemu/kvm.h" 35 #include "sysemu/runstate.h" 36 #include "kvm_ppc.h" 37 #include "migration/vmstate.h" 38 #include "trace.h" 39 40 static void cpu_ppc_tb_stop (CPUPPCState *env); 41 static void cpu_ppc_tb_start (CPUPPCState *env); 42 43 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level) 44 { 45 CPUPPCState *env = &cpu->env; 46 unsigned int old_pending; 47 48 /* We may already have the BQL if coming from the reset path */ 49 QEMU_IOTHREAD_LOCK_GUARD(); 50 51 old_pending = env->pending_interrupts; 52 53 if (level) { 54 env->pending_interrupts |= irq; 55 } else { 56 env->pending_interrupts &= ~irq; 57 } 58 59 if (old_pending != env->pending_interrupts) { 60 ppc_maybe_interrupt(env); 61 kvmppc_set_interrupt(cpu, irq, level); 62 } 63 64 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts, 65 CPU(cpu)->interrupt_request); 66 } 67 68 /* PowerPC 6xx / 7xx internal IRQ controller */ 69 static void ppc6xx_set_irq(void *opaque, int pin, int level) 70 { 71 PowerPCCPU *cpu = opaque; 72 CPUPPCState *env = &cpu->env; 73 int cur_level; 74 75 trace_ppc_irq_set(env, pin, level); 76 77 cur_level = (env->irq_input_state >> pin) & 1; 78 /* Don't generate spurious events */ 79 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 80 CPUState *cs = CPU(cpu); 81 82 switch (pin) { 83 case PPC6xx_INPUT_TBEN: 84 /* Level sensitive - active high */ 85 trace_ppc_irq_set_state("time base", level); 86 if (level) { 87 cpu_ppc_tb_start(env); 88 } else { 89 cpu_ppc_tb_stop(env); 90 } 91 break; 92 case PPC6xx_INPUT_INT: 93 /* Level sensitive - active high */ 94 trace_ppc_irq_set_state("external IRQ", level); 95 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 96 break; 97 case PPC6xx_INPUT_SMI: 98 /* Level sensitive - active high */ 99 trace_ppc_irq_set_state("SMI IRQ", level); 100 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 101 break; 102 case PPC6xx_INPUT_MCP: 103 /* Negative edge sensitive */ 104 /* XXX: TODO: actual reaction may depends on HID0 status 105 * 603/604/740/750: check HID0[EMCP] 106 */ 107 if (cur_level == 1 && level == 0) { 108 trace_ppc_irq_set_state("machine check", 1); 109 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 110 } 111 break; 112 case PPC6xx_INPUT_CKSTP_IN: 113 /* Level sensitive - active low */ 114 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 115 /* XXX: Note that the only way to restart the CPU is to reset it */ 116 if (level) { 117 trace_ppc_irq_cpu("stop"); 118 cs->halted = 1; 119 } 120 break; 121 case PPC6xx_INPUT_HRESET: 122 /* Level sensitive - active low */ 123 if (level) { 124 trace_ppc_irq_reset("CPU"); 125 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 126 } 127 break; 128 case PPC6xx_INPUT_SRESET: 129 trace_ppc_irq_set_state("RESET IRQ", level); 130 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 131 break; 132 default: 133 g_assert_not_reached(); 134 } 135 if (level) 136 env->irq_input_state |= 1 << pin; 137 else 138 env->irq_input_state &= ~(1 << pin); 139 } 140 } 141 142 void ppc6xx_irq_init(PowerPCCPU *cpu) 143 { 144 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB); 145 } 146 147 #if defined(TARGET_PPC64) 148 /* PowerPC 970 internal IRQ controller */ 149 static void ppc970_set_irq(void *opaque, int pin, int level) 150 { 151 PowerPCCPU *cpu = opaque; 152 CPUPPCState *env = &cpu->env; 153 int cur_level; 154 155 trace_ppc_irq_set(env, pin, level); 156 157 cur_level = (env->irq_input_state >> pin) & 1; 158 /* Don't generate spurious events */ 159 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 160 CPUState *cs = CPU(cpu); 161 162 switch (pin) { 163 case PPC970_INPUT_INT: 164 /* Level sensitive - active high */ 165 trace_ppc_irq_set_state("external IRQ", level); 166 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 167 break; 168 case PPC970_INPUT_THINT: 169 /* Level sensitive - active high */ 170 trace_ppc_irq_set_state("SMI IRQ", level); 171 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 172 break; 173 case PPC970_INPUT_MCP: 174 /* Negative edge sensitive */ 175 /* XXX: TODO: actual reaction may depends on HID0 status 176 * 603/604/740/750: check HID0[EMCP] 177 */ 178 if (cur_level == 1 && level == 0) { 179 trace_ppc_irq_set_state("machine check", 1); 180 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 181 } 182 break; 183 case PPC970_INPUT_CKSTP: 184 /* Level sensitive - active low */ 185 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 186 if (level) { 187 trace_ppc_irq_cpu("stop"); 188 cs->halted = 1; 189 } else { 190 trace_ppc_irq_cpu("restart"); 191 cs->halted = 0; 192 qemu_cpu_kick(cs); 193 } 194 break; 195 case PPC970_INPUT_HRESET: 196 /* Level sensitive - active low */ 197 if (level) { 198 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 199 } 200 break; 201 case PPC970_INPUT_SRESET: 202 trace_ppc_irq_set_state("RESET IRQ", level); 203 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 204 break; 205 case PPC970_INPUT_TBEN: 206 trace_ppc_irq_set_state("TBEN IRQ", level); 207 /* XXX: TODO */ 208 break; 209 default: 210 g_assert_not_reached(); 211 } 212 if (level) 213 env->irq_input_state |= 1 << pin; 214 else 215 env->irq_input_state &= ~(1 << pin); 216 } 217 } 218 219 void ppc970_irq_init(PowerPCCPU *cpu) 220 { 221 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB); 222 } 223 224 /* POWER7 internal IRQ controller */ 225 static void power7_set_irq(void *opaque, int pin, int level) 226 { 227 PowerPCCPU *cpu = opaque; 228 229 trace_ppc_irq_set(&cpu->env, pin, level); 230 231 switch (pin) { 232 case POWER7_INPUT_INT: 233 /* Level sensitive - active high */ 234 trace_ppc_irq_set_state("external IRQ", level); 235 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 236 break; 237 default: 238 g_assert_not_reached(); 239 } 240 } 241 242 void ppcPOWER7_irq_init(PowerPCCPU *cpu) 243 { 244 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB); 245 } 246 247 /* POWER9 internal IRQ controller */ 248 static void power9_set_irq(void *opaque, int pin, int level) 249 { 250 PowerPCCPU *cpu = opaque; 251 252 trace_ppc_irq_set(&cpu->env, pin, level); 253 254 switch (pin) { 255 case POWER9_INPUT_INT: 256 /* Level sensitive - active high */ 257 trace_ppc_irq_set_state("external IRQ", level); 258 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 259 break; 260 case POWER9_INPUT_HINT: 261 /* Level sensitive - active high */ 262 trace_ppc_irq_set_state("HV external IRQ", level); 263 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 264 break; 265 default: 266 g_assert_not_reached(); 267 return; 268 } 269 } 270 271 void ppcPOWER9_irq_init(PowerPCCPU *cpu) 272 { 273 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB); 274 } 275 #endif /* defined(TARGET_PPC64) */ 276 277 void ppc40x_core_reset(PowerPCCPU *cpu) 278 { 279 CPUPPCState *env = &cpu->env; 280 target_ulong dbsr; 281 282 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 283 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 284 dbsr = env->spr[SPR_40x_DBSR]; 285 dbsr &= ~0x00000300; 286 dbsr |= 0x00000100; 287 env->spr[SPR_40x_DBSR] = dbsr; 288 } 289 290 void ppc40x_chip_reset(PowerPCCPU *cpu) 291 { 292 CPUPPCState *env = &cpu->env; 293 target_ulong dbsr; 294 295 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 296 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 297 /* XXX: TODO reset all internal peripherals */ 298 dbsr = env->spr[SPR_40x_DBSR]; 299 dbsr &= ~0x00000300; 300 dbsr |= 0x00000200; 301 env->spr[SPR_40x_DBSR] = dbsr; 302 } 303 304 void ppc40x_system_reset(PowerPCCPU *cpu) 305 { 306 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 307 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 308 } 309 310 void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 311 { 312 PowerPCCPU *cpu = env_archcpu(env); 313 314 qemu_mutex_lock_iothread(); 315 316 switch ((val >> 28) & 0x3) { 317 case 0x0: 318 /* No action */ 319 break; 320 case 0x1: 321 /* Core reset */ 322 ppc40x_core_reset(cpu); 323 break; 324 case 0x2: 325 /* Chip reset */ 326 ppc40x_chip_reset(cpu); 327 break; 328 case 0x3: 329 /* System reset */ 330 ppc40x_system_reset(cpu); 331 break; 332 } 333 334 qemu_mutex_unlock_iothread(); 335 } 336 337 /* PowerPC 40x internal IRQ controller */ 338 static void ppc40x_set_irq(void *opaque, int pin, int level) 339 { 340 PowerPCCPU *cpu = opaque; 341 CPUPPCState *env = &cpu->env; 342 int cur_level; 343 344 trace_ppc_irq_set(env, pin, level); 345 346 cur_level = (env->irq_input_state >> pin) & 1; 347 /* Don't generate spurious events */ 348 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 349 CPUState *cs = CPU(cpu); 350 351 switch (pin) { 352 case PPC40x_INPUT_RESET_SYS: 353 if (level) { 354 trace_ppc_irq_reset("system"); 355 ppc40x_system_reset(cpu); 356 } 357 break; 358 case PPC40x_INPUT_RESET_CHIP: 359 if (level) { 360 trace_ppc_irq_reset("chip"); 361 ppc40x_chip_reset(cpu); 362 } 363 break; 364 case PPC40x_INPUT_RESET_CORE: 365 /* XXX: TODO: update DBSR[MRR] */ 366 if (level) { 367 trace_ppc_irq_reset("core"); 368 ppc40x_core_reset(cpu); 369 } 370 break; 371 case PPC40x_INPUT_CINT: 372 /* Level sensitive - active high */ 373 trace_ppc_irq_set_state("critical IRQ", level); 374 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 375 break; 376 case PPC40x_INPUT_INT: 377 /* Level sensitive - active high */ 378 trace_ppc_irq_set_state("external IRQ", level); 379 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 380 break; 381 case PPC40x_INPUT_HALT: 382 /* Level sensitive - active low */ 383 if (level) { 384 trace_ppc_irq_cpu("stop"); 385 cs->halted = 1; 386 } else { 387 trace_ppc_irq_cpu("restart"); 388 cs->halted = 0; 389 qemu_cpu_kick(cs); 390 } 391 break; 392 case PPC40x_INPUT_DEBUG: 393 /* Level sensitive - active high */ 394 trace_ppc_irq_set_state("debug pin", level); 395 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 396 break; 397 default: 398 g_assert_not_reached(); 399 } 400 if (level) 401 env->irq_input_state |= 1 << pin; 402 else 403 env->irq_input_state &= ~(1 << pin); 404 } 405 } 406 407 void ppc40x_irq_init(PowerPCCPU *cpu) 408 { 409 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB); 410 } 411 412 /* PowerPC E500 internal IRQ controller */ 413 static void ppce500_set_irq(void *opaque, int pin, int level) 414 { 415 PowerPCCPU *cpu = opaque; 416 CPUPPCState *env = &cpu->env; 417 int cur_level; 418 419 trace_ppc_irq_set(env, pin, level); 420 421 cur_level = (env->irq_input_state >> pin) & 1; 422 /* Don't generate spurious events */ 423 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 424 switch (pin) { 425 case PPCE500_INPUT_MCK: 426 if (level) { 427 trace_ppc_irq_reset("system"); 428 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 429 } 430 break; 431 case PPCE500_INPUT_RESET_CORE: 432 if (level) { 433 trace_ppc_irq_reset("core"); 434 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 435 } 436 break; 437 case PPCE500_INPUT_CINT: 438 /* Level sensitive - active high */ 439 trace_ppc_irq_set_state("critical IRQ", level); 440 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 441 break; 442 case PPCE500_INPUT_INT: 443 /* Level sensitive - active high */ 444 trace_ppc_irq_set_state("core IRQ", level); 445 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 446 break; 447 case PPCE500_INPUT_DEBUG: 448 /* Level sensitive - active high */ 449 trace_ppc_irq_set_state("debug pin", level); 450 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 451 break; 452 default: 453 g_assert_not_reached(); 454 } 455 if (level) 456 env->irq_input_state |= 1 << pin; 457 else 458 env->irq_input_state &= ~(1 << pin); 459 } 460 } 461 462 void ppce500_irq_init(PowerPCCPU *cpu) 463 { 464 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB); 465 } 466 467 /* Enable or Disable the E500 EPR capability */ 468 void ppce500_set_mpic_proxy(bool enabled) 469 { 470 CPUState *cs; 471 472 CPU_FOREACH(cs) { 473 PowerPCCPU *cpu = POWERPC_CPU(cs); 474 475 cpu->env.mpic_proxy = enabled; 476 if (kvm_enabled()) { 477 kvmppc_set_mpic_proxy(cpu, enabled); 478 } 479 } 480 } 481 482 /*****************************************************************************/ 483 /* PowerPC time base and decrementer emulation */ 484 485 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 486 { 487 /* TB time in tb periods */ 488 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset; 489 } 490 491 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 492 { 493 ppc_tb_t *tb_env = env->tb_env; 494 uint64_t tb; 495 496 if (kvm_enabled()) { 497 return env->spr[SPR_TBL]; 498 } 499 500 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 501 trace_ppc_tb_load(tb); 502 503 return tb; 504 } 505 506 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 507 { 508 ppc_tb_t *tb_env = env->tb_env; 509 uint64_t tb; 510 511 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 512 trace_ppc_tb_load(tb); 513 514 return tb >> 32; 515 } 516 517 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 518 { 519 if (kvm_enabled()) { 520 return env->spr[SPR_TBU]; 521 } 522 523 return _cpu_ppc_load_tbu(env); 524 } 525 526 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 527 int64_t *tb_offsetp, uint64_t value) 528 { 529 *tb_offsetp = value - 530 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND); 531 532 trace_ppc_tb_store(value, *tb_offsetp); 533 } 534 535 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 536 { 537 ppc_tb_t *tb_env = env->tb_env; 538 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 539 uint64_t tb; 540 541 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 542 tb &= 0xFFFFFFFF00000000ULL; 543 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value); 544 } 545 546 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 547 { 548 ppc_tb_t *tb_env = env->tb_env; 549 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 550 uint64_t tb; 551 552 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 553 tb &= 0x00000000FFFFFFFFULL; 554 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, 555 ((uint64_t)value << 32) | tb); 556 } 557 558 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 559 { 560 _cpu_ppc_store_tbu(env, value); 561 } 562 563 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 564 { 565 ppc_tb_t *tb_env = env->tb_env; 566 uint64_t tb; 567 568 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 569 trace_ppc_tb_load(tb); 570 571 return tb; 572 } 573 574 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 575 { 576 ppc_tb_t *tb_env = env->tb_env; 577 uint64_t tb; 578 579 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 580 trace_ppc_tb_load(tb); 581 582 return tb >> 32; 583 } 584 585 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 586 { 587 ppc_tb_t *tb_env = env->tb_env; 588 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 589 uint64_t tb; 590 591 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); 592 tb &= 0xFFFFFFFF00000000ULL; 593 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value); 594 } 595 596 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 597 { 598 ppc_tb_t *tb_env = env->tb_env; 599 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 600 uint64_t tb; 601 602 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); 603 tb &= 0x00000000FFFFFFFFULL; 604 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, 605 ((uint64_t)value << 32) | tb); 606 } 607 608 uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 609 { 610 ppc_tb_t *tb_env = env->tb_env; 611 612 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 613 tb_env->vtb_offset); 614 } 615 616 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 617 { 618 ppc_tb_t *tb_env = env->tb_env; 619 620 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 621 &tb_env->vtb_offset, value); 622 } 623 624 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 625 { 626 ppc_tb_t *tb_env = env->tb_env; 627 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 628 uint64_t tb; 629 630 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 631 tb &= 0xFFFFFFUL; 632 tb |= (value & ~0xFFFFFFUL); 633 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb); 634 } 635 636 static void cpu_ppc_tb_stop (CPUPPCState *env) 637 { 638 ppc_tb_t *tb_env = env->tb_env; 639 uint64_t tb, atb, vmclk; 640 641 /* If the time base is already frozen, do nothing */ 642 if (tb_env->tb_freq != 0) { 643 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 644 /* Get the time base */ 645 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 646 /* Get the alternate time base */ 647 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 648 /* Store the time base value (ie compute the current offset) */ 649 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 650 /* Store the alternate time base value (compute the current offset) */ 651 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 652 /* Set the time base frequency to zero */ 653 tb_env->tb_freq = 0; 654 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 655 } 656 } 657 658 static void cpu_ppc_tb_start (CPUPPCState *env) 659 { 660 ppc_tb_t *tb_env = env->tb_env; 661 uint64_t tb, atb, vmclk; 662 663 /* If the time base is not frozen, do nothing */ 664 if (tb_env->tb_freq == 0) { 665 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 666 /* Get the time base from tb_offset */ 667 tb = tb_env->tb_offset; 668 /* Get the alternate time base from atb_offset */ 669 atb = tb_env->atb_offset; 670 /* Restore the tb frequency from the decrementer frequency */ 671 tb_env->tb_freq = tb_env->decr_freq; 672 /* Store the time base value */ 673 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 674 /* Store the alternate time base value */ 675 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 676 } 677 } 678 679 bool ppc_decr_clear_on_delivery(CPUPPCState *env) 680 { 681 ppc_tb_t *tb_env = env->tb_env; 682 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 683 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 684 } 685 686 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) 687 { 688 ppc_tb_t *tb_env = env->tb_env; 689 int64_t decr, diff; 690 691 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 692 if (diff >= 0) { 693 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 694 } else if (tb_env->flags & PPC_TIMER_BOOKE) { 695 decr = 0; 696 } else { 697 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 698 } 699 trace_ppc_decr_load(decr); 700 701 return decr; 702 } 703 704 target_ulong cpu_ppc_load_decr(CPUPPCState *env) 705 { 706 ppc_tb_t *tb_env = env->tb_env; 707 uint64_t decr; 708 709 if (kvm_enabled()) { 710 return env->spr[SPR_DECR]; 711 } 712 713 decr = _cpu_ppc_load_decr(env, tb_env->decr_next); 714 715 /* 716 * If large decrementer is enabled then the decrementer is signed extened 717 * to 64 bits, otherwise it is a 32 bit value. 718 */ 719 if (env->spr[SPR_LPCR] & LPCR_LD) { 720 return decr; 721 } 722 return (uint32_t) decr; 723 } 724 725 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 726 { 727 PowerPCCPU *cpu = env_archcpu(env); 728 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 729 ppc_tb_t *tb_env = env->tb_env; 730 uint64_t hdecr; 731 732 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next); 733 734 /* 735 * If we have a large decrementer (POWER9 or later) then hdecr is sign 736 * extended to 64 bits, otherwise it is 32 bits. 737 */ 738 if (pcc->lrg_decr_bits > 32) { 739 return hdecr; 740 } 741 return (uint32_t) hdecr; 742 } 743 744 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 745 { 746 ppc_tb_t *tb_env = env->tb_env; 747 748 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 749 tb_env->purr_offset); 750 } 751 752 /* When decrementer expires, 753 * all we need to do is generate or queue a CPU exception 754 */ 755 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 756 { 757 /* Raise it */ 758 trace_ppc_decr_excp("raise"); 759 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 760 } 761 762 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 763 { 764 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 765 } 766 767 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 768 { 769 CPUPPCState *env = &cpu->env; 770 771 /* Raise it */ 772 trace_ppc_decr_excp("raise HV"); 773 774 /* The architecture specifies that we don't deliver HDEC 775 * interrupts in a PM state. Not only they don't cause a 776 * wakeup but they also get effectively discarded. 777 */ 778 if (!env->resume_as_sreset) { 779 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 780 } 781 } 782 783 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 784 { 785 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 786 } 787 788 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, 789 QEMUTimer *timer, 790 void (*raise_excp)(void *), 791 void (*lower_excp)(PowerPCCPU *), 792 uint32_t flags, target_ulong decr, 793 target_ulong value, int nr_bits) 794 { 795 CPUPPCState *env = &cpu->env; 796 ppc_tb_t *tb_env = env->tb_env; 797 uint64_t now, next; 798 int64_t signed_value; 799 int64_t signed_decr; 800 801 /* Truncate value to decr_width and sign extend for simplicity */ 802 value = extract64(value, 0, nr_bits); 803 decr = extract64(decr, 0, nr_bits); 804 signed_value = sextract64(value, 0, nr_bits); 805 signed_decr = sextract64(decr, 0, nr_bits); 806 807 trace_ppc_decr_store(nr_bits, decr, value); 808 809 if (kvm_enabled()) { 810 /* KVM handles decrementer exceptions, we don't need our own timer */ 811 return; 812 } 813 814 /* 815 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt. 816 * 817 * On MSB level based DEC implementations the MSB always means the interrupt 818 * is pending, so raise it on those. 819 * 820 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 821 * an edge interrupt, so raise it here too. 822 */ 823 if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || 824 ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 825 && signed_decr >= 0)) { 826 (*raise_excp)(cpu); 827 return; 828 } 829 830 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 831 if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) { 832 (*lower_excp)(cpu); 833 } 834 835 /* Calculate the next timer event */ 836 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 837 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 838 *nextp = next; 839 840 /* Adjust timer */ 841 timer_mod(timer, next); 842 } 843 844 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr, 845 target_ulong value, int nr_bits) 846 { 847 ppc_tb_t *tb_env = cpu->env.tb_env; 848 849 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, 850 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, 851 tb_env->flags, decr, value, nr_bits); 852 } 853 854 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 855 { 856 PowerPCCPU *cpu = env_archcpu(env); 857 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 858 int nr_bits = 32; 859 860 if (env->spr[SPR_LPCR] & LPCR_LD) { 861 nr_bits = pcc->lrg_decr_bits; 862 } 863 864 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits); 865 } 866 867 static void cpu_ppc_decr_cb(void *opaque) 868 { 869 PowerPCCPU *cpu = opaque; 870 871 cpu_ppc_decr_excp(cpu); 872 } 873 874 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr, 875 target_ulong value, int nr_bits) 876 { 877 ppc_tb_t *tb_env = cpu->env.tb_env; 878 879 if (tb_env->hdecr_timer != NULL) { 880 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */ 881 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, 882 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 883 PPC_DECR_UNDERFLOW_TRIGGERED, 884 hdecr, value, nr_bits); 885 } 886 } 887 888 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 889 { 890 PowerPCCPU *cpu = env_archcpu(env); 891 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 892 893 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 894 pcc->lrg_decr_bits); 895 } 896 897 static void cpu_ppc_hdecr_cb(void *opaque) 898 { 899 PowerPCCPU *cpu = opaque; 900 901 cpu_ppc_hdecr_excp(cpu); 902 } 903 904 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 905 { 906 ppc_tb_t *tb_env = env->tb_env; 907 908 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 909 &tb_env->purr_offset, value); 910 } 911 912 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) 913 { 914 CPUPPCState *env = opaque; 915 PowerPCCPU *cpu = env_archcpu(env); 916 ppc_tb_t *tb_env = env->tb_env; 917 918 tb_env->tb_freq = freq; 919 tb_env->decr_freq = freq; 920 /* There is a bug in Linux 2.4 kernels: 921 * if a decrementer exception is pending when it enables msr_ee at startup, 922 * it's not ready to handle it... 923 */ 924 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 925 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 926 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 927 } 928 929 static void timebase_save(PPCTimebase *tb) 930 { 931 uint64_t ticks = cpu_get_host_ticks(); 932 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 933 934 if (!first_ppc_cpu->env.tb_env) { 935 error_report("No timebase object"); 936 return; 937 } 938 939 /* not used anymore, we keep it for compatibility */ 940 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 941 /* 942 * tb_offset is only expected to be changed by QEMU so 943 * there is no need to update it from KVM here 944 */ 945 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 946 947 tb->runstate_paused = 948 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); 949 } 950 951 static void timebase_load(PPCTimebase *tb) 952 { 953 CPUState *cpu; 954 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 955 int64_t tb_off_adj, tb_off; 956 unsigned long freq; 957 958 if (!first_ppc_cpu->env.tb_env) { 959 error_report("No timebase object"); 960 return; 961 } 962 963 freq = first_ppc_cpu->env.tb_env->tb_freq; 964 965 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 966 967 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 968 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 969 (tb_off_adj - tb_off) / freq); 970 971 /* Set new offset to all CPUs */ 972 CPU_FOREACH(cpu) { 973 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 974 pcpu->env.tb_env->tb_offset = tb_off_adj; 975 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 976 } 977 } 978 979 void cpu_ppc_clock_vm_state_change(void *opaque, bool running, 980 RunState state) 981 { 982 PPCTimebase *tb = opaque; 983 984 if (running) { 985 timebase_load(tb); 986 } else { 987 timebase_save(tb); 988 } 989 } 990 991 /* 992 * When migrating a running guest, read the clock just 993 * before migration, so that the guest clock counts 994 * during the events between: 995 * 996 * * vm_stop() 997 * * 998 * * pre_save() 999 * 1000 * This reduces clock difference on migration from 5s 1001 * to 0.1s (when max_downtime == 5s), because sending the 1002 * final pages of memory (which happens between vm_stop() 1003 * and pre_save()) takes max_downtime. 1004 */ 1005 static int timebase_pre_save(void *opaque) 1006 { 1007 PPCTimebase *tb = opaque; 1008 1009 /* guest_timebase won't be overridden in case of paused guest or savevm */ 1010 if (!tb->runstate_paused) { 1011 timebase_save(tb); 1012 } 1013 1014 return 0; 1015 } 1016 1017 const VMStateDescription vmstate_ppc_timebase = { 1018 .name = "timebase", 1019 .version_id = 1, 1020 .minimum_version_id = 1, 1021 .pre_save = timebase_pre_save, 1022 .fields = (VMStateField []) { 1023 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1024 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1025 VMSTATE_END_OF_LIST() 1026 }, 1027 }; 1028 1029 /* Set up (once) timebase frequency (in Hz) */ 1030 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) 1031 { 1032 PowerPCCPU *cpu = env_archcpu(env); 1033 ppc_tb_t *tb_env; 1034 1035 tb_env = g_new0(ppc_tb_t, 1); 1036 env->tb_env = tb_env; 1037 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1038 if (is_book3s_arch2x(env)) { 1039 /* All Book3S 64bit CPUs implement level based DEC logic */ 1040 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1041 } 1042 /* Create new timer */ 1043 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); 1044 if (env->has_hv_mode && !cpu->vhyp) { 1045 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, 1046 cpu); 1047 } else { 1048 tb_env->hdecr_timer = NULL; 1049 } 1050 cpu_ppc_set_tb_clk(env, freq); 1051 1052 return &cpu_ppc_set_tb_clk; 1053 } 1054 1055 void cpu_ppc_tb_free(CPUPPCState *env) 1056 { 1057 timer_free(env->tb_env->decr_timer); 1058 timer_free(env->tb_env->hdecr_timer); 1059 g_free(env->tb_env); 1060 } 1061 1062 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ 1063 void cpu_ppc_hdecr_init(CPUPPCState *env) 1064 { 1065 PowerPCCPU *cpu = env_archcpu(env); 1066 1067 assert(env->tb_env->hdecr_timer == NULL); 1068 1069 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1070 &cpu_ppc_hdecr_cb, cpu); 1071 } 1072 1073 void cpu_ppc_hdecr_exit(CPUPPCState *env) 1074 { 1075 PowerPCCPU *cpu = env_archcpu(env); 1076 1077 timer_free(env->tb_env->hdecr_timer); 1078 env->tb_env->hdecr_timer = NULL; 1079 1080 cpu_ppc_hdecr_lower(cpu); 1081 } 1082 1083 /*****************************************************************************/ 1084 /* PowerPC 40x timers */ 1085 1086 /* PIT, FIT & WDT */ 1087 typedef struct ppc40x_timer_t ppc40x_timer_t; 1088 struct ppc40x_timer_t { 1089 uint64_t pit_reload; /* PIT auto-reload value */ 1090 uint64_t fit_next; /* Tick for next FIT interrupt */ 1091 QEMUTimer *fit_timer; 1092 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1093 QEMUTimer *wdt_timer; 1094 1095 /* 405 have the PIT, 440 have a DECR. */ 1096 unsigned int decr_excp; 1097 }; 1098 1099 /* Fixed interval timer */ 1100 static void cpu_4xx_fit_cb (void *opaque) 1101 { 1102 PowerPCCPU *cpu = opaque; 1103 CPUPPCState *env = &cpu->env; 1104 ppc_tb_t *tb_env; 1105 ppc40x_timer_t *ppc40x_timer; 1106 uint64_t now, next; 1107 1108 tb_env = env->tb_env; 1109 ppc40x_timer = tb_env->opaque; 1110 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1111 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1112 case 0: 1113 next = 1 << 9; 1114 break; 1115 case 1: 1116 next = 1 << 13; 1117 break; 1118 case 2: 1119 next = 1 << 17; 1120 break; 1121 case 3: 1122 next = 1 << 21; 1123 break; 1124 default: 1125 /* Cannot occur, but makes gcc happy */ 1126 return; 1127 } 1128 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq); 1129 if (next == now) 1130 next++; 1131 timer_mod(ppc40x_timer->fit_timer, next); 1132 env->spr[SPR_40x_TSR] |= 1 << 26; 1133 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1134 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1135 } 1136 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1137 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1138 } 1139 1140 /* Programmable interval timer */ 1141 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1142 { 1143 ppc40x_timer_t *ppc40x_timer; 1144 uint64_t now, next; 1145 1146 ppc40x_timer = tb_env->opaque; 1147 if (ppc40x_timer->pit_reload <= 1 || 1148 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1149 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1150 /* Stop PIT */ 1151 trace_ppc4xx_pit_stop(); 1152 timer_del(tb_env->decr_timer); 1153 } else { 1154 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); 1155 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1156 next = now + muldiv64(ppc40x_timer->pit_reload, 1157 NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1158 if (is_excp) 1159 next += tb_env->decr_next - now; 1160 if (next == now) 1161 next++; 1162 timer_mod(tb_env->decr_timer, next); 1163 tb_env->decr_next = next; 1164 } 1165 } 1166 1167 static void cpu_4xx_pit_cb (void *opaque) 1168 { 1169 PowerPCCPU *cpu = opaque; 1170 CPUPPCState *env = &cpu->env; 1171 ppc_tb_t *tb_env; 1172 ppc40x_timer_t *ppc40x_timer; 1173 1174 tb_env = env->tb_env; 1175 ppc40x_timer = tb_env->opaque; 1176 env->spr[SPR_40x_TSR] |= 1 << 27; 1177 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1178 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1179 } 1180 start_stop_pit(env, tb_env, 1); 1181 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1182 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1183 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1184 ppc40x_timer->pit_reload); 1185 } 1186 1187 /* Watchdog timer */ 1188 static void cpu_4xx_wdt_cb (void *opaque) 1189 { 1190 PowerPCCPU *cpu = opaque; 1191 CPUPPCState *env = &cpu->env; 1192 ppc_tb_t *tb_env; 1193 ppc40x_timer_t *ppc40x_timer; 1194 uint64_t now, next; 1195 1196 tb_env = env->tb_env; 1197 ppc40x_timer = tb_env->opaque; 1198 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1199 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1200 case 0: 1201 next = 1 << 17; 1202 break; 1203 case 1: 1204 next = 1 << 21; 1205 break; 1206 case 2: 1207 next = 1 << 25; 1208 break; 1209 case 3: 1210 next = 1 << 29; 1211 break; 1212 default: 1213 /* Cannot occur, but makes gcc happy */ 1214 return; 1215 } 1216 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1217 if (next == now) 1218 next++; 1219 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1220 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1221 case 0x0: 1222 case 0x1: 1223 timer_mod(ppc40x_timer->wdt_timer, next); 1224 ppc40x_timer->wdt_next = next; 1225 env->spr[SPR_40x_TSR] |= 1U << 31; 1226 break; 1227 case 0x2: 1228 timer_mod(ppc40x_timer->wdt_timer, next); 1229 ppc40x_timer->wdt_next = next; 1230 env->spr[SPR_40x_TSR] |= 1 << 30; 1231 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1232 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1233 } 1234 break; 1235 case 0x3: 1236 env->spr[SPR_40x_TSR] &= ~0x30000000; 1237 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1238 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1239 case 0x0: 1240 /* No reset */ 1241 break; 1242 case 0x1: /* Core reset */ 1243 ppc40x_core_reset(cpu); 1244 break; 1245 case 0x2: /* Chip reset */ 1246 ppc40x_chip_reset(cpu); 1247 break; 1248 case 0x3: /* System reset */ 1249 ppc40x_system_reset(cpu); 1250 break; 1251 } 1252 } 1253 } 1254 1255 void store_40x_pit (CPUPPCState *env, target_ulong val) 1256 { 1257 ppc_tb_t *tb_env; 1258 ppc40x_timer_t *ppc40x_timer; 1259 1260 tb_env = env->tb_env; 1261 ppc40x_timer = tb_env->opaque; 1262 trace_ppc40x_store_pit(val); 1263 ppc40x_timer->pit_reload = val; 1264 start_stop_pit(env, tb_env, 0); 1265 } 1266 1267 target_ulong load_40x_pit (CPUPPCState *env) 1268 { 1269 return cpu_ppc_load_decr(env); 1270 } 1271 1272 void store_40x_tsr(CPUPPCState *env, target_ulong val) 1273 { 1274 PowerPCCPU *cpu = env_archcpu(env); 1275 1276 trace_ppc40x_store_tcr(val); 1277 1278 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); 1279 if (val & 0x80000000) { 1280 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); 1281 } 1282 } 1283 1284 void store_40x_tcr(CPUPPCState *env, target_ulong val) 1285 { 1286 PowerPCCPU *cpu = env_archcpu(env); 1287 ppc_tb_t *tb_env; 1288 1289 trace_ppc40x_store_tsr(val); 1290 1291 tb_env = env->tb_env; 1292 env->spr[SPR_40x_TCR] = val & 0xFFC00000; 1293 start_stop_pit(env, tb_env, 1); 1294 cpu_4xx_wdt_cb(cpu); 1295 } 1296 1297 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1298 { 1299 CPUPPCState *env = opaque; 1300 ppc_tb_t *tb_env = env->tb_env; 1301 1302 trace_ppc40x_set_tb_clk(freq); 1303 tb_env->tb_freq = freq; 1304 tb_env->decr_freq = freq; 1305 /* XXX: we should also update all timers */ 1306 } 1307 1308 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1309 unsigned int decr_excp) 1310 { 1311 ppc_tb_t *tb_env; 1312 ppc40x_timer_t *ppc40x_timer; 1313 PowerPCCPU *cpu = env_archcpu(env); 1314 1315 trace_ppc40x_timers_init(freq); 1316 1317 tb_env = g_new0(ppc_tb_t, 1); 1318 ppc40x_timer = g_new0(ppc40x_timer_t, 1); 1319 1320 env->tb_env = tb_env; 1321 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1322 tb_env->tb_freq = freq; 1323 tb_env->decr_freq = freq; 1324 tb_env->opaque = ppc40x_timer; 1325 1326 /* We use decr timer for PIT */ 1327 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); 1328 ppc40x_timer->fit_timer = 1329 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); 1330 ppc40x_timer->wdt_timer = 1331 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); 1332 ppc40x_timer->decr_excp = decr_excp; 1333 1334 return &ppc_40x_set_tb_clk; 1335 } 1336 1337 /*****************************************************************************/ 1338 /* Embedded PowerPC Device Control Registers */ 1339 typedef struct ppc_dcrn_t ppc_dcrn_t; 1340 struct ppc_dcrn_t { 1341 dcr_read_cb dcr_read; 1342 dcr_write_cb dcr_write; 1343 void *opaque; 1344 }; 1345 1346 /* XXX: on 460, DCR addresses are 32 bits wide, 1347 * using DCRIPR to get the 22 upper bits of the DCR address 1348 */ 1349 #define DCRN_NB 1024 1350 struct ppc_dcr_t { 1351 ppc_dcrn_t dcrn[DCRN_NB]; 1352 int (*read_error)(int dcrn); 1353 int (*write_error)(int dcrn); 1354 }; 1355 1356 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1357 { 1358 ppc_dcrn_t *dcr; 1359 1360 if (dcrn < 0 || dcrn >= DCRN_NB) 1361 goto error; 1362 dcr = &dcr_env->dcrn[dcrn]; 1363 if (dcr->dcr_read == NULL) 1364 goto error; 1365 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1366 trace_ppc_dcr_read(dcrn, *valp); 1367 1368 return 0; 1369 1370 error: 1371 if (dcr_env->read_error != NULL) 1372 return (*dcr_env->read_error)(dcrn); 1373 1374 return -1; 1375 } 1376 1377 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1378 { 1379 ppc_dcrn_t *dcr; 1380 1381 if (dcrn < 0 || dcrn >= DCRN_NB) 1382 goto error; 1383 dcr = &dcr_env->dcrn[dcrn]; 1384 if (dcr->dcr_write == NULL) 1385 goto error; 1386 trace_ppc_dcr_write(dcrn, val); 1387 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1388 1389 return 0; 1390 1391 error: 1392 if (dcr_env->write_error != NULL) 1393 return (*dcr_env->write_error)(dcrn); 1394 1395 return -1; 1396 } 1397 1398 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1399 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1400 { 1401 ppc_dcr_t *dcr_env; 1402 ppc_dcrn_t *dcr; 1403 1404 dcr_env = env->dcr_env; 1405 if (dcr_env == NULL) 1406 return -1; 1407 if (dcrn < 0 || dcrn >= DCRN_NB) 1408 return -1; 1409 dcr = &dcr_env->dcrn[dcrn]; 1410 if (dcr->opaque != NULL || 1411 dcr->dcr_read != NULL || 1412 dcr->dcr_write != NULL) 1413 return -1; 1414 dcr->opaque = opaque; 1415 dcr->dcr_read = dcr_read; 1416 dcr->dcr_write = dcr_write; 1417 1418 return 0; 1419 } 1420 1421 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1422 int (*write_error)(int dcrn)) 1423 { 1424 ppc_dcr_t *dcr_env; 1425 1426 dcr_env = g_new0(ppc_dcr_t, 1); 1427 dcr_env->read_error = read_error; 1428 dcr_env->write_error = write_error; 1429 env->dcr_env = dcr_env; 1430 1431 return 0; 1432 } 1433 1434 /*****************************************************************************/ 1435 1436 int ppc_cpu_pir(PowerPCCPU *cpu) 1437 { 1438 CPUPPCState *env = &cpu->env; 1439 return env->spr_cb[SPR_PIR].default_value; 1440 } 1441 1442 int ppc_cpu_tir(PowerPCCPU *cpu) 1443 { 1444 CPUPPCState *env = &cpu->env; 1445 return env->spr_cb[SPR_TIR].default_value; 1446 } 1447 1448 PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1449 { 1450 CPUState *cs; 1451 1452 CPU_FOREACH(cs) { 1453 PowerPCCPU *cpu = POWERPC_CPU(cs); 1454 1455 if (ppc_cpu_pir(cpu) == pir) { 1456 return cpu; 1457 } 1458 } 1459 1460 return NULL; 1461 } 1462 1463 void ppc_irq_reset(PowerPCCPU *cpu) 1464 { 1465 CPUPPCState *env = &cpu->env; 1466 1467 env->irq_input_state = 0; 1468 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1469 } 1470