xref: /openbmc/qemu/hw/ppc/ppc.c (revision 5cc7e69f6da5c52a0ac9f48ace40caf91fce807d)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40 
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43 
44 #ifdef PPC_DEBUG_IRQ
45 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 #  define LOG_IRQ(...) do { } while (0)
48 #endif
49 
50 
51 #ifdef PPC_DEBUG_TB
52 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 #  define LOG_TB(...) do { } while (0)
55 #endif
56 
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59 
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62     CPUState *cs = CPU(cpu);
63     CPUPPCState *env = &cpu->env;
64     unsigned int old_pending;
65     bool locked = false;
66 
67     /* We may already have the BQL if coming from the reset path */
68     if (!qemu_mutex_iothread_locked()) {
69         locked = true;
70         qemu_mutex_lock_iothread();
71     }
72 
73     old_pending = env->pending_interrupts;
74 
75     if (level) {
76         env->pending_interrupts |= 1 << n_IRQ;
77         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78     } else {
79         env->pending_interrupts &= ~(1 << n_IRQ);
80         if (env->pending_interrupts == 0) {
81             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82         }
83     }
84 
85     if (old_pending != env->pending_interrupts) {
86         kvmppc_set_interrupt(cpu, n_IRQ, level);
87     }
88 
89 
90     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91                 "req %08x\n", __func__, env, n_IRQ, level,
92                 env->pending_interrupts, CPU(cpu)->interrupt_request);
93 
94     if (locked) {
95         qemu_mutex_unlock_iothread();
96     }
97 }
98 
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
101 {
102     PowerPCCPU *cpu = opaque;
103     CPUPPCState *env = &cpu->env;
104     int cur_level;
105 
106     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107                 env, pin, level);
108     cur_level = (env->irq_input_state >> pin) & 1;
109     /* Don't generate spurious events */
110     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111         CPUState *cs = CPU(cpu);
112 
113         switch (pin) {
114         case PPC6xx_INPUT_TBEN:
115             /* Level sensitive - active high */
116             LOG_IRQ("%s: %s the time base\n",
117                         __func__, level ? "start" : "stop");
118             if (level) {
119                 cpu_ppc_tb_start(env);
120             } else {
121                 cpu_ppc_tb_stop(env);
122             }
123         case PPC6xx_INPUT_INT:
124             /* Level sensitive - active high */
125             LOG_IRQ("%s: set the external IRQ state to %d\n",
126                         __func__, level);
127             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128             break;
129         case PPC6xx_INPUT_SMI:
130             /* Level sensitive - active high */
131             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                         __func__, level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134             break;
135         case PPC6xx_INPUT_MCP:
136             /* Negative edge sensitive */
137             /* XXX: TODO: actual reaction may depends on HID0 status
138              *            603/604/740/750: check HID0[EMCP]
139              */
140             if (cur_level == 1 && level == 0) {
141                 LOG_IRQ("%s: raise machine check state\n",
142                             __func__);
143                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144             }
145             break;
146         case PPC6xx_INPUT_CKSTP_IN:
147             /* Level sensitive - active low */
148             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149             /* XXX: Note that the only way to restart the CPU is to reset it */
150             if (level) {
151                 LOG_IRQ("%s: stop the CPU\n", __func__);
152                 cs->halted = 1;
153             }
154             break;
155         case PPC6xx_INPUT_HRESET:
156             /* Level sensitive - active low */
157             if (level) {
158                 LOG_IRQ("%s: reset the CPU\n", __func__);
159                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160             }
161             break;
162         case PPC6xx_INPUT_SRESET:
163             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                         __func__, level);
165             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166             break;
167         default:
168             /* Unknown pin - do nothing */
169             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170             return;
171         }
172         if (level)
173             env->irq_input_state |= 1 << pin;
174         else
175             env->irq_input_state &= ~(1 << pin);
176     }
177 }
178 
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
180 {
181     CPUPPCState *env = &cpu->env;
182 
183     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184                                                   PPC6xx_INPUT_NB);
185 }
186 
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
190 {
191     PowerPCCPU *cpu = opaque;
192     CPUPPCState *env = &cpu->env;
193     int cur_level;
194 
195     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196                 env, pin, level);
197     cur_level = (env->irq_input_state >> pin) & 1;
198     /* Don't generate spurious events */
199     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200         CPUState *cs = CPU(cpu);
201 
202         switch (pin) {
203         case PPC970_INPUT_INT:
204             /* Level sensitive - active high */
205             LOG_IRQ("%s: set the external IRQ state to %d\n",
206                         __func__, level);
207             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208             break;
209         case PPC970_INPUT_THINT:
210             /* Level sensitive - active high */
211             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212                         level);
213             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214             break;
215         case PPC970_INPUT_MCP:
216             /* Negative edge sensitive */
217             /* XXX: TODO: actual reaction may depends on HID0 status
218              *            603/604/740/750: check HID0[EMCP]
219              */
220             if (cur_level == 1 && level == 0) {
221                 LOG_IRQ("%s: raise machine check state\n",
222                             __func__);
223                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224             }
225             break;
226         case PPC970_INPUT_CKSTP:
227             /* Level sensitive - active low */
228             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229             if (level) {
230                 LOG_IRQ("%s: stop the CPU\n", __func__);
231                 cs->halted = 1;
232             } else {
233                 LOG_IRQ("%s: restart the CPU\n", __func__);
234                 cs->halted = 0;
235                 qemu_cpu_kick(cs);
236             }
237             break;
238         case PPC970_INPUT_HRESET:
239             /* Level sensitive - active low */
240             if (level) {
241                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242             }
243             break;
244         case PPC970_INPUT_SRESET:
245             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246                         __func__, level);
247             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248             break;
249         case PPC970_INPUT_TBEN:
250             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251                         level);
252             /* XXX: TODO */
253             break;
254         default:
255             /* Unknown pin - do nothing */
256             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257             return;
258         }
259         if (level)
260             env->irq_input_state |= 1 << pin;
261         else
262             env->irq_input_state &= ~(1 << pin);
263     }
264 }
265 
266 void ppc970_irq_init(PowerPCCPU *cpu)
267 {
268     CPUPPCState *env = &cpu->env;
269 
270     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271                                                   PPC970_INPUT_NB);
272 }
273 
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
276 {
277     PowerPCCPU *cpu = opaque;
278 
279     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280             &cpu->env, pin, level);
281 
282     switch (pin) {
283     case POWER7_INPUT_INT:
284         /* Level sensitive - active high */
285         LOG_IRQ("%s: set the external IRQ state to %d\n",
286                 __func__, level);
287         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288         break;
289     default:
290         /* Unknown pin - do nothing */
291         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292         return;
293     }
294 }
295 
296 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
297 {
298     CPUPPCState *env = &cpu->env;
299 
300     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
301                                                   POWER7_INPUT_NB);
302 }
303 
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque, int pin, int level)
306 {
307     PowerPCCPU *cpu = opaque;
308 
309     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
310             &cpu->env, pin, level);
311 
312     switch (pin) {
313     case POWER9_INPUT_INT:
314         /* Level sensitive - active high */
315         LOG_IRQ("%s: set the external IRQ state to %d\n",
316                 __func__, level);
317         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
318         break;
319     case POWER9_INPUT_HINT:
320         /* Level sensitive - active high */
321         LOG_IRQ("%s: set the external IRQ state to %d\n",
322                 __func__, level);
323         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
324         break;
325     default:
326         /* Unknown pin - do nothing */
327         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
328         return;
329     }
330 }
331 
332 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
333 {
334     CPUPPCState *env = &cpu->env;
335 
336     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
337                                                   POWER9_INPUT_NB);
338 }
339 #endif /* defined(TARGET_PPC64) */
340 
341 void ppc40x_core_reset(PowerPCCPU *cpu)
342 {
343     CPUPPCState *env = &cpu->env;
344     target_ulong dbsr;
345 
346     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
347     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
348     dbsr = env->spr[SPR_40x_DBSR];
349     dbsr &= ~0x00000300;
350     dbsr |= 0x00000100;
351     env->spr[SPR_40x_DBSR] = dbsr;
352 }
353 
354 void ppc40x_chip_reset(PowerPCCPU *cpu)
355 {
356     CPUPPCState *env = &cpu->env;
357     target_ulong dbsr;
358 
359     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
360     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
361     /* XXX: TODO reset all internal peripherals */
362     dbsr = env->spr[SPR_40x_DBSR];
363     dbsr &= ~0x00000300;
364     dbsr |= 0x00000200;
365     env->spr[SPR_40x_DBSR] = dbsr;
366 }
367 
368 void ppc40x_system_reset(PowerPCCPU *cpu)
369 {
370     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
371     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372 }
373 
374 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
375 {
376     PowerPCCPU *cpu = env_archcpu(env);
377 
378     switch ((val >> 28) & 0x3) {
379     case 0x0:
380         /* No action */
381         break;
382     case 0x1:
383         /* Core reset */
384         ppc40x_core_reset(cpu);
385         break;
386     case 0x2:
387         /* Chip reset */
388         ppc40x_chip_reset(cpu);
389         break;
390     case 0x3:
391         /* System reset */
392         ppc40x_system_reset(cpu);
393         break;
394     }
395 }
396 
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque, int pin, int level)
399 {
400     PowerPCCPU *cpu = opaque;
401     CPUPPCState *env = &cpu->env;
402     int cur_level;
403 
404     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405                 env, pin, level);
406     cur_level = (env->irq_input_state >> pin) & 1;
407     /* Don't generate spurious events */
408     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409         CPUState *cs = CPU(cpu);
410 
411         switch (pin) {
412         case PPC40x_INPUT_RESET_SYS:
413             if (level) {
414                 LOG_IRQ("%s: reset the PowerPC system\n",
415                             __func__);
416                 ppc40x_system_reset(cpu);
417             }
418             break;
419         case PPC40x_INPUT_RESET_CHIP:
420             if (level) {
421                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
422                 ppc40x_chip_reset(cpu);
423             }
424             break;
425         case PPC40x_INPUT_RESET_CORE:
426             /* XXX: TODO: update DBSR[MRR] */
427             if (level) {
428                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
429                 ppc40x_core_reset(cpu);
430             }
431             break;
432         case PPC40x_INPUT_CINT:
433             /* Level sensitive - active high */
434             LOG_IRQ("%s: set the critical IRQ state to %d\n",
435                         __func__, level);
436             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
437             break;
438         case PPC40x_INPUT_INT:
439             /* Level sensitive - active high */
440             LOG_IRQ("%s: set the external IRQ state to %d\n",
441                         __func__, level);
442             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
443             break;
444         case PPC40x_INPUT_HALT:
445             /* Level sensitive - active low */
446             if (level) {
447                 LOG_IRQ("%s: stop the CPU\n", __func__);
448                 cs->halted = 1;
449             } else {
450                 LOG_IRQ("%s: restart the CPU\n", __func__);
451                 cs->halted = 0;
452                 qemu_cpu_kick(cs);
453             }
454             break;
455         case PPC40x_INPUT_DEBUG:
456             /* Level sensitive - active high */
457             LOG_IRQ("%s: set the debug pin state to %d\n",
458                         __func__, level);
459             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
460             break;
461         default:
462             /* Unknown pin - do nothing */
463             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
464             return;
465         }
466         if (level)
467             env->irq_input_state |= 1 << pin;
468         else
469             env->irq_input_state &= ~(1 << pin);
470     }
471 }
472 
473 void ppc40x_irq_init(PowerPCCPU *cpu)
474 {
475     CPUPPCState *env = &cpu->env;
476 
477     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
478                                                   cpu, PPC40x_INPUT_NB);
479 }
480 
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque, int pin, int level)
483 {
484     PowerPCCPU *cpu = opaque;
485     CPUPPCState *env = &cpu->env;
486     int cur_level;
487 
488     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
489                 env, pin, level);
490     cur_level = (env->irq_input_state >> pin) & 1;
491     /* Don't generate spurious events */
492     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
493         switch (pin) {
494         case PPCE500_INPUT_MCK:
495             if (level) {
496                 LOG_IRQ("%s: reset the PowerPC system\n",
497                             __func__);
498                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
499             }
500             break;
501         case PPCE500_INPUT_RESET_CORE:
502             if (level) {
503                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
504                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
505             }
506             break;
507         case PPCE500_INPUT_CINT:
508             /* Level sensitive - active high */
509             LOG_IRQ("%s: set the critical IRQ state to %d\n",
510                         __func__, level);
511             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
512             break;
513         case PPCE500_INPUT_INT:
514             /* Level sensitive - active high */
515             LOG_IRQ("%s: set the core IRQ state to %d\n",
516                         __func__, level);
517             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
518             break;
519         case PPCE500_INPUT_DEBUG:
520             /* Level sensitive - active high */
521             LOG_IRQ("%s: set the debug pin state to %d\n",
522                         __func__, level);
523             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
524             break;
525         default:
526             /* Unknown pin - do nothing */
527             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
528             return;
529         }
530         if (level)
531             env->irq_input_state |= 1 << pin;
532         else
533             env->irq_input_state &= ~(1 << pin);
534     }
535 }
536 
537 void ppce500_irq_init(PowerPCCPU *cpu)
538 {
539     CPUPPCState *env = &cpu->env;
540 
541     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
542                                                   cpu, PPCE500_INPUT_NB);
543 }
544 
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled)
547 {
548     CPUState *cs;
549 
550     CPU_FOREACH(cs) {
551         PowerPCCPU *cpu = POWERPC_CPU(cs);
552 
553         cpu->env.mpic_proxy = enabled;
554         if (kvm_enabled()) {
555             kvmppc_set_mpic_proxy(cpu, enabled);
556         }
557     }
558 }
559 
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
562 
563 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
564 {
565     /* TB time in tb periods */
566     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
567 }
568 
569 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
570 {
571     ppc_tb_t *tb_env = env->tb_env;
572     uint64_t tb;
573 
574     if (kvm_enabled()) {
575         return env->spr[SPR_TBL];
576     }
577 
578     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
580 
581     return tb;
582 }
583 
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
585 {
586     ppc_tb_t *tb_env = env->tb_env;
587     uint64_t tb;
588 
589     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
591 
592     return tb >> 32;
593 }
594 
595 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
596 {
597     if (kvm_enabled()) {
598         return env->spr[SPR_TBU];
599     }
600 
601     return _cpu_ppc_load_tbu(env);
602 }
603 
604 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
605                                     int64_t *tb_offsetp, uint64_t value)
606 {
607     *tb_offsetp = value -
608         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
609 
610     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
611                 __func__, value, *tb_offsetp);
612 }
613 
614 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
615 {
616     ppc_tb_t *tb_env = env->tb_env;
617     uint64_t tb;
618 
619     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
620     tb &= 0xFFFFFFFF00000000ULL;
621     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
622                      &tb_env->tb_offset, tb | (uint64_t)value);
623 }
624 
625 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
626 {
627     ppc_tb_t *tb_env = env->tb_env;
628     uint64_t tb;
629 
630     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631     tb &= 0x00000000FFFFFFFFULL;
632     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
634 }
635 
636 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
637 {
638     _cpu_ppc_store_tbu(env, value);
639 }
640 
641 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
642 {
643     ppc_tb_t *tb_env = env->tb_env;
644     uint64_t tb;
645 
646     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
647     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
648 
649     return tb;
650 }
651 
652 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
653 {
654     ppc_tb_t *tb_env = env->tb_env;
655     uint64_t tb;
656 
657     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
659 
660     return tb >> 32;
661 }
662 
663 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
664 {
665     ppc_tb_t *tb_env = env->tb_env;
666     uint64_t tb;
667 
668     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669     tb &= 0xFFFFFFFF00000000ULL;
670     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
671                      &tb_env->atb_offset, tb | (uint64_t)value);
672 }
673 
674 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
675 {
676     ppc_tb_t *tb_env = env->tb_env;
677     uint64_t tb;
678 
679     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680     tb &= 0x00000000FFFFFFFFULL;
681     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
683 }
684 
685 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
686 {
687     ppc_tb_t *tb_env = env->tb_env;
688 
689     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
690                           tb_env->vtb_offset);
691 }
692 
693 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
694 {
695     ppc_tb_t *tb_env = env->tb_env;
696 
697     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
698                      &tb_env->vtb_offset, value);
699 }
700 
701 static void cpu_ppc_tb_stop (CPUPPCState *env)
702 {
703     ppc_tb_t *tb_env = env->tb_env;
704     uint64_t tb, atb, vmclk;
705 
706     /* If the time base is already frozen, do nothing */
707     if (tb_env->tb_freq != 0) {
708         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
709         /* Get the time base */
710         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
711         /* Get the alternate time base */
712         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
713         /* Store the time base value (ie compute the current offset) */
714         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
715         /* Store the alternate time base value (compute the current offset) */
716         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
717         /* Set the time base frequency to zero */
718         tb_env->tb_freq = 0;
719         /* Now, the time bases are frozen to tb_offset / atb_offset value */
720     }
721 }
722 
723 static void cpu_ppc_tb_start (CPUPPCState *env)
724 {
725     ppc_tb_t *tb_env = env->tb_env;
726     uint64_t tb, atb, vmclk;
727 
728     /* If the time base is not frozen, do nothing */
729     if (tb_env->tb_freq == 0) {
730         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
731         /* Get the time base from tb_offset */
732         tb = tb_env->tb_offset;
733         /* Get the alternate time base from atb_offset */
734         atb = tb_env->atb_offset;
735         /* Restore the tb frequency from the decrementer frequency */
736         tb_env->tb_freq = tb_env->decr_freq;
737         /* Store the time base value */
738         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
739         /* Store the alternate time base value */
740         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
741     }
742 }
743 
744 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
745 {
746     ppc_tb_t *tb_env = env->tb_env;
747     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
748     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
749 }
750 
751 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
752 {
753     ppc_tb_t *tb_env = env->tb_env;
754     int64_t decr, diff;
755 
756     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
757     if (diff >= 0) {
758         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
759     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
760         decr = 0;
761     }  else {
762         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
763     }
764     LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
765 
766     return decr;
767 }
768 
769 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
770 {
771     ppc_tb_t *tb_env = env->tb_env;
772     uint64_t decr;
773 
774     if (kvm_enabled()) {
775         return env->spr[SPR_DECR];
776     }
777 
778     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
779 
780     /*
781      * If large decrementer is enabled then the decrementer is signed extened
782      * to 64 bits, otherwise it is a 32 bit value.
783      */
784     if (env->spr[SPR_LPCR] & LPCR_LD) {
785         return decr;
786     }
787     return (uint32_t) decr;
788 }
789 
790 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
791 {
792     PowerPCCPU *cpu = env_archcpu(env);
793     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
794     ppc_tb_t *tb_env = env->tb_env;
795     uint64_t hdecr;
796 
797     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
798 
799     /*
800      * If we have a large decrementer (POWER9 or later) then hdecr is sign
801      * extended to 64 bits, otherwise it is 32 bits.
802      */
803     if (pcc->lrg_decr_bits > 32) {
804         return hdecr;
805     }
806     return (uint32_t) hdecr;
807 }
808 
809 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
810 {
811     ppc_tb_t *tb_env = env->tb_env;
812 
813     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
814                           tb_env->purr_offset);
815 }
816 
817 /* When decrementer expires,
818  * all we need to do is generate or queue a CPU exception
819  */
820 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
821 {
822     /* Raise it */
823     LOG_TB("raise decrementer exception\n");
824     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
825 }
826 
827 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
828 {
829     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
830 }
831 
832 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
833 {
834     CPUPPCState *env = &cpu->env;
835 
836     /* Raise it */
837     LOG_TB("raise hv decrementer exception\n");
838 
839     /* The architecture specifies that we don't deliver HDEC
840      * interrupts in a PM state. Not only they don't cause a
841      * wakeup but they also get effectively discarded.
842      */
843     if (!env->resume_as_sreset) {
844         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
845     }
846 }
847 
848 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
849 {
850     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
851 }
852 
853 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
854                                  QEMUTimer *timer,
855                                  void (*raise_excp)(void *),
856                                  void (*lower_excp)(PowerPCCPU *),
857                                  target_ulong decr, target_ulong value,
858                                  int nr_bits)
859 {
860     CPUPPCState *env = &cpu->env;
861     ppc_tb_t *tb_env = env->tb_env;
862     uint64_t now, next;
863     bool negative;
864 
865     /* Truncate value to decr_width and sign extend for simplicity */
866     value &= ((1ULL << nr_bits) - 1);
867     negative = !!(value & (1ULL << (nr_bits - 1)));
868     if (negative) {
869         value |= (0xFFFFFFFFULL << nr_bits);
870     }
871 
872     LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
873                 decr, value);
874 
875     if (kvm_enabled()) {
876         /* KVM handles decrementer exceptions, we don't need our own timer */
877         return;
878     }
879 
880     /*
881      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
882      * interrupt.
883      *
884      * If we get a really small DEC value, we can assume that by the time we
885      * handled it we should inject an interrupt already.
886      *
887      * On MSB level based DEC implementations the MSB always means the interrupt
888      * is pending, so raise it on those.
889      *
890      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
891      * an edge interrupt, so raise it here too.
892      */
893     if ((value < 3) ||
894         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
895         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
896           && !(decr & (1ULL << (nr_bits - 1))))) {
897         (*raise_excp)(cpu);
898         return;
899     }
900 
901     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
902     if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
903         (*lower_excp)(cpu);
904     }
905 
906     /* Calculate the next timer event */
907     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
908     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
909     *nextp = next;
910 
911     /* Adjust timer */
912     timer_mod(timer, next);
913 }
914 
915 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
916                                        target_ulong value, int nr_bits)
917 {
918     ppc_tb_t *tb_env = cpu->env.tb_env;
919 
920     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
921                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
922                          value, nr_bits);
923 }
924 
925 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
926 {
927     PowerPCCPU *cpu = env_archcpu(env);
928     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
929     int nr_bits = 32;
930 
931     if (env->spr[SPR_LPCR] & LPCR_LD) {
932         nr_bits = pcc->lrg_decr_bits;
933     }
934 
935     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
936 }
937 
938 static void cpu_ppc_decr_cb(void *opaque)
939 {
940     PowerPCCPU *cpu = opaque;
941 
942     cpu_ppc_decr_excp(cpu);
943 }
944 
945 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
946                                         target_ulong value, int nr_bits)
947 {
948     ppc_tb_t *tb_env = cpu->env.tb_env;
949 
950     if (tb_env->hdecr_timer != NULL) {
951         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
952                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
953                              hdecr, value, nr_bits);
954     }
955 }
956 
957 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
958 {
959     PowerPCCPU *cpu = env_archcpu(env);
960     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
961 
962     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
963                          pcc->lrg_decr_bits);
964 }
965 
966 static void cpu_ppc_hdecr_cb(void *opaque)
967 {
968     PowerPCCPU *cpu = opaque;
969 
970     cpu_ppc_hdecr_excp(cpu);
971 }
972 
973 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
974 {
975     ppc_tb_t *tb_env = env->tb_env;
976 
977     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
978                      &tb_env->purr_offset, value);
979 }
980 
981 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
982 {
983     CPUPPCState *env = opaque;
984     PowerPCCPU *cpu = env_archcpu(env);
985     ppc_tb_t *tb_env = env->tb_env;
986 
987     tb_env->tb_freq = freq;
988     tb_env->decr_freq = freq;
989     /* There is a bug in Linux 2.4 kernels:
990      * if a decrementer exception is pending when it enables msr_ee at startup,
991      * it's not ready to handle it...
992      */
993     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
994     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
995     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
996 }
997 
998 static void timebase_save(PPCTimebase *tb)
999 {
1000     uint64_t ticks = cpu_get_host_ticks();
1001     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1002 
1003     if (!first_ppc_cpu->env.tb_env) {
1004         error_report("No timebase object");
1005         return;
1006     }
1007 
1008     /* not used anymore, we keep it for compatibility */
1009     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1010     /*
1011      * tb_offset is only expected to be changed by QEMU so
1012      * there is no need to update it from KVM here
1013      */
1014     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1015 
1016     tb->runstate_paused = runstate_check(RUN_STATE_PAUSED);
1017 }
1018 
1019 static void timebase_load(PPCTimebase *tb)
1020 {
1021     CPUState *cpu;
1022     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1023     int64_t tb_off_adj, tb_off;
1024     unsigned long freq;
1025 
1026     if (!first_ppc_cpu->env.tb_env) {
1027         error_report("No timebase object");
1028         return;
1029     }
1030 
1031     freq = first_ppc_cpu->env.tb_env->tb_freq;
1032 
1033     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1034 
1035     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1036     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1037                         (tb_off_adj - tb_off) / freq);
1038 
1039     /* Set new offset to all CPUs */
1040     CPU_FOREACH(cpu) {
1041         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1042         pcpu->env.tb_env->tb_offset = tb_off_adj;
1043         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1044     }
1045 }
1046 
1047 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1048                                    RunState state)
1049 {
1050     PPCTimebase *tb = opaque;
1051 
1052     if (running) {
1053         timebase_load(tb);
1054     } else {
1055         timebase_save(tb);
1056     }
1057 }
1058 
1059 /*
1060  * When migrating a running guest, read the clock just
1061  * before migration, so that the guest clock counts
1062  * during the events between:
1063  *
1064  *  * vm_stop()
1065  *  *
1066  *  * pre_save()
1067  *
1068  *  This reduces clock difference on migration from 5s
1069  *  to 0.1s (when max_downtime == 5s), because sending the
1070  *  final pages of memory (which happens between vm_stop()
1071  *  and pre_save()) takes max_downtime.
1072  */
1073 static int timebase_pre_save(void *opaque)
1074 {
1075     PPCTimebase *tb = opaque;
1076 
1077     /* guest_timebase won't be overridden in case of paused guest */
1078     if (!tb->runstate_paused) {
1079         timebase_save(tb);
1080     }
1081 
1082     return 0;
1083 }
1084 
1085 const VMStateDescription vmstate_ppc_timebase = {
1086     .name = "timebase",
1087     .version_id = 1,
1088     .minimum_version_id = 1,
1089     .minimum_version_id_old = 1,
1090     .pre_save = timebase_pre_save,
1091     .fields      = (VMStateField []) {
1092         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1093         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1094         VMSTATE_END_OF_LIST()
1095     },
1096 };
1097 
1098 /* Set up (once) timebase frequency (in Hz) */
1099 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1100 {
1101     PowerPCCPU *cpu = env_archcpu(env);
1102     ppc_tb_t *tb_env;
1103 
1104     tb_env = g_malloc0(sizeof(ppc_tb_t));
1105     env->tb_env = tb_env;
1106     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1107     if (is_book3s_arch2x(env)) {
1108         /* All Book3S 64bit CPUs implement level based DEC logic */
1109         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1110     }
1111     /* Create new timer */
1112     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1113     if (env->has_hv_mode) {
1114         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1115                                                 cpu);
1116     } else {
1117         tb_env->hdecr_timer = NULL;
1118     }
1119     cpu_ppc_set_tb_clk(env, freq);
1120 
1121     return &cpu_ppc_set_tb_clk;
1122 }
1123 
1124 /* Specific helpers for POWER & PowerPC 601 RTC */
1125 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1126 {
1127     _cpu_ppc_store_tbu(env, value);
1128 }
1129 
1130 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1131 {
1132     return _cpu_ppc_load_tbu(env);
1133 }
1134 
1135 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1136 {
1137     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1138 }
1139 
1140 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1141 {
1142     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1143 }
1144 
1145 /*****************************************************************************/
1146 /* PowerPC 40x timers */
1147 
1148 /* PIT, FIT & WDT */
1149 typedef struct ppc40x_timer_t ppc40x_timer_t;
1150 struct ppc40x_timer_t {
1151     uint64_t pit_reload;  /* PIT auto-reload value        */
1152     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1153     QEMUTimer *fit_timer;
1154     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1155     QEMUTimer *wdt_timer;
1156 
1157     /* 405 have the PIT, 440 have a DECR.  */
1158     unsigned int decr_excp;
1159 };
1160 
1161 /* Fixed interval timer */
1162 static void cpu_4xx_fit_cb (void *opaque)
1163 {
1164     PowerPCCPU *cpu;
1165     CPUPPCState *env;
1166     ppc_tb_t *tb_env;
1167     ppc40x_timer_t *ppc40x_timer;
1168     uint64_t now, next;
1169 
1170     env = opaque;
1171     cpu = env_archcpu(env);
1172     tb_env = env->tb_env;
1173     ppc40x_timer = tb_env->opaque;
1174     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1175     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1176     case 0:
1177         next = 1 << 9;
1178         break;
1179     case 1:
1180         next = 1 << 13;
1181         break;
1182     case 2:
1183         next = 1 << 17;
1184         break;
1185     case 3:
1186         next = 1 << 21;
1187         break;
1188     default:
1189         /* Cannot occur, but makes gcc happy */
1190         return;
1191     }
1192     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1193     if (next == now)
1194         next++;
1195     timer_mod(ppc40x_timer->fit_timer, next);
1196     env->spr[SPR_40x_TSR] |= 1 << 26;
1197     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1198         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1199     }
1200     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1201            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1202            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1203 }
1204 
1205 /* Programmable interval timer */
1206 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1207 {
1208     ppc40x_timer_t *ppc40x_timer;
1209     uint64_t now, next;
1210 
1211     ppc40x_timer = tb_env->opaque;
1212     if (ppc40x_timer->pit_reload <= 1 ||
1213         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1214         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1215         /* Stop PIT */
1216         LOG_TB("%s: stop PIT\n", __func__);
1217         timer_del(tb_env->decr_timer);
1218     } else {
1219         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1220                     __func__, ppc40x_timer->pit_reload);
1221         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1222         next = now + muldiv64(ppc40x_timer->pit_reload,
1223                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1224         if (is_excp)
1225             next += tb_env->decr_next - now;
1226         if (next == now)
1227             next++;
1228         timer_mod(tb_env->decr_timer, next);
1229         tb_env->decr_next = next;
1230     }
1231 }
1232 
1233 static void cpu_4xx_pit_cb (void *opaque)
1234 {
1235     PowerPCCPU *cpu;
1236     CPUPPCState *env;
1237     ppc_tb_t *tb_env;
1238     ppc40x_timer_t *ppc40x_timer;
1239 
1240     env = opaque;
1241     cpu = env_archcpu(env);
1242     tb_env = env->tb_env;
1243     ppc40x_timer = tb_env->opaque;
1244     env->spr[SPR_40x_TSR] |= 1 << 27;
1245     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1246         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1247     }
1248     start_stop_pit(env, tb_env, 1);
1249     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1250            "%016" PRIx64 "\n", __func__,
1251            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1252            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1253            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1254            ppc40x_timer->pit_reload);
1255 }
1256 
1257 /* Watchdog timer */
1258 static void cpu_4xx_wdt_cb (void *opaque)
1259 {
1260     PowerPCCPU *cpu;
1261     CPUPPCState *env;
1262     ppc_tb_t *tb_env;
1263     ppc40x_timer_t *ppc40x_timer;
1264     uint64_t now, next;
1265 
1266     env = opaque;
1267     cpu = env_archcpu(env);
1268     tb_env = env->tb_env;
1269     ppc40x_timer = tb_env->opaque;
1270     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1271     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1272     case 0:
1273         next = 1 << 17;
1274         break;
1275     case 1:
1276         next = 1 << 21;
1277         break;
1278     case 2:
1279         next = 1 << 25;
1280         break;
1281     case 3:
1282         next = 1 << 29;
1283         break;
1284     default:
1285         /* Cannot occur, but makes gcc happy */
1286         return;
1287     }
1288     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1289     if (next == now)
1290         next++;
1291     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1292            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1293     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1294     case 0x0:
1295     case 0x1:
1296         timer_mod(ppc40x_timer->wdt_timer, next);
1297         ppc40x_timer->wdt_next = next;
1298         env->spr[SPR_40x_TSR] |= 1U << 31;
1299         break;
1300     case 0x2:
1301         timer_mod(ppc40x_timer->wdt_timer, next);
1302         ppc40x_timer->wdt_next = next;
1303         env->spr[SPR_40x_TSR] |= 1 << 30;
1304         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1305             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1306         }
1307         break;
1308     case 0x3:
1309         env->spr[SPR_40x_TSR] &= ~0x30000000;
1310         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1311         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1312         case 0x0:
1313             /* No reset */
1314             break;
1315         case 0x1: /* Core reset */
1316             ppc40x_core_reset(cpu);
1317             break;
1318         case 0x2: /* Chip reset */
1319             ppc40x_chip_reset(cpu);
1320             break;
1321         case 0x3: /* System reset */
1322             ppc40x_system_reset(cpu);
1323             break;
1324         }
1325     }
1326 }
1327 
1328 void store_40x_pit (CPUPPCState *env, target_ulong val)
1329 {
1330     ppc_tb_t *tb_env;
1331     ppc40x_timer_t *ppc40x_timer;
1332 
1333     tb_env = env->tb_env;
1334     ppc40x_timer = tb_env->opaque;
1335     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1336     ppc40x_timer->pit_reload = val;
1337     start_stop_pit(env, tb_env, 0);
1338 }
1339 
1340 target_ulong load_40x_pit (CPUPPCState *env)
1341 {
1342     return cpu_ppc_load_decr(env);
1343 }
1344 
1345 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1346 {
1347     CPUPPCState *env = opaque;
1348     ppc_tb_t *tb_env = env->tb_env;
1349 
1350     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1351                 freq);
1352     tb_env->tb_freq = freq;
1353     tb_env->decr_freq = freq;
1354     /* XXX: we should also update all timers */
1355 }
1356 
1357 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1358                                   unsigned int decr_excp)
1359 {
1360     ppc_tb_t *tb_env;
1361     ppc40x_timer_t *ppc40x_timer;
1362 
1363     tb_env = g_malloc0(sizeof(ppc_tb_t));
1364     env->tb_env = tb_env;
1365     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1366     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1367     tb_env->tb_freq = freq;
1368     tb_env->decr_freq = freq;
1369     tb_env->opaque = ppc40x_timer;
1370     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1371     if (ppc40x_timer != NULL) {
1372         /* We use decr timer for PIT */
1373         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1374         ppc40x_timer->fit_timer =
1375             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1376         ppc40x_timer->wdt_timer =
1377             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1378         ppc40x_timer->decr_excp = decr_excp;
1379     }
1380 
1381     return &ppc_40x_set_tb_clk;
1382 }
1383 
1384 /*****************************************************************************/
1385 /* Embedded PowerPC Device Control Registers */
1386 typedef struct ppc_dcrn_t ppc_dcrn_t;
1387 struct ppc_dcrn_t {
1388     dcr_read_cb dcr_read;
1389     dcr_write_cb dcr_write;
1390     void *opaque;
1391 };
1392 
1393 /* XXX: on 460, DCR addresses are 32 bits wide,
1394  *      using DCRIPR to get the 22 upper bits of the DCR address
1395  */
1396 #define DCRN_NB 1024
1397 struct ppc_dcr_t {
1398     ppc_dcrn_t dcrn[DCRN_NB];
1399     int (*read_error)(int dcrn);
1400     int (*write_error)(int dcrn);
1401 };
1402 
1403 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1404 {
1405     ppc_dcrn_t *dcr;
1406 
1407     if (dcrn < 0 || dcrn >= DCRN_NB)
1408         goto error;
1409     dcr = &dcr_env->dcrn[dcrn];
1410     if (dcr->dcr_read == NULL)
1411         goto error;
1412     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1413 
1414     return 0;
1415 
1416  error:
1417     if (dcr_env->read_error != NULL)
1418         return (*dcr_env->read_error)(dcrn);
1419 
1420     return -1;
1421 }
1422 
1423 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1424 {
1425     ppc_dcrn_t *dcr;
1426 
1427     if (dcrn < 0 || dcrn >= DCRN_NB)
1428         goto error;
1429     dcr = &dcr_env->dcrn[dcrn];
1430     if (dcr->dcr_write == NULL)
1431         goto error;
1432     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1433 
1434     return 0;
1435 
1436  error:
1437     if (dcr_env->write_error != NULL)
1438         return (*dcr_env->write_error)(dcrn);
1439 
1440     return -1;
1441 }
1442 
1443 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1444                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1445 {
1446     ppc_dcr_t *dcr_env;
1447     ppc_dcrn_t *dcr;
1448 
1449     dcr_env = env->dcr_env;
1450     if (dcr_env == NULL)
1451         return -1;
1452     if (dcrn < 0 || dcrn >= DCRN_NB)
1453         return -1;
1454     dcr = &dcr_env->dcrn[dcrn];
1455     if (dcr->opaque != NULL ||
1456         dcr->dcr_read != NULL ||
1457         dcr->dcr_write != NULL)
1458         return -1;
1459     dcr->opaque = opaque;
1460     dcr->dcr_read = dcr_read;
1461     dcr->dcr_write = dcr_write;
1462 
1463     return 0;
1464 }
1465 
1466 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1467                   int (*write_error)(int dcrn))
1468 {
1469     ppc_dcr_t *dcr_env;
1470 
1471     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1472     dcr_env->read_error = read_error;
1473     dcr_env->write_error = write_error;
1474     env->dcr_env = dcr_env;
1475 
1476     return 0;
1477 }
1478 
1479 /*****************************************************************************/
1480 /* Debug port */
1481 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1482 {
1483     addr &= 0xF;
1484     switch (addr) {
1485     case 0:
1486         printf("%c", val);
1487         break;
1488     case 1:
1489         printf("\n");
1490         fflush(stdout);
1491         break;
1492     case 2:
1493         printf("Set loglevel to %04" PRIx32 "\n", val);
1494         qemu_set_log(val | 0x100);
1495         break;
1496     }
1497 }
1498 
1499 int ppc_cpu_pir(PowerPCCPU *cpu)
1500 {
1501     CPUPPCState *env = &cpu->env;
1502     return env->spr_cb[SPR_PIR].default_value;
1503 }
1504 
1505 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1506 {
1507     CPUState *cs;
1508 
1509     CPU_FOREACH(cs) {
1510         PowerPCCPU *cpu = POWERPC_CPU(cs);
1511 
1512         if (ppc_cpu_pir(cpu) == pir) {
1513             return cpu;
1514         }
1515     }
1516 
1517     return NULL;
1518 }
1519 
1520 void ppc_irq_reset(PowerPCCPU *cpu)
1521 {
1522     CPUPPCState *env = &cpu->env;
1523 
1524     env->irq_input_state = 0;
1525     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1526 }
1527