1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "cpu.h" 27 #include "hw/irq.h" 28 #include "hw/ppc/ppc.h" 29 #include "hw/ppc/ppc_e500.h" 30 #include "qemu/timer.h" 31 #include "sysemu/cpus.h" 32 #include "qemu/log.h" 33 #include "qemu/main-loop.h" 34 #include "qemu/error-report.h" 35 #include "sysemu/kvm.h" 36 #include "sysemu/runstate.h" 37 #include "kvm_ppc.h" 38 #include "migration/vmstate.h" 39 #include "trace.h" 40 41 //#define PPC_DEBUG_IRQ 42 //#define PPC_DEBUG_TB 43 44 #ifdef PPC_DEBUG_IRQ 45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__) 46 #else 47 # define LOG_IRQ(...) do { } while (0) 48 #endif 49 50 51 #ifdef PPC_DEBUG_TB 52 # define LOG_TB(...) qemu_log(__VA_ARGS__) 53 #else 54 # define LOG_TB(...) do { } while (0) 55 #endif 56 57 static void cpu_ppc_tb_stop (CPUPPCState *env); 58 static void cpu_ppc_tb_start (CPUPPCState *env); 59 60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level) 61 { 62 CPUState *cs = CPU(cpu); 63 CPUPPCState *env = &cpu->env; 64 unsigned int old_pending; 65 bool locked = false; 66 67 /* We may already have the BQL if coming from the reset path */ 68 if (!qemu_mutex_iothread_locked()) { 69 locked = true; 70 qemu_mutex_lock_iothread(); 71 } 72 73 old_pending = env->pending_interrupts; 74 75 if (level) { 76 env->pending_interrupts |= 1 << n_IRQ; 77 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 78 } else { 79 env->pending_interrupts &= ~(1 << n_IRQ); 80 if (env->pending_interrupts == 0) { 81 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 82 } 83 } 84 85 if (old_pending != env->pending_interrupts) { 86 kvmppc_set_interrupt(cpu, n_IRQ, level); 87 } 88 89 90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32 91 "req %08x\n", __func__, env, n_IRQ, level, 92 env->pending_interrupts, CPU(cpu)->interrupt_request); 93 94 if (locked) { 95 qemu_mutex_unlock_iothread(); 96 } 97 } 98 99 /* PowerPC 6xx / 7xx internal IRQ controller */ 100 static void ppc6xx_set_irq(void *opaque, int pin, int level) 101 { 102 PowerPCCPU *cpu = opaque; 103 CPUPPCState *env = &cpu->env; 104 int cur_level; 105 106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 107 env, pin, level); 108 cur_level = (env->irq_input_state >> pin) & 1; 109 /* Don't generate spurious events */ 110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 111 CPUState *cs = CPU(cpu); 112 113 switch (pin) { 114 case PPC6xx_INPUT_TBEN: 115 /* Level sensitive - active high */ 116 LOG_IRQ("%s: %s the time base\n", 117 __func__, level ? "start" : "stop"); 118 if (level) { 119 cpu_ppc_tb_start(env); 120 } else { 121 cpu_ppc_tb_stop(env); 122 } 123 break; 124 case PPC6xx_INPUT_INT: 125 /* Level sensitive - active high */ 126 LOG_IRQ("%s: set the external IRQ state to %d\n", 127 __func__, level); 128 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 129 break; 130 case PPC6xx_INPUT_SMI: 131 /* Level sensitive - active high */ 132 LOG_IRQ("%s: set the SMI IRQ state to %d\n", 133 __func__, level); 134 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 135 break; 136 case PPC6xx_INPUT_MCP: 137 /* Negative edge sensitive */ 138 /* XXX: TODO: actual reaction may depends on HID0 status 139 * 603/604/740/750: check HID0[EMCP] 140 */ 141 if (cur_level == 1 && level == 0) { 142 LOG_IRQ("%s: raise machine check state\n", 143 __func__); 144 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 145 } 146 break; 147 case PPC6xx_INPUT_CKSTP_IN: 148 /* Level sensitive - active low */ 149 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 150 /* XXX: Note that the only way to restart the CPU is to reset it */ 151 if (level) { 152 LOG_IRQ("%s: stop the CPU\n", __func__); 153 cs->halted = 1; 154 } 155 break; 156 case PPC6xx_INPUT_HRESET: 157 /* Level sensitive - active low */ 158 if (level) { 159 LOG_IRQ("%s: reset the CPU\n", __func__); 160 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 161 } 162 break; 163 case PPC6xx_INPUT_SRESET: 164 LOG_IRQ("%s: set the RESET IRQ state to %d\n", 165 __func__, level); 166 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 167 break; 168 default: 169 /* Unknown pin - do nothing */ 170 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 171 return; 172 } 173 if (level) 174 env->irq_input_state |= 1 << pin; 175 else 176 env->irq_input_state &= ~(1 << pin); 177 } 178 } 179 180 void ppc6xx_irq_init(PowerPCCPU *cpu) 181 { 182 CPUPPCState *env = &cpu->env; 183 184 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu, 185 PPC6xx_INPUT_NB); 186 } 187 188 #if defined(TARGET_PPC64) 189 /* PowerPC 970 internal IRQ controller */ 190 static void ppc970_set_irq(void *opaque, int pin, int level) 191 { 192 PowerPCCPU *cpu = opaque; 193 CPUPPCState *env = &cpu->env; 194 int cur_level; 195 196 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 197 env, pin, level); 198 cur_level = (env->irq_input_state >> pin) & 1; 199 /* Don't generate spurious events */ 200 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 201 CPUState *cs = CPU(cpu); 202 203 switch (pin) { 204 case PPC970_INPUT_INT: 205 /* Level sensitive - active high */ 206 LOG_IRQ("%s: set the external IRQ state to %d\n", 207 __func__, level); 208 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 209 break; 210 case PPC970_INPUT_THINT: 211 /* Level sensitive - active high */ 212 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__, 213 level); 214 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 215 break; 216 case PPC970_INPUT_MCP: 217 /* Negative edge sensitive */ 218 /* XXX: TODO: actual reaction may depends on HID0 status 219 * 603/604/740/750: check HID0[EMCP] 220 */ 221 if (cur_level == 1 && level == 0) { 222 LOG_IRQ("%s: raise machine check state\n", 223 __func__); 224 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 225 } 226 break; 227 case PPC970_INPUT_CKSTP: 228 /* Level sensitive - active low */ 229 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 230 if (level) { 231 LOG_IRQ("%s: stop the CPU\n", __func__); 232 cs->halted = 1; 233 } else { 234 LOG_IRQ("%s: restart the CPU\n", __func__); 235 cs->halted = 0; 236 qemu_cpu_kick(cs); 237 } 238 break; 239 case PPC970_INPUT_HRESET: 240 /* Level sensitive - active low */ 241 if (level) { 242 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 243 } 244 break; 245 case PPC970_INPUT_SRESET: 246 LOG_IRQ("%s: set the RESET IRQ state to %d\n", 247 __func__, level); 248 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 249 break; 250 case PPC970_INPUT_TBEN: 251 LOG_IRQ("%s: set the TBEN state to %d\n", __func__, 252 level); 253 /* XXX: TODO */ 254 break; 255 default: 256 /* Unknown pin - do nothing */ 257 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 258 return; 259 } 260 if (level) 261 env->irq_input_state |= 1 << pin; 262 else 263 env->irq_input_state &= ~(1 << pin); 264 } 265 } 266 267 void ppc970_irq_init(PowerPCCPU *cpu) 268 { 269 CPUPPCState *env = &cpu->env; 270 271 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu, 272 PPC970_INPUT_NB); 273 } 274 275 /* POWER7 internal IRQ controller */ 276 static void power7_set_irq(void *opaque, int pin, int level) 277 { 278 PowerPCCPU *cpu = opaque; 279 280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 281 &cpu->env, pin, level); 282 283 switch (pin) { 284 case POWER7_INPUT_INT: 285 /* Level sensitive - active high */ 286 LOG_IRQ("%s: set the external IRQ state to %d\n", 287 __func__, level); 288 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 289 break; 290 default: 291 /* Unknown pin - do nothing */ 292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 293 return; 294 } 295 } 296 297 void ppcPOWER7_irq_init(PowerPCCPU *cpu) 298 { 299 CPUPPCState *env = &cpu->env; 300 301 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu, 302 POWER7_INPUT_NB); 303 } 304 305 /* POWER9 internal IRQ controller */ 306 static void power9_set_irq(void *opaque, int pin, int level) 307 { 308 PowerPCCPU *cpu = opaque; 309 310 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 311 &cpu->env, pin, level); 312 313 switch (pin) { 314 case POWER9_INPUT_INT: 315 /* Level sensitive - active high */ 316 LOG_IRQ("%s: set the external IRQ state to %d\n", 317 __func__, level); 318 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 319 break; 320 case POWER9_INPUT_HINT: 321 /* Level sensitive - active high */ 322 LOG_IRQ("%s: set the external IRQ state to %d\n", 323 __func__, level); 324 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 325 break; 326 default: 327 /* Unknown pin - do nothing */ 328 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 329 return; 330 } 331 } 332 333 void ppcPOWER9_irq_init(PowerPCCPU *cpu) 334 { 335 CPUPPCState *env = &cpu->env; 336 337 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu, 338 POWER9_INPUT_NB); 339 } 340 #endif /* defined(TARGET_PPC64) */ 341 342 void ppc40x_core_reset(PowerPCCPU *cpu) 343 { 344 CPUPPCState *env = &cpu->env; 345 target_ulong dbsr; 346 347 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 348 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 349 dbsr = env->spr[SPR_40x_DBSR]; 350 dbsr &= ~0x00000300; 351 dbsr |= 0x00000100; 352 env->spr[SPR_40x_DBSR] = dbsr; 353 } 354 355 void ppc40x_chip_reset(PowerPCCPU *cpu) 356 { 357 CPUPPCState *env = &cpu->env; 358 target_ulong dbsr; 359 360 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 361 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 362 /* XXX: TODO reset all internal peripherals */ 363 dbsr = env->spr[SPR_40x_DBSR]; 364 dbsr &= ~0x00000300; 365 dbsr |= 0x00000200; 366 env->spr[SPR_40x_DBSR] = dbsr; 367 } 368 369 void ppc40x_system_reset(PowerPCCPU *cpu) 370 { 371 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 372 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 373 } 374 375 void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 376 { 377 PowerPCCPU *cpu = env_archcpu(env); 378 379 switch ((val >> 28) & 0x3) { 380 case 0x0: 381 /* No action */ 382 break; 383 case 0x1: 384 /* Core reset */ 385 ppc40x_core_reset(cpu); 386 break; 387 case 0x2: 388 /* Chip reset */ 389 ppc40x_chip_reset(cpu); 390 break; 391 case 0x3: 392 /* System reset */ 393 ppc40x_system_reset(cpu); 394 break; 395 } 396 } 397 398 /* PowerPC 40x internal IRQ controller */ 399 static void ppc40x_set_irq(void *opaque, int pin, int level) 400 { 401 PowerPCCPU *cpu = opaque; 402 CPUPPCState *env = &cpu->env; 403 int cur_level; 404 405 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 406 env, pin, level); 407 cur_level = (env->irq_input_state >> pin) & 1; 408 /* Don't generate spurious events */ 409 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 410 CPUState *cs = CPU(cpu); 411 412 switch (pin) { 413 case PPC40x_INPUT_RESET_SYS: 414 if (level) { 415 LOG_IRQ("%s: reset the PowerPC system\n", 416 __func__); 417 ppc40x_system_reset(cpu); 418 } 419 break; 420 case PPC40x_INPUT_RESET_CHIP: 421 if (level) { 422 LOG_IRQ("%s: reset the PowerPC chip\n", __func__); 423 ppc40x_chip_reset(cpu); 424 } 425 break; 426 case PPC40x_INPUT_RESET_CORE: 427 /* XXX: TODO: update DBSR[MRR] */ 428 if (level) { 429 LOG_IRQ("%s: reset the PowerPC core\n", __func__); 430 ppc40x_core_reset(cpu); 431 } 432 break; 433 case PPC40x_INPUT_CINT: 434 /* Level sensitive - active high */ 435 LOG_IRQ("%s: set the critical IRQ state to %d\n", 436 __func__, level); 437 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 438 break; 439 case PPC40x_INPUT_INT: 440 /* Level sensitive - active high */ 441 LOG_IRQ("%s: set the external IRQ state to %d\n", 442 __func__, level); 443 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 444 break; 445 case PPC40x_INPUT_HALT: 446 /* Level sensitive - active low */ 447 if (level) { 448 LOG_IRQ("%s: stop the CPU\n", __func__); 449 cs->halted = 1; 450 } else { 451 LOG_IRQ("%s: restart the CPU\n", __func__); 452 cs->halted = 0; 453 qemu_cpu_kick(cs); 454 } 455 break; 456 case PPC40x_INPUT_DEBUG: 457 /* Level sensitive - active high */ 458 LOG_IRQ("%s: set the debug pin state to %d\n", 459 __func__, level); 460 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 461 break; 462 default: 463 /* Unknown pin - do nothing */ 464 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 465 return; 466 } 467 if (level) 468 env->irq_input_state |= 1 << pin; 469 else 470 env->irq_input_state &= ~(1 << pin); 471 } 472 } 473 474 void ppc40x_irq_init(PowerPCCPU *cpu) 475 { 476 CPUPPCState *env = &cpu->env; 477 478 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq, 479 cpu, PPC40x_INPUT_NB); 480 } 481 482 /* PowerPC E500 internal IRQ controller */ 483 static void ppce500_set_irq(void *opaque, int pin, int level) 484 { 485 PowerPCCPU *cpu = opaque; 486 CPUPPCState *env = &cpu->env; 487 int cur_level; 488 489 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 490 env, pin, level); 491 cur_level = (env->irq_input_state >> pin) & 1; 492 /* Don't generate spurious events */ 493 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 494 switch (pin) { 495 case PPCE500_INPUT_MCK: 496 if (level) { 497 LOG_IRQ("%s: reset the PowerPC system\n", 498 __func__); 499 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 500 } 501 break; 502 case PPCE500_INPUT_RESET_CORE: 503 if (level) { 504 LOG_IRQ("%s: reset the PowerPC core\n", __func__); 505 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 506 } 507 break; 508 case PPCE500_INPUT_CINT: 509 /* Level sensitive - active high */ 510 LOG_IRQ("%s: set the critical IRQ state to %d\n", 511 __func__, level); 512 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 513 break; 514 case PPCE500_INPUT_INT: 515 /* Level sensitive - active high */ 516 LOG_IRQ("%s: set the core IRQ state to %d\n", 517 __func__, level); 518 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 519 break; 520 case PPCE500_INPUT_DEBUG: 521 /* Level sensitive - active high */ 522 LOG_IRQ("%s: set the debug pin state to %d\n", 523 __func__, level); 524 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 525 break; 526 default: 527 /* Unknown pin - do nothing */ 528 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 529 return; 530 } 531 if (level) 532 env->irq_input_state |= 1 << pin; 533 else 534 env->irq_input_state &= ~(1 << pin); 535 } 536 } 537 538 void ppce500_irq_init(PowerPCCPU *cpu) 539 { 540 CPUPPCState *env = &cpu->env; 541 542 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq, 543 cpu, PPCE500_INPUT_NB); 544 } 545 546 /* Enable or Disable the E500 EPR capability */ 547 void ppce500_set_mpic_proxy(bool enabled) 548 { 549 CPUState *cs; 550 551 CPU_FOREACH(cs) { 552 PowerPCCPU *cpu = POWERPC_CPU(cs); 553 554 cpu->env.mpic_proxy = enabled; 555 if (kvm_enabled()) { 556 kvmppc_set_mpic_proxy(cpu, enabled); 557 } 558 } 559 } 560 561 /*****************************************************************************/ 562 /* PowerPC time base and decrementer emulation */ 563 564 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 565 { 566 /* TB time in tb periods */ 567 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset; 568 } 569 570 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 571 { 572 ppc_tb_t *tb_env = env->tb_env; 573 uint64_t tb; 574 575 if (kvm_enabled()) { 576 return env->spr[SPR_TBL]; 577 } 578 579 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 580 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 581 582 return tb; 583 } 584 585 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 586 { 587 ppc_tb_t *tb_env = env->tb_env; 588 uint64_t tb; 589 590 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 591 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 592 593 return tb >> 32; 594 } 595 596 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 597 { 598 if (kvm_enabled()) { 599 return env->spr[SPR_TBU]; 600 } 601 602 return _cpu_ppc_load_tbu(env); 603 } 604 605 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 606 int64_t *tb_offsetp, uint64_t value) 607 { 608 *tb_offsetp = value - 609 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND); 610 611 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n", 612 __func__, value, *tb_offsetp); 613 } 614 615 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 616 { 617 ppc_tb_t *tb_env = env->tb_env; 618 uint64_t tb; 619 620 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 621 tb &= 0xFFFFFFFF00000000ULL; 622 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 623 &tb_env->tb_offset, tb | (uint64_t)value); 624 } 625 626 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 627 { 628 ppc_tb_t *tb_env = env->tb_env; 629 uint64_t tb; 630 631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 632 tb &= 0x00000000FFFFFFFFULL; 633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 634 &tb_env->tb_offset, ((uint64_t)value << 32) | tb); 635 } 636 637 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 638 { 639 _cpu_ppc_store_tbu(env, value); 640 } 641 642 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 643 { 644 ppc_tb_t *tb_env = env->tb_env; 645 uint64_t tb; 646 647 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 648 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 649 650 return tb; 651 } 652 653 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 654 { 655 ppc_tb_t *tb_env = env->tb_env; 656 uint64_t tb; 657 658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 659 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 660 661 return tb >> 32; 662 } 663 664 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 665 { 666 ppc_tb_t *tb_env = env->tb_env; 667 uint64_t tb; 668 669 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 670 tb &= 0xFFFFFFFF00000000ULL; 671 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 672 &tb_env->atb_offset, tb | (uint64_t)value); 673 } 674 675 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 676 { 677 ppc_tb_t *tb_env = env->tb_env; 678 uint64_t tb; 679 680 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 681 tb &= 0x00000000FFFFFFFFULL; 682 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 683 &tb_env->atb_offset, ((uint64_t)value << 32) | tb); 684 } 685 686 uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 687 { 688 ppc_tb_t *tb_env = env->tb_env; 689 690 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 691 tb_env->vtb_offset); 692 } 693 694 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 695 { 696 ppc_tb_t *tb_env = env->tb_env; 697 698 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 699 &tb_env->vtb_offset, value); 700 } 701 702 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 703 { 704 ppc_tb_t *tb_env = env->tb_env; 705 uint64_t tb; 706 707 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 708 tb_env->tb_offset); 709 tb &= 0xFFFFFFUL; 710 tb |= (value & ~0xFFFFFFUL); 711 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 712 &tb_env->tb_offset, tb); 713 } 714 715 static void cpu_ppc_tb_stop (CPUPPCState *env) 716 { 717 ppc_tb_t *tb_env = env->tb_env; 718 uint64_t tb, atb, vmclk; 719 720 /* If the time base is already frozen, do nothing */ 721 if (tb_env->tb_freq != 0) { 722 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 723 /* Get the time base */ 724 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 725 /* Get the alternate time base */ 726 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 727 /* Store the time base value (ie compute the current offset) */ 728 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 729 /* Store the alternate time base value (compute the current offset) */ 730 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 731 /* Set the time base frequency to zero */ 732 tb_env->tb_freq = 0; 733 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 734 } 735 } 736 737 static void cpu_ppc_tb_start (CPUPPCState *env) 738 { 739 ppc_tb_t *tb_env = env->tb_env; 740 uint64_t tb, atb, vmclk; 741 742 /* If the time base is not frozen, do nothing */ 743 if (tb_env->tb_freq == 0) { 744 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 745 /* Get the time base from tb_offset */ 746 tb = tb_env->tb_offset; 747 /* Get the alternate time base from atb_offset */ 748 atb = tb_env->atb_offset; 749 /* Restore the tb frequency from the decrementer frequency */ 750 tb_env->tb_freq = tb_env->decr_freq; 751 /* Store the time base value */ 752 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 753 /* Store the alternate time base value */ 754 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 755 } 756 } 757 758 bool ppc_decr_clear_on_delivery(CPUPPCState *env) 759 { 760 ppc_tb_t *tb_env = env->tb_env; 761 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 762 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 763 } 764 765 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) 766 { 767 ppc_tb_t *tb_env = env->tb_env; 768 int64_t decr, diff; 769 770 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 771 if (diff >= 0) { 772 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 773 } else if (tb_env->flags & PPC_TIMER_BOOKE) { 774 decr = 0; 775 } else { 776 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 777 } 778 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr); 779 780 return decr; 781 } 782 783 target_ulong cpu_ppc_load_decr(CPUPPCState *env) 784 { 785 ppc_tb_t *tb_env = env->tb_env; 786 uint64_t decr; 787 788 if (kvm_enabled()) { 789 return env->spr[SPR_DECR]; 790 } 791 792 decr = _cpu_ppc_load_decr(env, tb_env->decr_next); 793 794 /* 795 * If large decrementer is enabled then the decrementer is signed extened 796 * to 64 bits, otherwise it is a 32 bit value. 797 */ 798 if (env->spr[SPR_LPCR] & LPCR_LD) { 799 return decr; 800 } 801 return (uint32_t) decr; 802 } 803 804 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 805 { 806 PowerPCCPU *cpu = env_archcpu(env); 807 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 808 ppc_tb_t *tb_env = env->tb_env; 809 uint64_t hdecr; 810 811 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next); 812 813 /* 814 * If we have a large decrementer (POWER9 or later) then hdecr is sign 815 * extended to 64 bits, otherwise it is 32 bits. 816 */ 817 if (pcc->lrg_decr_bits > 32) { 818 return hdecr; 819 } 820 return (uint32_t) hdecr; 821 } 822 823 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 824 { 825 ppc_tb_t *tb_env = env->tb_env; 826 827 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 828 tb_env->purr_offset); 829 } 830 831 /* When decrementer expires, 832 * all we need to do is generate or queue a CPU exception 833 */ 834 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 835 { 836 /* Raise it */ 837 LOG_TB("raise decrementer exception\n"); 838 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 839 } 840 841 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 842 { 843 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 844 } 845 846 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 847 { 848 CPUPPCState *env = &cpu->env; 849 850 /* Raise it */ 851 LOG_TB("raise hv decrementer exception\n"); 852 853 /* The architecture specifies that we don't deliver HDEC 854 * interrupts in a PM state. Not only they don't cause a 855 * wakeup but they also get effectively discarded. 856 */ 857 if (!env->resume_as_sreset) { 858 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 859 } 860 } 861 862 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 863 { 864 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 865 } 866 867 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, 868 QEMUTimer *timer, 869 void (*raise_excp)(void *), 870 void (*lower_excp)(PowerPCCPU *), 871 target_ulong decr, target_ulong value, 872 int nr_bits) 873 { 874 CPUPPCState *env = &cpu->env; 875 ppc_tb_t *tb_env = env->tb_env; 876 uint64_t now, next; 877 bool negative; 878 879 /* Truncate value to decr_width and sign extend for simplicity */ 880 value &= ((1ULL << nr_bits) - 1); 881 negative = !!(value & (1ULL << (nr_bits - 1))); 882 if (negative) { 883 value |= (0xFFFFFFFFULL << nr_bits); 884 } 885 886 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__, 887 decr, value); 888 889 if (kvm_enabled()) { 890 /* KVM handles decrementer exceptions, we don't need our own timer */ 891 return; 892 } 893 894 /* 895 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC 896 * interrupt. 897 * 898 * If we get a really small DEC value, we can assume that by the time we 899 * handled it we should inject an interrupt already. 900 * 901 * On MSB level based DEC implementations the MSB always means the interrupt 902 * is pending, so raise it on those. 903 * 904 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 905 * an edge interrupt, so raise it here too. 906 */ 907 if ((value < 3) || 908 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) || 909 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative 910 && !(decr & (1ULL << (nr_bits - 1))))) { 911 (*raise_excp)(cpu); 912 return; 913 } 914 915 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 916 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) { 917 (*lower_excp)(cpu); 918 } 919 920 /* Calculate the next timer event */ 921 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 922 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 923 *nextp = next; 924 925 /* Adjust timer */ 926 timer_mod(timer, next); 927 } 928 929 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr, 930 target_ulong value, int nr_bits) 931 { 932 ppc_tb_t *tb_env = cpu->env.tb_env; 933 934 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, 935 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr, 936 value, nr_bits); 937 } 938 939 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 940 { 941 PowerPCCPU *cpu = env_archcpu(env); 942 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 943 int nr_bits = 32; 944 945 if (env->spr[SPR_LPCR] & LPCR_LD) { 946 nr_bits = pcc->lrg_decr_bits; 947 } 948 949 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits); 950 } 951 952 static void cpu_ppc_decr_cb(void *opaque) 953 { 954 PowerPCCPU *cpu = opaque; 955 956 cpu_ppc_decr_excp(cpu); 957 } 958 959 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr, 960 target_ulong value, int nr_bits) 961 { 962 ppc_tb_t *tb_env = cpu->env.tb_env; 963 964 if (tb_env->hdecr_timer != NULL) { 965 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, 966 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 967 hdecr, value, nr_bits); 968 } 969 } 970 971 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 972 { 973 PowerPCCPU *cpu = env_archcpu(env); 974 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 975 976 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 977 pcc->lrg_decr_bits); 978 } 979 980 static void cpu_ppc_hdecr_cb(void *opaque) 981 { 982 PowerPCCPU *cpu = opaque; 983 984 cpu_ppc_hdecr_excp(cpu); 985 } 986 987 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 988 { 989 ppc_tb_t *tb_env = env->tb_env; 990 991 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 992 &tb_env->purr_offset, value); 993 } 994 995 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) 996 { 997 CPUPPCState *env = opaque; 998 PowerPCCPU *cpu = env_archcpu(env); 999 ppc_tb_t *tb_env = env->tb_env; 1000 1001 tb_env->tb_freq = freq; 1002 tb_env->decr_freq = freq; 1003 /* There is a bug in Linux 2.4 kernels: 1004 * if a decrementer exception is pending when it enables msr_ee at startup, 1005 * it's not ready to handle it... 1006 */ 1007 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 1008 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 1009 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 1010 } 1011 1012 static void timebase_save(PPCTimebase *tb) 1013 { 1014 uint64_t ticks = cpu_get_host_ticks(); 1015 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1016 1017 if (!first_ppc_cpu->env.tb_env) { 1018 error_report("No timebase object"); 1019 return; 1020 } 1021 1022 /* not used anymore, we keep it for compatibility */ 1023 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 1024 /* 1025 * tb_offset is only expected to be changed by QEMU so 1026 * there is no need to update it from KVM here 1027 */ 1028 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 1029 1030 tb->runstate_paused = runstate_check(RUN_STATE_PAUSED); 1031 } 1032 1033 static void timebase_load(PPCTimebase *tb) 1034 { 1035 CPUState *cpu; 1036 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1037 int64_t tb_off_adj, tb_off; 1038 unsigned long freq; 1039 1040 if (!first_ppc_cpu->env.tb_env) { 1041 error_report("No timebase object"); 1042 return; 1043 } 1044 1045 freq = first_ppc_cpu->env.tb_env->tb_freq; 1046 1047 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 1048 1049 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 1050 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 1051 (tb_off_adj - tb_off) / freq); 1052 1053 /* Set new offset to all CPUs */ 1054 CPU_FOREACH(cpu) { 1055 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 1056 pcpu->env.tb_env->tb_offset = tb_off_adj; 1057 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 1058 } 1059 } 1060 1061 void cpu_ppc_clock_vm_state_change(void *opaque, int running, 1062 RunState state) 1063 { 1064 PPCTimebase *tb = opaque; 1065 1066 if (running) { 1067 timebase_load(tb); 1068 } else { 1069 timebase_save(tb); 1070 } 1071 } 1072 1073 /* 1074 * When migrating a running guest, read the clock just 1075 * before migration, so that the guest clock counts 1076 * during the events between: 1077 * 1078 * * vm_stop() 1079 * * 1080 * * pre_save() 1081 * 1082 * This reduces clock difference on migration from 5s 1083 * to 0.1s (when max_downtime == 5s), because sending the 1084 * final pages of memory (which happens between vm_stop() 1085 * and pre_save()) takes max_downtime. 1086 */ 1087 static int timebase_pre_save(void *opaque) 1088 { 1089 PPCTimebase *tb = opaque; 1090 1091 /* guest_timebase won't be overridden in case of paused guest */ 1092 if (!tb->runstate_paused) { 1093 timebase_save(tb); 1094 } 1095 1096 return 0; 1097 } 1098 1099 const VMStateDescription vmstate_ppc_timebase = { 1100 .name = "timebase", 1101 .version_id = 1, 1102 .minimum_version_id = 1, 1103 .minimum_version_id_old = 1, 1104 .pre_save = timebase_pre_save, 1105 .fields = (VMStateField []) { 1106 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1107 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1108 VMSTATE_END_OF_LIST() 1109 }, 1110 }; 1111 1112 /* Set up (once) timebase frequency (in Hz) */ 1113 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) 1114 { 1115 PowerPCCPU *cpu = env_archcpu(env); 1116 ppc_tb_t *tb_env; 1117 1118 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1119 env->tb_env = tb_env; 1120 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1121 if (is_book3s_arch2x(env)) { 1122 /* All Book3S 64bit CPUs implement level based DEC logic */ 1123 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1124 } 1125 /* Create new timer */ 1126 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); 1127 if (env->has_hv_mode) { 1128 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, 1129 cpu); 1130 } else { 1131 tb_env->hdecr_timer = NULL; 1132 } 1133 cpu_ppc_set_tb_clk(env, freq); 1134 1135 return &cpu_ppc_set_tb_clk; 1136 } 1137 1138 /* Specific helpers for POWER & PowerPC 601 RTC */ 1139 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value) 1140 { 1141 _cpu_ppc_store_tbu(env, value); 1142 } 1143 1144 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env) 1145 { 1146 return _cpu_ppc_load_tbu(env); 1147 } 1148 1149 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value) 1150 { 1151 cpu_ppc_store_tbl(env, value & 0x3FFFFF80); 1152 } 1153 1154 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env) 1155 { 1156 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1157 } 1158 1159 /*****************************************************************************/ 1160 /* PowerPC 40x timers */ 1161 1162 /* PIT, FIT & WDT */ 1163 typedef struct ppc40x_timer_t ppc40x_timer_t; 1164 struct ppc40x_timer_t { 1165 uint64_t pit_reload; /* PIT auto-reload value */ 1166 uint64_t fit_next; /* Tick for next FIT interrupt */ 1167 QEMUTimer *fit_timer; 1168 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1169 QEMUTimer *wdt_timer; 1170 1171 /* 405 have the PIT, 440 have a DECR. */ 1172 unsigned int decr_excp; 1173 }; 1174 1175 /* Fixed interval timer */ 1176 static void cpu_4xx_fit_cb (void *opaque) 1177 { 1178 PowerPCCPU *cpu; 1179 CPUPPCState *env; 1180 ppc_tb_t *tb_env; 1181 ppc40x_timer_t *ppc40x_timer; 1182 uint64_t now, next; 1183 1184 env = opaque; 1185 cpu = env_archcpu(env); 1186 tb_env = env->tb_env; 1187 ppc40x_timer = tb_env->opaque; 1188 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1189 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1190 case 0: 1191 next = 1 << 9; 1192 break; 1193 case 1: 1194 next = 1 << 13; 1195 break; 1196 case 2: 1197 next = 1 << 17; 1198 break; 1199 case 3: 1200 next = 1 << 21; 1201 break; 1202 default: 1203 /* Cannot occur, but makes gcc happy */ 1204 return; 1205 } 1206 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq); 1207 if (next == now) 1208 next++; 1209 timer_mod(ppc40x_timer->fit_timer, next); 1210 env->spr[SPR_40x_TSR] |= 1 << 26; 1211 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1212 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1213 } 1214 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__, 1215 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1216 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1217 } 1218 1219 /* Programmable interval timer */ 1220 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1221 { 1222 ppc40x_timer_t *ppc40x_timer; 1223 uint64_t now, next; 1224 1225 ppc40x_timer = tb_env->opaque; 1226 if (ppc40x_timer->pit_reload <= 1 || 1227 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1228 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1229 /* Stop PIT */ 1230 LOG_TB("%s: stop PIT\n", __func__); 1231 timer_del(tb_env->decr_timer); 1232 } else { 1233 LOG_TB("%s: start PIT %016" PRIx64 "\n", 1234 __func__, ppc40x_timer->pit_reload); 1235 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1236 next = now + muldiv64(ppc40x_timer->pit_reload, 1237 NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1238 if (is_excp) 1239 next += tb_env->decr_next - now; 1240 if (next == now) 1241 next++; 1242 timer_mod(tb_env->decr_timer, next); 1243 tb_env->decr_next = next; 1244 } 1245 } 1246 1247 static void cpu_4xx_pit_cb (void *opaque) 1248 { 1249 PowerPCCPU *cpu; 1250 CPUPPCState *env; 1251 ppc_tb_t *tb_env; 1252 ppc40x_timer_t *ppc40x_timer; 1253 1254 env = opaque; 1255 cpu = env_archcpu(env); 1256 tb_env = env->tb_env; 1257 ppc40x_timer = tb_env->opaque; 1258 env->spr[SPR_40x_TSR] |= 1 << 27; 1259 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1260 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1261 } 1262 start_stop_pit(env, tb_env, 1); 1263 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " " 1264 "%016" PRIx64 "\n", __func__, 1265 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1266 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1267 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1268 ppc40x_timer->pit_reload); 1269 } 1270 1271 /* Watchdog timer */ 1272 static void cpu_4xx_wdt_cb (void *opaque) 1273 { 1274 PowerPCCPU *cpu; 1275 CPUPPCState *env; 1276 ppc_tb_t *tb_env; 1277 ppc40x_timer_t *ppc40x_timer; 1278 uint64_t now, next; 1279 1280 env = opaque; 1281 cpu = env_archcpu(env); 1282 tb_env = env->tb_env; 1283 ppc40x_timer = tb_env->opaque; 1284 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1285 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1286 case 0: 1287 next = 1 << 17; 1288 break; 1289 case 1: 1290 next = 1 << 21; 1291 break; 1292 case 2: 1293 next = 1 << 25; 1294 break; 1295 case 3: 1296 next = 1 << 29; 1297 break; 1298 default: 1299 /* Cannot occur, but makes gcc happy */ 1300 return; 1301 } 1302 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1303 if (next == now) 1304 next++; 1305 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__, 1306 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1307 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1308 case 0x0: 1309 case 0x1: 1310 timer_mod(ppc40x_timer->wdt_timer, next); 1311 ppc40x_timer->wdt_next = next; 1312 env->spr[SPR_40x_TSR] |= 1U << 31; 1313 break; 1314 case 0x2: 1315 timer_mod(ppc40x_timer->wdt_timer, next); 1316 ppc40x_timer->wdt_next = next; 1317 env->spr[SPR_40x_TSR] |= 1 << 30; 1318 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1319 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1320 } 1321 break; 1322 case 0x3: 1323 env->spr[SPR_40x_TSR] &= ~0x30000000; 1324 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1325 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1326 case 0x0: 1327 /* No reset */ 1328 break; 1329 case 0x1: /* Core reset */ 1330 ppc40x_core_reset(cpu); 1331 break; 1332 case 0x2: /* Chip reset */ 1333 ppc40x_chip_reset(cpu); 1334 break; 1335 case 0x3: /* System reset */ 1336 ppc40x_system_reset(cpu); 1337 break; 1338 } 1339 } 1340 } 1341 1342 void store_40x_pit (CPUPPCState *env, target_ulong val) 1343 { 1344 ppc_tb_t *tb_env; 1345 ppc40x_timer_t *ppc40x_timer; 1346 1347 tb_env = env->tb_env; 1348 ppc40x_timer = tb_env->opaque; 1349 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val); 1350 ppc40x_timer->pit_reload = val; 1351 start_stop_pit(env, tb_env, 0); 1352 } 1353 1354 target_ulong load_40x_pit (CPUPPCState *env) 1355 { 1356 return cpu_ppc_load_decr(env); 1357 } 1358 1359 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1360 { 1361 CPUPPCState *env = opaque; 1362 ppc_tb_t *tb_env = env->tb_env; 1363 1364 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__, 1365 freq); 1366 tb_env->tb_freq = freq; 1367 tb_env->decr_freq = freq; 1368 /* XXX: we should also update all timers */ 1369 } 1370 1371 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1372 unsigned int decr_excp) 1373 { 1374 ppc_tb_t *tb_env; 1375 ppc40x_timer_t *ppc40x_timer; 1376 1377 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1378 env->tb_env = tb_env; 1379 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1380 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t)); 1381 tb_env->tb_freq = freq; 1382 tb_env->decr_freq = freq; 1383 tb_env->opaque = ppc40x_timer; 1384 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq); 1385 if (ppc40x_timer != NULL) { 1386 /* We use decr timer for PIT */ 1387 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env); 1388 ppc40x_timer->fit_timer = 1389 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env); 1390 ppc40x_timer->wdt_timer = 1391 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env); 1392 ppc40x_timer->decr_excp = decr_excp; 1393 } 1394 1395 return &ppc_40x_set_tb_clk; 1396 } 1397 1398 /*****************************************************************************/ 1399 /* Embedded PowerPC Device Control Registers */ 1400 typedef struct ppc_dcrn_t ppc_dcrn_t; 1401 struct ppc_dcrn_t { 1402 dcr_read_cb dcr_read; 1403 dcr_write_cb dcr_write; 1404 void *opaque; 1405 }; 1406 1407 /* XXX: on 460, DCR addresses are 32 bits wide, 1408 * using DCRIPR to get the 22 upper bits of the DCR address 1409 */ 1410 #define DCRN_NB 1024 1411 struct ppc_dcr_t { 1412 ppc_dcrn_t dcrn[DCRN_NB]; 1413 int (*read_error)(int dcrn); 1414 int (*write_error)(int dcrn); 1415 }; 1416 1417 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1418 { 1419 ppc_dcrn_t *dcr; 1420 1421 if (dcrn < 0 || dcrn >= DCRN_NB) 1422 goto error; 1423 dcr = &dcr_env->dcrn[dcrn]; 1424 if (dcr->dcr_read == NULL) 1425 goto error; 1426 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1427 1428 return 0; 1429 1430 error: 1431 if (dcr_env->read_error != NULL) 1432 return (*dcr_env->read_error)(dcrn); 1433 1434 return -1; 1435 } 1436 1437 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1438 { 1439 ppc_dcrn_t *dcr; 1440 1441 if (dcrn < 0 || dcrn >= DCRN_NB) 1442 goto error; 1443 dcr = &dcr_env->dcrn[dcrn]; 1444 if (dcr->dcr_write == NULL) 1445 goto error; 1446 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1447 1448 return 0; 1449 1450 error: 1451 if (dcr_env->write_error != NULL) 1452 return (*dcr_env->write_error)(dcrn); 1453 1454 return -1; 1455 } 1456 1457 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1458 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1459 { 1460 ppc_dcr_t *dcr_env; 1461 ppc_dcrn_t *dcr; 1462 1463 dcr_env = env->dcr_env; 1464 if (dcr_env == NULL) 1465 return -1; 1466 if (dcrn < 0 || dcrn >= DCRN_NB) 1467 return -1; 1468 dcr = &dcr_env->dcrn[dcrn]; 1469 if (dcr->opaque != NULL || 1470 dcr->dcr_read != NULL || 1471 dcr->dcr_write != NULL) 1472 return -1; 1473 dcr->opaque = opaque; 1474 dcr->dcr_read = dcr_read; 1475 dcr->dcr_write = dcr_write; 1476 1477 return 0; 1478 } 1479 1480 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1481 int (*write_error)(int dcrn)) 1482 { 1483 ppc_dcr_t *dcr_env; 1484 1485 dcr_env = g_malloc0(sizeof(ppc_dcr_t)); 1486 dcr_env->read_error = read_error; 1487 dcr_env->write_error = write_error; 1488 env->dcr_env = dcr_env; 1489 1490 return 0; 1491 } 1492 1493 /*****************************************************************************/ 1494 1495 int ppc_cpu_pir(PowerPCCPU *cpu) 1496 { 1497 CPUPPCState *env = &cpu->env; 1498 return env->spr_cb[SPR_PIR].default_value; 1499 } 1500 1501 PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1502 { 1503 CPUState *cs; 1504 1505 CPU_FOREACH(cs) { 1506 PowerPCCPU *cpu = POWERPC_CPU(cs); 1507 1508 if (ppc_cpu_pir(cpu) == pir) { 1509 return cpu; 1510 } 1511 } 1512 1513 return NULL; 1514 } 1515 1516 void ppc_irq_reset(PowerPCCPU *cpu) 1517 { 1518 CPUPPCState *env = &cpu->env; 1519 1520 env->irq_input_state = 0; 1521 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1522 } 1523