1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/ppc/ppc.h" 26 #include "hw/ppc/ppc_e500.h" 27 #include "qemu/timer.h" 28 #include "sysemu/sysemu.h" 29 #include "hw/timer/m48t59.h" 30 #include "qemu/log.h" 31 #include "hw/loader.h" 32 #include "sysemu/kvm.h" 33 #include "kvm_ppc.h" 34 35 //#define PPC_DEBUG_IRQ 36 //#define PPC_DEBUG_TB 37 38 #ifdef PPC_DEBUG_IRQ 39 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__) 40 #else 41 # define LOG_IRQ(...) do { } while (0) 42 #endif 43 44 45 #ifdef PPC_DEBUG_TB 46 # define LOG_TB(...) qemu_log(__VA_ARGS__) 47 #else 48 # define LOG_TB(...) do { } while (0) 49 #endif 50 51 static void cpu_ppc_tb_stop (CPUPPCState *env); 52 static void cpu_ppc_tb_start (CPUPPCState *env); 53 54 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level) 55 { 56 CPUState *cs = CPU(cpu); 57 CPUPPCState *env = &cpu->env; 58 unsigned int old_pending = env->pending_interrupts; 59 60 if (level) { 61 env->pending_interrupts |= 1 << n_IRQ; 62 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 63 } else { 64 env->pending_interrupts &= ~(1 << n_IRQ); 65 if (env->pending_interrupts == 0) { 66 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 67 } 68 } 69 70 if (old_pending != env->pending_interrupts) { 71 #ifdef CONFIG_KVM 72 kvmppc_set_interrupt(cpu, n_IRQ, level); 73 #endif 74 } 75 76 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32 77 "req %08x\n", __func__, env, n_IRQ, level, 78 env->pending_interrupts, CPU(cpu)->interrupt_request); 79 } 80 81 /* PowerPC 6xx / 7xx internal IRQ controller */ 82 static void ppc6xx_set_irq(void *opaque, int pin, int level) 83 { 84 PowerPCCPU *cpu = opaque; 85 CPUPPCState *env = &cpu->env; 86 int cur_level; 87 88 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 89 env, pin, level); 90 cur_level = (env->irq_input_state >> pin) & 1; 91 /* Don't generate spurious events */ 92 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 93 CPUState *cs = CPU(cpu); 94 95 switch (pin) { 96 case PPC6xx_INPUT_TBEN: 97 /* Level sensitive - active high */ 98 LOG_IRQ("%s: %s the time base\n", 99 __func__, level ? "start" : "stop"); 100 if (level) { 101 cpu_ppc_tb_start(env); 102 } else { 103 cpu_ppc_tb_stop(env); 104 } 105 case PPC6xx_INPUT_INT: 106 /* Level sensitive - active high */ 107 LOG_IRQ("%s: set the external IRQ state to %d\n", 108 __func__, level); 109 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 110 break; 111 case PPC6xx_INPUT_SMI: 112 /* Level sensitive - active high */ 113 LOG_IRQ("%s: set the SMI IRQ state to %d\n", 114 __func__, level); 115 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 116 break; 117 case PPC6xx_INPUT_MCP: 118 /* Negative edge sensitive */ 119 /* XXX: TODO: actual reaction may depends on HID0 status 120 * 603/604/740/750: check HID0[EMCP] 121 */ 122 if (cur_level == 1 && level == 0) { 123 LOG_IRQ("%s: raise machine check state\n", 124 __func__); 125 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 126 } 127 break; 128 case PPC6xx_INPUT_CKSTP_IN: 129 /* Level sensitive - active low */ 130 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 131 /* XXX: Note that the only way to restart the CPU is to reset it */ 132 if (level) { 133 LOG_IRQ("%s: stop the CPU\n", __func__); 134 cs->halted = 1; 135 } 136 break; 137 case PPC6xx_INPUT_HRESET: 138 /* Level sensitive - active low */ 139 if (level) { 140 LOG_IRQ("%s: reset the CPU\n", __func__); 141 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 142 } 143 break; 144 case PPC6xx_INPUT_SRESET: 145 LOG_IRQ("%s: set the RESET IRQ state to %d\n", 146 __func__, level); 147 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 148 break; 149 default: 150 /* Unknown pin - do nothing */ 151 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 152 return; 153 } 154 if (level) 155 env->irq_input_state |= 1 << pin; 156 else 157 env->irq_input_state &= ~(1 << pin); 158 } 159 } 160 161 void ppc6xx_irq_init(CPUPPCState *env) 162 { 163 PowerPCCPU *cpu = ppc_env_get_cpu(env); 164 165 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu, 166 PPC6xx_INPUT_NB); 167 } 168 169 #if defined(TARGET_PPC64) 170 /* PowerPC 970 internal IRQ controller */ 171 static void ppc970_set_irq(void *opaque, int pin, int level) 172 { 173 PowerPCCPU *cpu = opaque; 174 CPUPPCState *env = &cpu->env; 175 int cur_level; 176 177 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 178 env, pin, level); 179 cur_level = (env->irq_input_state >> pin) & 1; 180 /* Don't generate spurious events */ 181 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 182 CPUState *cs = CPU(cpu); 183 184 switch (pin) { 185 case PPC970_INPUT_INT: 186 /* Level sensitive - active high */ 187 LOG_IRQ("%s: set the external IRQ state to %d\n", 188 __func__, level); 189 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 190 break; 191 case PPC970_INPUT_THINT: 192 /* Level sensitive - active high */ 193 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__, 194 level); 195 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 196 break; 197 case PPC970_INPUT_MCP: 198 /* Negative edge sensitive */ 199 /* XXX: TODO: actual reaction may depends on HID0 status 200 * 603/604/740/750: check HID0[EMCP] 201 */ 202 if (cur_level == 1 && level == 0) { 203 LOG_IRQ("%s: raise machine check state\n", 204 __func__); 205 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 206 } 207 break; 208 case PPC970_INPUT_CKSTP: 209 /* Level sensitive - active low */ 210 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 211 if (level) { 212 LOG_IRQ("%s: stop the CPU\n", __func__); 213 cs->halted = 1; 214 } else { 215 LOG_IRQ("%s: restart the CPU\n", __func__); 216 cs->halted = 0; 217 qemu_cpu_kick(cs); 218 } 219 break; 220 case PPC970_INPUT_HRESET: 221 /* Level sensitive - active low */ 222 if (level) { 223 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 224 } 225 break; 226 case PPC970_INPUT_SRESET: 227 LOG_IRQ("%s: set the RESET IRQ state to %d\n", 228 __func__, level); 229 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 230 break; 231 case PPC970_INPUT_TBEN: 232 LOG_IRQ("%s: set the TBEN state to %d\n", __func__, 233 level); 234 /* XXX: TODO */ 235 break; 236 default: 237 /* Unknown pin - do nothing */ 238 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 239 return; 240 } 241 if (level) 242 env->irq_input_state |= 1 << pin; 243 else 244 env->irq_input_state &= ~(1 << pin); 245 } 246 } 247 248 void ppc970_irq_init(CPUPPCState *env) 249 { 250 PowerPCCPU *cpu = ppc_env_get_cpu(env); 251 252 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu, 253 PPC970_INPUT_NB); 254 } 255 256 /* POWER7 internal IRQ controller */ 257 static void power7_set_irq(void *opaque, int pin, int level) 258 { 259 PowerPCCPU *cpu = opaque; 260 CPUPPCState *env = &cpu->env; 261 262 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 263 env, pin, level); 264 265 switch (pin) { 266 case POWER7_INPUT_INT: 267 /* Level sensitive - active high */ 268 LOG_IRQ("%s: set the external IRQ state to %d\n", 269 __func__, level); 270 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 271 break; 272 default: 273 /* Unknown pin - do nothing */ 274 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 275 return; 276 } 277 if (level) { 278 env->irq_input_state |= 1 << pin; 279 } else { 280 env->irq_input_state &= ~(1 << pin); 281 } 282 } 283 284 void ppcPOWER7_irq_init(CPUPPCState *env) 285 { 286 PowerPCCPU *cpu = ppc_env_get_cpu(env); 287 288 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu, 289 POWER7_INPUT_NB); 290 } 291 #endif /* defined(TARGET_PPC64) */ 292 293 /* PowerPC 40x internal IRQ controller */ 294 static void ppc40x_set_irq(void *opaque, int pin, int level) 295 { 296 PowerPCCPU *cpu = opaque; 297 CPUPPCState *env = &cpu->env; 298 int cur_level; 299 300 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 301 env, pin, level); 302 cur_level = (env->irq_input_state >> pin) & 1; 303 /* Don't generate spurious events */ 304 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 305 CPUState *cs = CPU(cpu); 306 307 switch (pin) { 308 case PPC40x_INPUT_RESET_SYS: 309 if (level) { 310 LOG_IRQ("%s: reset the PowerPC system\n", 311 __func__); 312 ppc40x_system_reset(cpu); 313 } 314 break; 315 case PPC40x_INPUT_RESET_CHIP: 316 if (level) { 317 LOG_IRQ("%s: reset the PowerPC chip\n", __func__); 318 ppc40x_chip_reset(cpu); 319 } 320 break; 321 case PPC40x_INPUT_RESET_CORE: 322 /* XXX: TODO: update DBSR[MRR] */ 323 if (level) { 324 LOG_IRQ("%s: reset the PowerPC core\n", __func__); 325 ppc40x_core_reset(cpu); 326 } 327 break; 328 case PPC40x_INPUT_CINT: 329 /* Level sensitive - active high */ 330 LOG_IRQ("%s: set the critical IRQ state to %d\n", 331 __func__, level); 332 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 333 break; 334 case PPC40x_INPUT_INT: 335 /* Level sensitive - active high */ 336 LOG_IRQ("%s: set the external IRQ state to %d\n", 337 __func__, level); 338 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 339 break; 340 case PPC40x_INPUT_HALT: 341 /* Level sensitive - active low */ 342 if (level) { 343 LOG_IRQ("%s: stop the CPU\n", __func__); 344 cs->halted = 1; 345 } else { 346 LOG_IRQ("%s: restart the CPU\n", __func__); 347 cs->halted = 0; 348 qemu_cpu_kick(cs); 349 } 350 break; 351 case PPC40x_INPUT_DEBUG: 352 /* Level sensitive - active high */ 353 LOG_IRQ("%s: set the debug pin state to %d\n", 354 __func__, level); 355 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 356 break; 357 default: 358 /* Unknown pin - do nothing */ 359 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 360 return; 361 } 362 if (level) 363 env->irq_input_state |= 1 << pin; 364 else 365 env->irq_input_state &= ~(1 << pin); 366 } 367 } 368 369 void ppc40x_irq_init(CPUPPCState *env) 370 { 371 PowerPCCPU *cpu = ppc_env_get_cpu(env); 372 373 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq, 374 cpu, PPC40x_INPUT_NB); 375 } 376 377 /* PowerPC E500 internal IRQ controller */ 378 static void ppce500_set_irq(void *opaque, int pin, int level) 379 { 380 PowerPCCPU *cpu = opaque; 381 CPUPPCState *env = &cpu->env; 382 int cur_level; 383 384 LOG_IRQ("%s: env %p pin %d level %d\n", __func__, 385 env, pin, level); 386 cur_level = (env->irq_input_state >> pin) & 1; 387 /* Don't generate spurious events */ 388 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 389 switch (pin) { 390 case PPCE500_INPUT_MCK: 391 if (level) { 392 LOG_IRQ("%s: reset the PowerPC system\n", 393 __func__); 394 qemu_system_reset_request(); 395 } 396 break; 397 case PPCE500_INPUT_RESET_CORE: 398 if (level) { 399 LOG_IRQ("%s: reset the PowerPC core\n", __func__); 400 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 401 } 402 break; 403 case PPCE500_INPUT_CINT: 404 /* Level sensitive - active high */ 405 LOG_IRQ("%s: set the critical IRQ state to %d\n", 406 __func__, level); 407 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 408 break; 409 case PPCE500_INPUT_INT: 410 /* Level sensitive - active high */ 411 LOG_IRQ("%s: set the core IRQ state to %d\n", 412 __func__, level); 413 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 414 break; 415 case PPCE500_INPUT_DEBUG: 416 /* Level sensitive - active high */ 417 LOG_IRQ("%s: set the debug pin state to %d\n", 418 __func__, level); 419 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 420 break; 421 default: 422 /* Unknown pin - do nothing */ 423 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); 424 return; 425 } 426 if (level) 427 env->irq_input_state |= 1 << pin; 428 else 429 env->irq_input_state &= ~(1 << pin); 430 } 431 } 432 433 void ppce500_irq_init(CPUPPCState *env) 434 { 435 PowerPCCPU *cpu = ppc_env_get_cpu(env); 436 437 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq, 438 cpu, PPCE500_INPUT_NB); 439 } 440 441 /* Enable or Disable the E500 EPR capability */ 442 void ppce500_set_mpic_proxy(bool enabled) 443 { 444 CPUState *cs; 445 446 CPU_FOREACH(cs) { 447 PowerPCCPU *cpu = POWERPC_CPU(cs); 448 449 cpu->env.mpic_proxy = enabled; 450 if (kvm_enabled()) { 451 kvmppc_set_mpic_proxy(cpu, enabled); 452 } 453 } 454 } 455 456 /*****************************************************************************/ 457 /* PowerPC time base and decrementer emulation */ 458 459 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 460 { 461 /* TB time in tb periods */ 462 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset; 463 } 464 465 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 466 { 467 ppc_tb_t *tb_env = env->tb_env; 468 uint64_t tb; 469 470 if (kvm_enabled()) { 471 return env->spr[SPR_TBL]; 472 } 473 474 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 475 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 476 477 return tb; 478 } 479 480 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 481 { 482 ppc_tb_t *tb_env = env->tb_env; 483 uint64_t tb; 484 485 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 486 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 487 488 return tb >> 32; 489 } 490 491 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 492 { 493 if (kvm_enabled()) { 494 return env->spr[SPR_TBU]; 495 } 496 497 return _cpu_ppc_load_tbu(env); 498 } 499 500 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 501 int64_t *tb_offsetp, uint64_t value) 502 { 503 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()); 504 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n", 505 __func__, value, *tb_offsetp); 506 } 507 508 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 509 { 510 ppc_tb_t *tb_env = env->tb_env; 511 uint64_t tb; 512 513 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 514 tb &= 0xFFFFFFFF00000000ULL; 515 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 516 &tb_env->tb_offset, tb | (uint64_t)value); 517 } 518 519 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 520 { 521 ppc_tb_t *tb_env = env->tb_env; 522 uint64_t tb; 523 524 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 525 tb &= 0x00000000FFFFFFFFULL; 526 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 527 &tb_env->tb_offset, ((uint64_t)value << 32) | tb); 528 } 529 530 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 531 { 532 _cpu_ppc_store_tbu(env, value); 533 } 534 535 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 536 { 537 ppc_tb_t *tb_env = env->tb_env; 538 uint64_t tb; 539 540 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 541 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 542 543 return tb; 544 } 545 546 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 547 { 548 ppc_tb_t *tb_env = env->tb_env; 549 uint64_t tb; 550 551 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 552 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); 553 554 return tb >> 32; 555 } 556 557 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 558 { 559 ppc_tb_t *tb_env = env->tb_env; 560 uint64_t tb; 561 562 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 563 tb &= 0xFFFFFFFF00000000ULL; 564 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 565 &tb_env->atb_offset, tb | (uint64_t)value); 566 } 567 568 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 569 { 570 ppc_tb_t *tb_env = env->tb_env; 571 uint64_t tb; 572 573 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 574 tb &= 0x00000000FFFFFFFFULL; 575 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 576 &tb_env->atb_offset, ((uint64_t)value << 32) | tb); 577 } 578 579 static void cpu_ppc_tb_stop (CPUPPCState *env) 580 { 581 ppc_tb_t *tb_env = env->tb_env; 582 uint64_t tb, atb, vmclk; 583 584 /* If the time base is already frozen, do nothing */ 585 if (tb_env->tb_freq != 0) { 586 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 587 /* Get the time base */ 588 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 589 /* Get the alternate time base */ 590 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 591 /* Store the time base value (ie compute the current offset) */ 592 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 593 /* Store the alternate time base value (compute the current offset) */ 594 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 595 /* Set the time base frequency to zero */ 596 tb_env->tb_freq = 0; 597 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 598 } 599 } 600 601 static void cpu_ppc_tb_start (CPUPPCState *env) 602 { 603 ppc_tb_t *tb_env = env->tb_env; 604 uint64_t tb, atb, vmclk; 605 606 /* If the time base is not frozen, do nothing */ 607 if (tb_env->tb_freq == 0) { 608 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 609 /* Get the time base from tb_offset */ 610 tb = tb_env->tb_offset; 611 /* Get the alternate time base from atb_offset */ 612 atb = tb_env->atb_offset; 613 /* Restore the tb frequency from the decrementer frequency */ 614 tb_env->tb_freq = tb_env->decr_freq; 615 /* Store the time base value */ 616 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 617 /* Store the alternate time base value */ 618 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 619 } 620 } 621 622 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) 623 { 624 ppc_tb_t *tb_env = env->tb_env; 625 uint32_t decr; 626 int64_t diff; 627 628 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 629 if (diff >= 0) { 630 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec()); 631 } else if (tb_env->flags & PPC_TIMER_BOOKE) { 632 decr = 0; 633 } else { 634 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec()); 635 } 636 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr); 637 638 return decr; 639 } 640 641 uint32_t cpu_ppc_load_decr (CPUPPCState *env) 642 { 643 ppc_tb_t *tb_env = env->tb_env; 644 645 if (kvm_enabled()) { 646 return env->spr[SPR_DECR]; 647 } 648 649 return _cpu_ppc_load_decr(env, tb_env->decr_next); 650 } 651 652 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env) 653 { 654 ppc_tb_t *tb_env = env->tb_env; 655 656 return _cpu_ppc_load_decr(env, tb_env->hdecr_next); 657 } 658 659 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 660 { 661 ppc_tb_t *tb_env = env->tb_env; 662 uint64_t diff; 663 664 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start; 665 666 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec()); 667 } 668 669 /* When decrementer expires, 670 * all we need to do is generate or queue a CPU exception 671 */ 672 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 673 { 674 /* Raise it */ 675 LOG_TB("raise decrementer exception\n"); 676 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 677 } 678 679 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 680 { 681 /* Raise it */ 682 LOG_TB("raise decrementer exception\n"); 683 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 684 } 685 686 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, 687 QEMUTimer *timer, 688 void (*raise_excp)(PowerPCCPU *), 689 uint32_t decr, uint32_t value, 690 int is_excp) 691 { 692 CPUPPCState *env = &cpu->env; 693 ppc_tb_t *tb_env = env->tb_env; 694 uint64_t now, next; 695 696 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__, 697 decr, value); 698 699 if (kvm_enabled()) { 700 /* KVM handles decrementer exceptions, we don't need our own timer */ 701 return; 702 } 703 704 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 705 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq); 706 if (is_excp) { 707 next += *nextp - now; 708 } 709 if (next == now) { 710 next++; 711 } 712 *nextp = next; 713 /* Adjust timer */ 714 timer_mod(timer, next); 715 716 /* If we set a negative value and the decrementer was positive, raise an 717 * exception. 718 */ 719 if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) 720 && (value & 0x80000000) 721 && !(decr & 0x80000000)) { 722 (*raise_excp)(cpu); 723 } 724 } 725 726 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr, 727 uint32_t value, int is_excp) 728 { 729 ppc_tb_t *tb_env = cpu->env.tb_env; 730 731 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, 732 &cpu_ppc_decr_excp, decr, value, is_excp); 733 } 734 735 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value) 736 { 737 PowerPCCPU *cpu = ppc_env_get_cpu(env); 738 739 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0); 740 } 741 742 static void cpu_ppc_decr_cb(void *opaque) 743 { 744 PowerPCCPU *cpu = opaque; 745 746 _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1); 747 } 748 749 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr, 750 uint32_t value, int is_excp) 751 { 752 ppc_tb_t *tb_env = cpu->env.tb_env; 753 754 if (tb_env->hdecr_timer != NULL) { 755 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, 756 &cpu_ppc_hdecr_excp, hdecr, value, is_excp); 757 } 758 } 759 760 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value) 761 { 762 PowerPCCPU *cpu = ppc_env_get_cpu(env); 763 764 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0); 765 } 766 767 static void cpu_ppc_hdecr_cb(void *opaque) 768 { 769 PowerPCCPU *cpu = opaque; 770 771 _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1); 772 } 773 774 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value) 775 { 776 ppc_tb_t *tb_env = cpu->env.tb_env; 777 778 tb_env->purr_load = value; 779 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 780 } 781 782 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) 783 { 784 CPUPPCState *env = opaque; 785 PowerPCCPU *cpu = ppc_env_get_cpu(env); 786 ppc_tb_t *tb_env = env->tb_env; 787 788 tb_env->tb_freq = freq; 789 tb_env->decr_freq = freq; 790 /* There is a bug in Linux 2.4 kernels: 791 * if a decrementer exception is pending when it enables msr_ee at startup, 792 * it's not ready to handle it... 793 */ 794 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0); 795 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0); 796 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL); 797 } 798 799 /* Set up (once) timebase frequency (in Hz) */ 800 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) 801 { 802 PowerPCCPU *cpu = ppc_env_get_cpu(env); 803 ppc_tb_t *tb_env; 804 805 tb_env = g_malloc0(sizeof(ppc_tb_t)); 806 env->tb_env = tb_env; 807 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 808 /* Create new timer */ 809 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); 810 if (0) { 811 /* XXX: find a suitable condition to enable the hypervisor decrementer 812 */ 813 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, 814 cpu); 815 } else { 816 tb_env->hdecr_timer = NULL; 817 } 818 cpu_ppc_set_tb_clk(env, freq); 819 820 return &cpu_ppc_set_tb_clk; 821 } 822 823 /* Specific helpers for POWER & PowerPC 601 RTC */ 824 #if 0 825 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env) 826 { 827 return cpu_ppc_tb_init(env, 7812500); 828 } 829 #endif 830 831 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value) 832 { 833 _cpu_ppc_store_tbu(env, value); 834 } 835 836 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env) 837 { 838 return _cpu_ppc_load_tbu(env); 839 } 840 841 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value) 842 { 843 cpu_ppc_store_tbl(env, value & 0x3FFFFF80); 844 } 845 846 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env) 847 { 848 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 849 } 850 851 /*****************************************************************************/ 852 /* PowerPC 40x timers */ 853 854 /* PIT, FIT & WDT */ 855 typedef struct ppc40x_timer_t ppc40x_timer_t; 856 struct ppc40x_timer_t { 857 uint64_t pit_reload; /* PIT auto-reload value */ 858 uint64_t fit_next; /* Tick for next FIT interrupt */ 859 QEMUTimer *fit_timer; 860 uint64_t wdt_next; /* Tick for next WDT interrupt */ 861 QEMUTimer *wdt_timer; 862 863 /* 405 have the PIT, 440 have a DECR. */ 864 unsigned int decr_excp; 865 }; 866 867 /* Fixed interval timer */ 868 static void cpu_4xx_fit_cb (void *opaque) 869 { 870 PowerPCCPU *cpu; 871 CPUPPCState *env; 872 ppc_tb_t *tb_env; 873 ppc40x_timer_t *ppc40x_timer; 874 uint64_t now, next; 875 876 env = opaque; 877 cpu = ppc_env_get_cpu(env); 878 tb_env = env->tb_env; 879 ppc40x_timer = tb_env->opaque; 880 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 881 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 882 case 0: 883 next = 1 << 9; 884 break; 885 case 1: 886 next = 1 << 13; 887 break; 888 case 2: 889 next = 1 << 17; 890 break; 891 case 3: 892 next = 1 << 21; 893 break; 894 default: 895 /* Cannot occur, but makes gcc happy */ 896 return; 897 } 898 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq); 899 if (next == now) 900 next++; 901 timer_mod(ppc40x_timer->fit_timer, next); 902 env->spr[SPR_40x_TSR] |= 1 << 26; 903 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 904 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 905 } 906 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__, 907 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 908 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 909 } 910 911 /* Programmable interval timer */ 912 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 913 { 914 ppc40x_timer_t *ppc40x_timer; 915 uint64_t now, next; 916 917 ppc40x_timer = tb_env->opaque; 918 if (ppc40x_timer->pit_reload <= 1 || 919 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 920 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 921 /* Stop PIT */ 922 LOG_TB("%s: stop PIT\n", __func__); 923 timer_del(tb_env->decr_timer); 924 } else { 925 LOG_TB("%s: start PIT %016" PRIx64 "\n", 926 __func__, ppc40x_timer->pit_reload); 927 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 928 next = now + muldiv64(ppc40x_timer->pit_reload, 929 get_ticks_per_sec(), tb_env->decr_freq); 930 if (is_excp) 931 next += tb_env->decr_next - now; 932 if (next == now) 933 next++; 934 timer_mod(tb_env->decr_timer, next); 935 tb_env->decr_next = next; 936 } 937 } 938 939 static void cpu_4xx_pit_cb (void *opaque) 940 { 941 PowerPCCPU *cpu; 942 CPUPPCState *env; 943 ppc_tb_t *tb_env; 944 ppc40x_timer_t *ppc40x_timer; 945 946 env = opaque; 947 cpu = ppc_env_get_cpu(env); 948 tb_env = env->tb_env; 949 ppc40x_timer = tb_env->opaque; 950 env->spr[SPR_40x_TSR] |= 1 << 27; 951 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 952 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 953 } 954 start_stop_pit(env, tb_env, 1); 955 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " " 956 "%016" PRIx64 "\n", __func__, 957 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 958 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 959 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 960 ppc40x_timer->pit_reload); 961 } 962 963 /* Watchdog timer */ 964 static void cpu_4xx_wdt_cb (void *opaque) 965 { 966 PowerPCCPU *cpu; 967 CPUPPCState *env; 968 ppc_tb_t *tb_env; 969 ppc40x_timer_t *ppc40x_timer; 970 uint64_t now, next; 971 972 env = opaque; 973 cpu = ppc_env_get_cpu(env); 974 tb_env = env->tb_env; 975 ppc40x_timer = tb_env->opaque; 976 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 977 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 978 case 0: 979 next = 1 << 17; 980 break; 981 case 1: 982 next = 1 << 21; 983 break; 984 case 2: 985 next = 1 << 25; 986 break; 987 case 3: 988 next = 1 << 29; 989 break; 990 default: 991 /* Cannot occur, but makes gcc happy */ 992 return; 993 } 994 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq); 995 if (next == now) 996 next++; 997 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__, 998 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 999 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1000 case 0x0: 1001 case 0x1: 1002 timer_mod(ppc40x_timer->wdt_timer, next); 1003 ppc40x_timer->wdt_next = next; 1004 env->spr[SPR_40x_TSR] |= 1 << 31; 1005 break; 1006 case 0x2: 1007 timer_mod(ppc40x_timer->wdt_timer, next); 1008 ppc40x_timer->wdt_next = next; 1009 env->spr[SPR_40x_TSR] |= 1 << 30; 1010 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1011 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1012 } 1013 break; 1014 case 0x3: 1015 env->spr[SPR_40x_TSR] &= ~0x30000000; 1016 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1017 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1018 case 0x0: 1019 /* No reset */ 1020 break; 1021 case 0x1: /* Core reset */ 1022 ppc40x_core_reset(cpu); 1023 break; 1024 case 0x2: /* Chip reset */ 1025 ppc40x_chip_reset(cpu); 1026 break; 1027 case 0x3: /* System reset */ 1028 ppc40x_system_reset(cpu); 1029 break; 1030 } 1031 } 1032 } 1033 1034 void store_40x_pit (CPUPPCState *env, target_ulong val) 1035 { 1036 ppc_tb_t *tb_env; 1037 ppc40x_timer_t *ppc40x_timer; 1038 1039 tb_env = env->tb_env; 1040 ppc40x_timer = tb_env->opaque; 1041 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val); 1042 ppc40x_timer->pit_reload = val; 1043 start_stop_pit(env, tb_env, 0); 1044 } 1045 1046 target_ulong load_40x_pit (CPUPPCState *env) 1047 { 1048 return cpu_ppc_load_decr(env); 1049 } 1050 1051 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1052 { 1053 CPUPPCState *env = opaque; 1054 ppc_tb_t *tb_env = env->tb_env; 1055 1056 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__, 1057 freq); 1058 tb_env->tb_freq = freq; 1059 tb_env->decr_freq = freq; 1060 /* XXX: we should also update all timers */ 1061 } 1062 1063 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1064 unsigned int decr_excp) 1065 { 1066 ppc_tb_t *tb_env; 1067 ppc40x_timer_t *ppc40x_timer; 1068 1069 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1070 env->tb_env = tb_env; 1071 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1072 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t)); 1073 tb_env->tb_freq = freq; 1074 tb_env->decr_freq = freq; 1075 tb_env->opaque = ppc40x_timer; 1076 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq); 1077 if (ppc40x_timer != NULL) { 1078 /* We use decr timer for PIT */ 1079 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env); 1080 ppc40x_timer->fit_timer = 1081 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env); 1082 ppc40x_timer->wdt_timer = 1083 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env); 1084 ppc40x_timer->decr_excp = decr_excp; 1085 } 1086 1087 return &ppc_40x_set_tb_clk; 1088 } 1089 1090 /*****************************************************************************/ 1091 /* Embedded PowerPC Device Control Registers */ 1092 typedef struct ppc_dcrn_t ppc_dcrn_t; 1093 struct ppc_dcrn_t { 1094 dcr_read_cb dcr_read; 1095 dcr_write_cb dcr_write; 1096 void *opaque; 1097 }; 1098 1099 /* XXX: on 460, DCR addresses are 32 bits wide, 1100 * using DCRIPR to get the 22 upper bits of the DCR address 1101 */ 1102 #define DCRN_NB 1024 1103 struct ppc_dcr_t { 1104 ppc_dcrn_t dcrn[DCRN_NB]; 1105 int (*read_error)(int dcrn); 1106 int (*write_error)(int dcrn); 1107 }; 1108 1109 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1110 { 1111 ppc_dcrn_t *dcr; 1112 1113 if (dcrn < 0 || dcrn >= DCRN_NB) 1114 goto error; 1115 dcr = &dcr_env->dcrn[dcrn]; 1116 if (dcr->dcr_read == NULL) 1117 goto error; 1118 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1119 1120 return 0; 1121 1122 error: 1123 if (dcr_env->read_error != NULL) 1124 return (*dcr_env->read_error)(dcrn); 1125 1126 return -1; 1127 } 1128 1129 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1130 { 1131 ppc_dcrn_t *dcr; 1132 1133 if (dcrn < 0 || dcrn >= DCRN_NB) 1134 goto error; 1135 dcr = &dcr_env->dcrn[dcrn]; 1136 if (dcr->dcr_write == NULL) 1137 goto error; 1138 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1139 1140 return 0; 1141 1142 error: 1143 if (dcr_env->write_error != NULL) 1144 return (*dcr_env->write_error)(dcrn); 1145 1146 return -1; 1147 } 1148 1149 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1150 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1151 { 1152 ppc_dcr_t *dcr_env; 1153 ppc_dcrn_t *dcr; 1154 1155 dcr_env = env->dcr_env; 1156 if (dcr_env == NULL) 1157 return -1; 1158 if (dcrn < 0 || dcrn >= DCRN_NB) 1159 return -1; 1160 dcr = &dcr_env->dcrn[dcrn]; 1161 if (dcr->opaque != NULL || 1162 dcr->dcr_read != NULL || 1163 dcr->dcr_write != NULL) 1164 return -1; 1165 dcr->opaque = opaque; 1166 dcr->dcr_read = dcr_read; 1167 dcr->dcr_write = dcr_write; 1168 1169 return 0; 1170 } 1171 1172 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1173 int (*write_error)(int dcrn)) 1174 { 1175 ppc_dcr_t *dcr_env; 1176 1177 dcr_env = g_malloc0(sizeof(ppc_dcr_t)); 1178 dcr_env->read_error = read_error; 1179 dcr_env->write_error = write_error; 1180 env->dcr_env = dcr_env; 1181 1182 return 0; 1183 } 1184 1185 /*****************************************************************************/ 1186 /* Debug port */ 1187 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val) 1188 { 1189 addr &= 0xF; 1190 switch (addr) { 1191 case 0: 1192 printf("%c", val); 1193 break; 1194 case 1: 1195 printf("\n"); 1196 fflush(stdout); 1197 break; 1198 case 2: 1199 printf("Set loglevel to %04" PRIx32 "\n", val); 1200 qemu_set_log(val | 0x100); 1201 break; 1202 } 1203 } 1204 1205 /*****************************************************************************/ 1206 /* NVRAM helpers */ 1207 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr) 1208 { 1209 return (*nvram->read_fn)(nvram->opaque, addr); 1210 } 1211 1212 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val) 1213 { 1214 (*nvram->write_fn)(nvram->opaque, addr, val); 1215 } 1216 1217 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value) 1218 { 1219 nvram_write(nvram, addr, value); 1220 } 1221 1222 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr) 1223 { 1224 return nvram_read(nvram, addr); 1225 } 1226 1227 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value) 1228 { 1229 nvram_write(nvram, addr, value >> 8); 1230 nvram_write(nvram, addr + 1, value & 0xFF); 1231 } 1232 1233 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr) 1234 { 1235 uint16_t tmp; 1236 1237 tmp = nvram_read(nvram, addr) << 8; 1238 tmp |= nvram_read(nvram, addr + 1); 1239 1240 return tmp; 1241 } 1242 1243 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value) 1244 { 1245 nvram_write(nvram, addr, value >> 24); 1246 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF); 1247 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF); 1248 nvram_write(nvram, addr + 3, value & 0xFF); 1249 } 1250 1251 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr) 1252 { 1253 uint32_t tmp; 1254 1255 tmp = nvram_read(nvram, addr) << 24; 1256 tmp |= nvram_read(nvram, addr + 1) << 16; 1257 tmp |= nvram_read(nvram, addr + 2) << 8; 1258 tmp |= nvram_read(nvram, addr + 3); 1259 1260 return tmp; 1261 } 1262 1263 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str, 1264 uint32_t max) 1265 { 1266 int i; 1267 1268 for (i = 0; i < max && str[i] != '\0'; i++) { 1269 nvram_write(nvram, addr + i, str[i]); 1270 } 1271 nvram_write(nvram, addr + i, str[i]); 1272 nvram_write(nvram, addr + max - 1, '\0'); 1273 } 1274 1275 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max) 1276 { 1277 int i; 1278 1279 memset(dst, 0, max); 1280 for (i = 0; i < max; i++) { 1281 dst[i] = NVRAM_get_byte(nvram, addr + i); 1282 if (dst[i] == '\0') 1283 break; 1284 } 1285 1286 return i; 1287 } 1288 1289 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value) 1290 { 1291 uint16_t tmp; 1292 uint16_t pd, pd1, pd2; 1293 1294 tmp = prev >> 8; 1295 pd = prev ^ value; 1296 pd1 = pd & 0x000F; 1297 pd2 = ((pd >> 4) & 0x000F) ^ pd1; 1298 tmp ^= (pd1 << 3) | (pd1 << 8); 1299 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12); 1300 1301 return tmp; 1302 } 1303 1304 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count) 1305 { 1306 uint32_t i; 1307 uint16_t crc = 0xFFFF; 1308 int odd; 1309 1310 odd = count & 1; 1311 count &= ~1; 1312 for (i = 0; i != count; i++) { 1313 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i)); 1314 } 1315 if (odd) { 1316 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8); 1317 } 1318 1319 return crc; 1320 } 1321 1322 #define CMDLINE_ADDR 0x017ff000 1323 1324 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size, 1325 const char *arch, 1326 uint32_t RAM_size, int boot_device, 1327 uint32_t kernel_image, uint32_t kernel_size, 1328 const char *cmdline, 1329 uint32_t initrd_image, uint32_t initrd_size, 1330 uint32_t NVRAM_image, 1331 int width, int height, int depth) 1332 { 1333 uint16_t crc; 1334 1335 /* Set parameters for Open Hack'Ware BIOS */ 1336 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16); 1337 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */ 1338 NVRAM_set_word(nvram, 0x14, NVRAM_size); 1339 NVRAM_set_string(nvram, 0x20, arch, 16); 1340 NVRAM_set_lword(nvram, 0x30, RAM_size); 1341 NVRAM_set_byte(nvram, 0x34, boot_device); 1342 NVRAM_set_lword(nvram, 0x38, kernel_image); 1343 NVRAM_set_lword(nvram, 0x3C, kernel_size); 1344 if (cmdline) { 1345 /* XXX: put the cmdline in NVRAM too ? */ 1346 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline); 1347 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR); 1348 NVRAM_set_lword(nvram, 0x44, strlen(cmdline)); 1349 } else { 1350 NVRAM_set_lword(nvram, 0x40, 0); 1351 NVRAM_set_lword(nvram, 0x44, 0); 1352 } 1353 NVRAM_set_lword(nvram, 0x48, initrd_image); 1354 NVRAM_set_lword(nvram, 0x4C, initrd_size); 1355 NVRAM_set_lword(nvram, 0x50, NVRAM_image); 1356 1357 NVRAM_set_word(nvram, 0x54, width); 1358 NVRAM_set_word(nvram, 0x56, height); 1359 NVRAM_set_word(nvram, 0x58, depth); 1360 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8); 1361 NVRAM_set_word(nvram, 0xFC, crc); 1362 1363 return 0; 1364 } 1365