xref: /openbmc/qemu/hw/ppc/ppc.c (revision 4a66d3bf)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
31 #include "qemu/log.h"
32 #include "hw/loader.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 
36 //#define PPC_DEBUG_IRQ
37 //#define PPC_DEBUG_TB
38 
39 #ifdef PPC_DEBUG_IRQ
40 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
41 #else
42 #  define LOG_IRQ(...) do { } while (0)
43 #endif
44 
45 
46 #ifdef PPC_DEBUG_TB
47 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
48 #else
49 #  define LOG_TB(...) do { } while (0)
50 #endif
51 
52 static void cpu_ppc_tb_stop (CPUPPCState *env);
53 static void cpu_ppc_tb_start (CPUPPCState *env);
54 
55 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
56 {
57     CPUState *cs = CPU(cpu);
58     CPUPPCState *env = &cpu->env;
59     unsigned int old_pending = env->pending_interrupts;
60 
61     if (level) {
62         env->pending_interrupts |= 1 << n_IRQ;
63         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
64     } else {
65         env->pending_interrupts &= ~(1 << n_IRQ);
66         if (env->pending_interrupts == 0) {
67             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
68         }
69     }
70 
71     if (old_pending != env->pending_interrupts) {
72 #ifdef CONFIG_KVM
73         kvmppc_set_interrupt(cpu, n_IRQ, level);
74 #endif
75     }
76 
77     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
78                 "req %08x\n", __func__, env, n_IRQ, level,
79                 env->pending_interrupts, CPU(cpu)->interrupt_request);
80 }
81 
82 /* PowerPC 6xx / 7xx internal IRQ controller */
83 static void ppc6xx_set_irq(void *opaque, int pin, int level)
84 {
85     PowerPCCPU *cpu = opaque;
86     CPUPPCState *env = &cpu->env;
87     int cur_level;
88 
89     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
90                 env, pin, level);
91     cur_level = (env->irq_input_state >> pin) & 1;
92     /* Don't generate spurious events */
93     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
94         CPUState *cs = CPU(cpu);
95 
96         switch (pin) {
97         case PPC6xx_INPUT_TBEN:
98             /* Level sensitive - active high */
99             LOG_IRQ("%s: %s the time base\n",
100                         __func__, level ? "start" : "stop");
101             if (level) {
102                 cpu_ppc_tb_start(env);
103             } else {
104                 cpu_ppc_tb_stop(env);
105             }
106         case PPC6xx_INPUT_INT:
107             /* Level sensitive - active high */
108             LOG_IRQ("%s: set the external IRQ state to %d\n",
109                         __func__, level);
110             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
111             break;
112         case PPC6xx_INPUT_SMI:
113             /* Level sensitive - active high */
114             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
115                         __func__, level);
116             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
117             break;
118         case PPC6xx_INPUT_MCP:
119             /* Negative edge sensitive */
120             /* XXX: TODO: actual reaction may depends on HID0 status
121              *            603/604/740/750: check HID0[EMCP]
122              */
123             if (cur_level == 1 && level == 0) {
124                 LOG_IRQ("%s: raise machine check state\n",
125                             __func__);
126                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
127             }
128             break;
129         case PPC6xx_INPUT_CKSTP_IN:
130             /* Level sensitive - active low */
131             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
132             /* XXX: Note that the only way to restart the CPU is to reset it */
133             if (level) {
134                 LOG_IRQ("%s: stop the CPU\n", __func__);
135                 cs->halted = 1;
136             }
137             break;
138         case PPC6xx_INPUT_HRESET:
139             /* Level sensitive - active low */
140             if (level) {
141                 LOG_IRQ("%s: reset the CPU\n", __func__);
142                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
143             }
144             break;
145         case PPC6xx_INPUT_SRESET:
146             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
147                         __func__, level);
148             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
149             break;
150         default:
151             /* Unknown pin - do nothing */
152             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
153             return;
154         }
155         if (level)
156             env->irq_input_state |= 1 << pin;
157         else
158             env->irq_input_state &= ~(1 << pin);
159     }
160 }
161 
162 void ppc6xx_irq_init(CPUPPCState *env)
163 {
164     PowerPCCPU *cpu = ppc_env_get_cpu(env);
165 
166     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
167                                                   PPC6xx_INPUT_NB);
168 }
169 
170 #if defined(TARGET_PPC64)
171 /* PowerPC 970 internal IRQ controller */
172 static void ppc970_set_irq(void *opaque, int pin, int level)
173 {
174     PowerPCCPU *cpu = opaque;
175     CPUPPCState *env = &cpu->env;
176     int cur_level;
177 
178     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
179                 env, pin, level);
180     cur_level = (env->irq_input_state >> pin) & 1;
181     /* Don't generate spurious events */
182     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
183         CPUState *cs = CPU(cpu);
184 
185         switch (pin) {
186         case PPC970_INPUT_INT:
187             /* Level sensitive - active high */
188             LOG_IRQ("%s: set the external IRQ state to %d\n",
189                         __func__, level);
190             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
191             break;
192         case PPC970_INPUT_THINT:
193             /* Level sensitive - active high */
194             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
195                         level);
196             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
197             break;
198         case PPC970_INPUT_MCP:
199             /* Negative edge sensitive */
200             /* XXX: TODO: actual reaction may depends on HID0 status
201              *            603/604/740/750: check HID0[EMCP]
202              */
203             if (cur_level == 1 && level == 0) {
204                 LOG_IRQ("%s: raise machine check state\n",
205                             __func__);
206                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
207             }
208             break;
209         case PPC970_INPUT_CKSTP:
210             /* Level sensitive - active low */
211             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
212             if (level) {
213                 LOG_IRQ("%s: stop the CPU\n", __func__);
214                 cs->halted = 1;
215             } else {
216                 LOG_IRQ("%s: restart the CPU\n", __func__);
217                 cs->halted = 0;
218                 qemu_cpu_kick(cs);
219             }
220             break;
221         case PPC970_INPUT_HRESET:
222             /* Level sensitive - active low */
223             if (level) {
224                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
225             }
226             break;
227         case PPC970_INPUT_SRESET:
228             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
229                         __func__, level);
230             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
231             break;
232         case PPC970_INPUT_TBEN:
233             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
234                         level);
235             /* XXX: TODO */
236             break;
237         default:
238             /* Unknown pin - do nothing */
239             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
240             return;
241         }
242         if (level)
243             env->irq_input_state |= 1 << pin;
244         else
245             env->irq_input_state &= ~(1 << pin);
246     }
247 }
248 
249 void ppc970_irq_init(CPUPPCState *env)
250 {
251     PowerPCCPU *cpu = ppc_env_get_cpu(env);
252 
253     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
254                                                   PPC970_INPUT_NB);
255 }
256 
257 /* POWER7 internal IRQ controller */
258 static void power7_set_irq(void *opaque, int pin, int level)
259 {
260     PowerPCCPU *cpu = opaque;
261     CPUPPCState *env = &cpu->env;
262 
263     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
264                 env, pin, level);
265 
266     switch (pin) {
267     case POWER7_INPUT_INT:
268         /* Level sensitive - active high */
269         LOG_IRQ("%s: set the external IRQ state to %d\n",
270                 __func__, level);
271         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
272         break;
273     default:
274         /* Unknown pin - do nothing */
275         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
276         return;
277     }
278     if (level) {
279         env->irq_input_state |= 1 << pin;
280     } else {
281         env->irq_input_state &= ~(1 << pin);
282     }
283 }
284 
285 void ppcPOWER7_irq_init(CPUPPCState *env)
286 {
287     PowerPCCPU *cpu = ppc_env_get_cpu(env);
288 
289     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
290                                                   POWER7_INPUT_NB);
291 }
292 #endif /* defined(TARGET_PPC64) */
293 
294 /* PowerPC 40x internal IRQ controller */
295 static void ppc40x_set_irq(void *opaque, int pin, int level)
296 {
297     PowerPCCPU *cpu = opaque;
298     CPUPPCState *env = &cpu->env;
299     int cur_level;
300 
301     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
302                 env, pin, level);
303     cur_level = (env->irq_input_state >> pin) & 1;
304     /* Don't generate spurious events */
305     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
306         CPUState *cs = CPU(cpu);
307 
308         switch (pin) {
309         case PPC40x_INPUT_RESET_SYS:
310             if (level) {
311                 LOG_IRQ("%s: reset the PowerPC system\n",
312                             __func__);
313                 ppc40x_system_reset(cpu);
314             }
315             break;
316         case PPC40x_INPUT_RESET_CHIP:
317             if (level) {
318                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
319                 ppc40x_chip_reset(cpu);
320             }
321             break;
322         case PPC40x_INPUT_RESET_CORE:
323             /* XXX: TODO: update DBSR[MRR] */
324             if (level) {
325                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
326                 ppc40x_core_reset(cpu);
327             }
328             break;
329         case PPC40x_INPUT_CINT:
330             /* Level sensitive - active high */
331             LOG_IRQ("%s: set the critical IRQ state to %d\n",
332                         __func__, level);
333             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
334             break;
335         case PPC40x_INPUT_INT:
336             /* Level sensitive - active high */
337             LOG_IRQ("%s: set the external IRQ state to %d\n",
338                         __func__, level);
339             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
340             break;
341         case PPC40x_INPUT_HALT:
342             /* Level sensitive - active low */
343             if (level) {
344                 LOG_IRQ("%s: stop the CPU\n", __func__);
345                 cs->halted = 1;
346             } else {
347                 LOG_IRQ("%s: restart the CPU\n", __func__);
348                 cs->halted = 0;
349                 qemu_cpu_kick(cs);
350             }
351             break;
352         case PPC40x_INPUT_DEBUG:
353             /* Level sensitive - active high */
354             LOG_IRQ("%s: set the debug pin state to %d\n",
355                         __func__, level);
356             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
357             break;
358         default:
359             /* Unknown pin - do nothing */
360             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
361             return;
362         }
363         if (level)
364             env->irq_input_state |= 1 << pin;
365         else
366             env->irq_input_state &= ~(1 << pin);
367     }
368 }
369 
370 void ppc40x_irq_init(CPUPPCState *env)
371 {
372     PowerPCCPU *cpu = ppc_env_get_cpu(env);
373 
374     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
375                                                   cpu, PPC40x_INPUT_NB);
376 }
377 
378 /* PowerPC E500 internal IRQ controller */
379 static void ppce500_set_irq(void *opaque, int pin, int level)
380 {
381     PowerPCCPU *cpu = opaque;
382     CPUPPCState *env = &cpu->env;
383     int cur_level;
384 
385     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
386                 env, pin, level);
387     cur_level = (env->irq_input_state >> pin) & 1;
388     /* Don't generate spurious events */
389     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
390         switch (pin) {
391         case PPCE500_INPUT_MCK:
392             if (level) {
393                 LOG_IRQ("%s: reset the PowerPC system\n",
394                             __func__);
395                 qemu_system_reset_request();
396             }
397             break;
398         case PPCE500_INPUT_RESET_CORE:
399             if (level) {
400                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
401                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
402             }
403             break;
404         case PPCE500_INPUT_CINT:
405             /* Level sensitive - active high */
406             LOG_IRQ("%s: set the critical IRQ state to %d\n",
407                         __func__, level);
408             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
409             break;
410         case PPCE500_INPUT_INT:
411             /* Level sensitive - active high */
412             LOG_IRQ("%s: set the core IRQ state to %d\n",
413                         __func__, level);
414             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
415             break;
416         case PPCE500_INPUT_DEBUG:
417             /* Level sensitive - active high */
418             LOG_IRQ("%s: set the debug pin state to %d\n",
419                         __func__, level);
420             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
421             break;
422         default:
423             /* Unknown pin - do nothing */
424             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
425             return;
426         }
427         if (level)
428             env->irq_input_state |= 1 << pin;
429         else
430             env->irq_input_state &= ~(1 << pin);
431     }
432 }
433 
434 void ppce500_irq_init(CPUPPCState *env)
435 {
436     PowerPCCPU *cpu = ppc_env_get_cpu(env);
437 
438     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
439                                                   cpu, PPCE500_INPUT_NB);
440 }
441 
442 /* Enable or Disable the E500 EPR capability */
443 void ppce500_set_mpic_proxy(bool enabled)
444 {
445     CPUState *cs;
446 
447     CPU_FOREACH(cs) {
448         PowerPCCPU *cpu = POWERPC_CPU(cs);
449 
450         cpu->env.mpic_proxy = enabled;
451         if (kvm_enabled()) {
452             kvmppc_set_mpic_proxy(cpu, enabled);
453         }
454     }
455 }
456 
457 /*****************************************************************************/
458 /* PowerPC time base and decrementer emulation */
459 
460 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
461 {
462     /* TB time in tb periods */
463     return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
464 }
465 
466 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
467 {
468     ppc_tb_t *tb_env = env->tb_env;
469     uint64_t tb;
470 
471     if (kvm_enabled()) {
472         return env->spr[SPR_TBL];
473     }
474 
475     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
476     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
477 
478     return tb;
479 }
480 
481 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
482 {
483     ppc_tb_t *tb_env = env->tb_env;
484     uint64_t tb;
485 
486     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
487     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
488 
489     return tb >> 32;
490 }
491 
492 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
493 {
494     if (kvm_enabled()) {
495         return env->spr[SPR_TBU];
496     }
497 
498     return _cpu_ppc_load_tbu(env);
499 }
500 
501 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
502                                     int64_t *tb_offsetp, uint64_t value)
503 {
504     *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
505     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
506                 __func__, value, *tb_offsetp);
507 }
508 
509 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
510 {
511     ppc_tb_t *tb_env = env->tb_env;
512     uint64_t tb;
513 
514     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
515     tb &= 0xFFFFFFFF00000000ULL;
516     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
517                      &tb_env->tb_offset, tb | (uint64_t)value);
518 }
519 
520 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
521 {
522     ppc_tb_t *tb_env = env->tb_env;
523     uint64_t tb;
524 
525     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
526     tb &= 0x00000000FFFFFFFFULL;
527     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
528                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
529 }
530 
531 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
532 {
533     _cpu_ppc_store_tbu(env, value);
534 }
535 
536 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
537 {
538     ppc_tb_t *tb_env = env->tb_env;
539     uint64_t tb;
540 
541     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
542     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
543 
544     return tb;
545 }
546 
547 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
548 {
549     ppc_tb_t *tb_env = env->tb_env;
550     uint64_t tb;
551 
552     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
553     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
554 
555     return tb >> 32;
556 }
557 
558 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
559 {
560     ppc_tb_t *tb_env = env->tb_env;
561     uint64_t tb;
562 
563     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
564     tb &= 0xFFFFFFFF00000000ULL;
565     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
566                      &tb_env->atb_offset, tb | (uint64_t)value);
567 }
568 
569 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
570 {
571     ppc_tb_t *tb_env = env->tb_env;
572     uint64_t tb;
573 
574     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
575     tb &= 0x00000000FFFFFFFFULL;
576     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
577                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
578 }
579 
580 static void cpu_ppc_tb_stop (CPUPPCState *env)
581 {
582     ppc_tb_t *tb_env = env->tb_env;
583     uint64_t tb, atb, vmclk;
584 
585     /* If the time base is already frozen, do nothing */
586     if (tb_env->tb_freq != 0) {
587         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
588         /* Get the time base */
589         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
590         /* Get the alternate time base */
591         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
592         /* Store the time base value (ie compute the current offset) */
593         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
594         /* Store the alternate time base value (compute the current offset) */
595         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
596         /* Set the time base frequency to zero */
597         tb_env->tb_freq = 0;
598         /* Now, the time bases are frozen to tb_offset / atb_offset value */
599     }
600 }
601 
602 static void cpu_ppc_tb_start (CPUPPCState *env)
603 {
604     ppc_tb_t *tb_env = env->tb_env;
605     uint64_t tb, atb, vmclk;
606 
607     /* If the time base is not frozen, do nothing */
608     if (tb_env->tb_freq == 0) {
609         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
610         /* Get the time base from tb_offset */
611         tb = tb_env->tb_offset;
612         /* Get the alternate time base from atb_offset */
613         atb = tb_env->atb_offset;
614         /* Restore the tb frequency from the decrementer frequency */
615         tb_env->tb_freq = tb_env->decr_freq;
616         /* Store the time base value */
617         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
618         /* Store the alternate time base value */
619         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
620     }
621 }
622 
623 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
624 {
625     ppc_tb_t *tb_env = env->tb_env;
626     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
627     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
628 }
629 
630 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
631 {
632     ppc_tb_t *tb_env = env->tb_env;
633     uint32_t decr;
634     int64_t diff;
635 
636     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
637     if (diff >= 0) {
638         decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
639     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
640         decr = 0;
641     }  else {
642         decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
643     }
644     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
645 
646     return decr;
647 }
648 
649 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
650 {
651     ppc_tb_t *tb_env = env->tb_env;
652 
653     if (kvm_enabled()) {
654         return env->spr[SPR_DECR];
655     }
656 
657     return _cpu_ppc_load_decr(env, tb_env->decr_next);
658 }
659 
660 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
661 {
662     ppc_tb_t *tb_env = env->tb_env;
663 
664     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
665 }
666 
667 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
668 {
669     ppc_tb_t *tb_env = env->tb_env;
670     uint64_t diff;
671 
672     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
673 
674     return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
675 }
676 
677 /* When decrementer expires,
678  * all we need to do is generate or queue a CPU exception
679  */
680 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
681 {
682     /* Raise it */
683     LOG_TB("raise decrementer exception\n");
684     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
685 }
686 
687 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
688 {
689     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
690 }
691 
692 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
693 {
694     /* Raise it */
695     LOG_TB("raise decrementer exception\n");
696     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
697 }
698 
699 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
700 {
701     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
702 }
703 
704 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
705                                  QEMUTimer *timer,
706                                  void (*raise_excp)(void *),
707                                  void (*lower_excp)(PowerPCCPU *),
708                                  uint32_t decr, uint32_t value)
709 {
710     CPUPPCState *env = &cpu->env;
711     ppc_tb_t *tb_env = env->tb_env;
712     uint64_t now, next;
713 
714     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
715                 decr, value);
716 
717     if (kvm_enabled()) {
718         /* KVM handles decrementer exceptions, we don't need our own timer */
719         return;
720     }
721 
722     /*
723      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
724      * interrupt.
725      *
726      * If we get a really small DEC value, we can assume that by the time we
727      * handled it we should inject an interrupt already.
728      *
729      * On MSB level based DEC implementations the MSB always means the interrupt
730      * is pending, so raise it on those.
731      *
732      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
733      * an edge interrupt, so raise it here too.
734      */
735     if ((value < 3) ||
736         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
737         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
738           && !(decr & 0x80000000))) {
739         (*raise_excp)(cpu);
740         return;
741     }
742 
743     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
744     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
745         (*lower_excp)(cpu);
746     }
747 
748     /* Calculate the next timer event */
749     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
750     next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
751     *nextp = next;
752 
753     /* Adjust timer */
754     timer_mod(timer, next);
755 }
756 
757 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
758                                        uint32_t value)
759 {
760     ppc_tb_t *tb_env = cpu->env.tb_env;
761 
762     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
763                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
764                          value);
765 }
766 
767 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
768 {
769     PowerPCCPU *cpu = ppc_env_get_cpu(env);
770 
771     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
772 }
773 
774 static void cpu_ppc_decr_cb(void *opaque)
775 {
776     PowerPCCPU *cpu = opaque;
777 
778     cpu_ppc_decr_excp(cpu);
779 }
780 
781 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
782                                         uint32_t value)
783 {
784     ppc_tb_t *tb_env = cpu->env.tb_env;
785 
786     if (tb_env->hdecr_timer != NULL) {
787         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
788                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
789                              hdecr, value);
790     }
791 }
792 
793 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
794 {
795     PowerPCCPU *cpu = ppc_env_get_cpu(env);
796 
797     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
798 }
799 
800 static void cpu_ppc_hdecr_cb(void *opaque)
801 {
802     PowerPCCPU *cpu = opaque;
803 
804     cpu_ppc_hdecr_excp(cpu);
805 }
806 
807 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
808 {
809     ppc_tb_t *tb_env = cpu->env.tb_env;
810 
811     tb_env->purr_load = value;
812     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
813 }
814 
815 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
816 {
817     CPUPPCState *env = opaque;
818     PowerPCCPU *cpu = ppc_env_get_cpu(env);
819     ppc_tb_t *tb_env = env->tb_env;
820 
821     tb_env->tb_freq = freq;
822     tb_env->decr_freq = freq;
823     /* There is a bug in Linux 2.4 kernels:
824      * if a decrementer exception is pending when it enables msr_ee at startup,
825      * it's not ready to handle it...
826      */
827     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
828     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
829     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
830 }
831 
832 /* Set up (once) timebase frequency (in Hz) */
833 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
834 {
835     PowerPCCPU *cpu = ppc_env_get_cpu(env);
836     ppc_tb_t *tb_env;
837 
838     tb_env = g_malloc0(sizeof(ppc_tb_t));
839     env->tb_env = tb_env;
840     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
841     if (env->insns_flags & PPC_SEGMENT_64B) {
842         /* All Book3S 64bit CPUs implement level based DEC logic */
843         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
844     }
845     /* Create new timer */
846     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
847     if (0) {
848         /* XXX: find a suitable condition to enable the hypervisor decrementer
849          */
850         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
851                                                 cpu);
852     } else {
853         tb_env->hdecr_timer = NULL;
854     }
855     cpu_ppc_set_tb_clk(env, freq);
856 
857     return &cpu_ppc_set_tb_clk;
858 }
859 
860 /* Specific helpers for POWER & PowerPC 601 RTC */
861 #if 0
862 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
863 {
864     return cpu_ppc_tb_init(env, 7812500);
865 }
866 #endif
867 
868 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
869 {
870     _cpu_ppc_store_tbu(env, value);
871 }
872 
873 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
874 {
875     return _cpu_ppc_load_tbu(env);
876 }
877 
878 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
879 {
880     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
881 }
882 
883 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
884 {
885     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
886 }
887 
888 /*****************************************************************************/
889 /* PowerPC 40x timers */
890 
891 /* PIT, FIT & WDT */
892 typedef struct ppc40x_timer_t ppc40x_timer_t;
893 struct ppc40x_timer_t {
894     uint64_t pit_reload;  /* PIT auto-reload value        */
895     uint64_t fit_next;    /* Tick for next FIT interrupt  */
896     QEMUTimer *fit_timer;
897     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
898     QEMUTimer *wdt_timer;
899 
900     /* 405 have the PIT, 440 have a DECR.  */
901     unsigned int decr_excp;
902 };
903 
904 /* Fixed interval timer */
905 static void cpu_4xx_fit_cb (void *opaque)
906 {
907     PowerPCCPU *cpu;
908     CPUPPCState *env;
909     ppc_tb_t *tb_env;
910     ppc40x_timer_t *ppc40x_timer;
911     uint64_t now, next;
912 
913     env = opaque;
914     cpu = ppc_env_get_cpu(env);
915     tb_env = env->tb_env;
916     ppc40x_timer = tb_env->opaque;
917     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
918     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
919     case 0:
920         next = 1 << 9;
921         break;
922     case 1:
923         next = 1 << 13;
924         break;
925     case 2:
926         next = 1 << 17;
927         break;
928     case 3:
929         next = 1 << 21;
930         break;
931     default:
932         /* Cannot occur, but makes gcc happy */
933         return;
934     }
935     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
936     if (next == now)
937         next++;
938     timer_mod(ppc40x_timer->fit_timer, next);
939     env->spr[SPR_40x_TSR] |= 1 << 26;
940     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
941         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
942     }
943     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
944            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
945            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
946 }
947 
948 /* Programmable interval timer */
949 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
950 {
951     ppc40x_timer_t *ppc40x_timer;
952     uint64_t now, next;
953 
954     ppc40x_timer = tb_env->opaque;
955     if (ppc40x_timer->pit_reload <= 1 ||
956         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
957         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
958         /* Stop PIT */
959         LOG_TB("%s: stop PIT\n", __func__);
960         timer_del(tb_env->decr_timer);
961     } else {
962         LOG_TB("%s: start PIT %016" PRIx64 "\n",
963                     __func__, ppc40x_timer->pit_reload);
964         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
965         next = now + muldiv64(ppc40x_timer->pit_reload,
966                               get_ticks_per_sec(), tb_env->decr_freq);
967         if (is_excp)
968             next += tb_env->decr_next - now;
969         if (next == now)
970             next++;
971         timer_mod(tb_env->decr_timer, next);
972         tb_env->decr_next = next;
973     }
974 }
975 
976 static void cpu_4xx_pit_cb (void *opaque)
977 {
978     PowerPCCPU *cpu;
979     CPUPPCState *env;
980     ppc_tb_t *tb_env;
981     ppc40x_timer_t *ppc40x_timer;
982 
983     env = opaque;
984     cpu = ppc_env_get_cpu(env);
985     tb_env = env->tb_env;
986     ppc40x_timer = tb_env->opaque;
987     env->spr[SPR_40x_TSR] |= 1 << 27;
988     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
989         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
990     }
991     start_stop_pit(env, tb_env, 1);
992     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
993            "%016" PRIx64 "\n", __func__,
994            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
995            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
996            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
997            ppc40x_timer->pit_reload);
998 }
999 
1000 /* Watchdog timer */
1001 static void cpu_4xx_wdt_cb (void *opaque)
1002 {
1003     PowerPCCPU *cpu;
1004     CPUPPCState *env;
1005     ppc_tb_t *tb_env;
1006     ppc40x_timer_t *ppc40x_timer;
1007     uint64_t now, next;
1008 
1009     env = opaque;
1010     cpu = ppc_env_get_cpu(env);
1011     tb_env = env->tb_env;
1012     ppc40x_timer = tb_env->opaque;
1013     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1014     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1015     case 0:
1016         next = 1 << 17;
1017         break;
1018     case 1:
1019         next = 1 << 21;
1020         break;
1021     case 2:
1022         next = 1 << 25;
1023         break;
1024     case 3:
1025         next = 1 << 29;
1026         break;
1027     default:
1028         /* Cannot occur, but makes gcc happy */
1029         return;
1030     }
1031     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1032     if (next == now)
1033         next++;
1034     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1035            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1036     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1037     case 0x0:
1038     case 0x1:
1039         timer_mod(ppc40x_timer->wdt_timer, next);
1040         ppc40x_timer->wdt_next = next;
1041         env->spr[SPR_40x_TSR] |= 1U << 31;
1042         break;
1043     case 0x2:
1044         timer_mod(ppc40x_timer->wdt_timer, next);
1045         ppc40x_timer->wdt_next = next;
1046         env->spr[SPR_40x_TSR] |= 1 << 30;
1047         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1048             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1049         }
1050         break;
1051     case 0x3:
1052         env->spr[SPR_40x_TSR] &= ~0x30000000;
1053         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1054         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1055         case 0x0:
1056             /* No reset */
1057             break;
1058         case 0x1: /* Core reset */
1059             ppc40x_core_reset(cpu);
1060             break;
1061         case 0x2: /* Chip reset */
1062             ppc40x_chip_reset(cpu);
1063             break;
1064         case 0x3: /* System reset */
1065             ppc40x_system_reset(cpu);
1066             break;
1067         }
1068     }
1069 }
1070 
1071 void store_40x_pit (CPUPPCState *env, target_ulong val)
1072 {
1073     ppc_tb_t *tb_env;
1074     ppc40x_timer_t *ppc40x_timer;
1075 
1076     tb_env = env->tb_env;
1077     ppc40x_timer = tb_env->opaque;
1078     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1079     ppc40x_timer->pit_reload = val;
1080     start_stop_pit(env, tb_env, 0);
1081 }
1082 
1083 target_ulong load_40x_pit (CPUPPCState *env)
1084 {
1085     return cpu_ppc_load_decr(env);
1086 }
1087 
1088 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1089 {
1090     CPUPPCState *env = opaque;
1091     ppc_tb_t *tb_env = env->tb_env;
1092 
1093     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1094                 freq);
1095     tb_env->tb_freq = freq;
1096     tb_env->decr_freq = freq;
1097     /* XXX: we should also update all timers */
1098 }
1099 
1100 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1101                                   unsigned int decr_excp)
1102 {
1103     ppc_tb_t *tb_env;
1104     ppc40x_timer_t *ppc40x_timer;
1105 
1106     tb_env = g_malloc0(sizeof(ppc_tb_t));
1107     env->tb_env = tb_env;
1108     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1109     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1110     tb_env->tb_freq = freq;
1111     tb_env->decr_freq = freq;
1112     tb_env->opaque = ppc40x_timer;
1113     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1114     if (ppc40x_timer != NULL) {
1115         /* We use decr timer for PIT */
1116         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1117         ppc40x_timer->fit_timer =
1118             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1119         ppc40x_timer->wdt_timer =
1120             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1121         ppc40x_timer->decr_excp = decr_excp;
1122     }
1123 
1124     return &ppc_40x_set_tb_clk;
1125 }
1126 
1127 /*****************************************************************************/
1128 /* Embedded PowerPC Device Control Registers */
1129 typedef struct ppc_dcrn_t ppc_dcrn_t;
1130 struct ppc_dcrn_t {
1131     dcr_read_cb dcr_read;
1132     dcr_write_cb dcr_write;
1133     void *opaque;
1134 };
1135 
1136 /* XXX: on 460, DCR addresses are 32 bits wide,
1137  *      using DCRIPR to get the 22 upper bits of the DCR address
1138  */
1139 #define DCRN_NB 1024
1140 struct ppc_dcr_t {
1141     ppc_dcrn_t dcrn[DCRN_NB];
1142     int (*read_error)(int dcrn);
1143     int (*write_error)(int dcrn);
1144 };
1145 
1146 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1147 {
1148     ppc_dcrn_t *dcr;
1149 
1150     if (dcrn < 0 || dcrn >= DCRN_NB)
1151         goto error;
1152     dcr = &dcr_env->dcrn[dcrn];
1153     if (dcr->dcr_read == NULL)
1154         goto error;
1155     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1156 
1157     return 0;
1158 
1159  error:
1160     if (dcr_env->read_error != NULL)
1161         return (*dcr_env->read_error)(dcrn);
1162 
1163     return -1;
1164 }
1165 
1166 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1167 {
1168     ppc_dcrn_t *dcr;
1169 
1170     if (dcrn < 0 || dcrn >= DCRN_NB)
1171         goto error;
1172     dcr = &dcr_env->dcrn[dcrn];
1173     if (dcr->dcr_write == NULL)
1174         goto error;
1175     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1176 
1177     return 0;
1178 
1179  error:
1180     if (dcr_env->write_error != NULL)
1181         return (*dcr_env->write_error)(dcrn);
1182 
1183     return -1;
1184 }
1185 
1186 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1187                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1188 {
1189     ppc_dcr_t *dcr_env;
1190     ppc_dcrn_t *dcr;
1191 
1192     dcr_env = env->dcr_env;
1193     if (dcr_env == NULL)
1194         return -1;
1195     if (dcrn < 0 || dcrn >= DCRN_NB)
1196         return -1;
1197     dcr = &dcr_env->dcrn[dcrn];
1198     if (dcr->opaque != NULL ||
1199         dcr->dcr_read != NULL ||
1200         dcr->dcr_write != NULL)
1201         return -1;
1202     dcr->opaque = opaque;
1203     dcr->dcr_read = dcr_read;
1204     dcr->dcr_write = dcr_write;
1205 
1206     return 0;
1207 }
1208 
1209 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1210                   int (*write_error)(int dcrn))
1211 {
1212     ppc_dcr_t *dcr_env;
1213 
1214     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1215     dcr_env->read_error = read_error;
1216     dcr_env->write_error = write_error;
1217     env->dcr_env = dcr_env;
1218 
1219     return 0;
1220 }
1221 
1222 /*****************************************************************************/
1223 /* Debug port */
1224 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1225 {
1226     addr &= 0xF;
1227     switch (addr) {
1228     case 0:
1229         printf("%c", val);
1230         break;
1231     case 1:
1232         printf("\n");
1233         fflush(stdout);
1234         break;
1235     case 2:
1236         printf("Set loglevel to %04" PRIx32 "\n", val);
1237         qemu_set_log(val | 0x100);
1238         break;
1239     }
1240 }
1241 
1242 /*****************************************************************************/
1243 /* NVRAM helpers */
1244 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1245 {
1246     return (*nvram->read_fn)(nvram->opaque, addr);
1247 }
1248 
1249 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1250 {
1251     (*nvram->write_fn)(nvram->opaque, addr, val);
1252 }
1253 
1254 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1255 {
1256     nvram_write(nvram, addr, value);
1257 }
1258 
1259 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1260 {
1261     return nvram_read(nvram, addr);
1262 }
1263 
1264 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1265 {
1266     nvram_write(nvram, addr, value >> 8);
1267     nvram_write(nvram, addr + 1, value & 0xFF);
1268 }
1269 
1270 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1271 {
1272     uint16_t tmp;
1273 
1274     tmp = nvram_read(nvram, addr) << 8;
1275     tmp |= nvram_read(nvram, addr + 1);
1276 
1277     return tmp;
1278 }
1279 
1280 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1281 {
1282     nvram_write(nvram, addr, value >> 24);
1283     nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1284     nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1285     nvram_write(nvram, addr + 3, value & 0xFF);
1286 }
1287 
1288 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1289 {
1290     uint32_t tmp;
1291 
1292     tmp = nvram_read(nvram, addr) << 24;
1293     tmp |= nvram_read(nvram, addr + 1) << 16;
1294     tmp |= nvram_read(nvram, addr + 2) << 8;
1295     tmp |= nvram_read(nvram, addr + 3);
1296 
1297     return tmp;
1298 }
1299 
1300 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1301                              uint32_t max)
1302 {
1303     int i;
1304 
1305     for (i = 0; i < max && str[i] != '\0'; i++) {
1306         nvram_write(nvram, addr + i, str[i]);
1307     }
1308     nvram_write(nvram, addr + i, str[i]);
1309     nvram_write(nvram, addr + max - 1, '\0');
1310 }
1311 
1312 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1313 {
1314     int i;
1315 
1316     memset(dst, 0, max);
1317     for (i = 0; i < max; i++) {
1318         dst[i] = NVRAM_get_byte(nvram, addr + i);
1319         if (dst[i] == '\0')
1320             break;
1321     }
1322 
1323     return i;
1324 }
1325 
1326 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1327 {
1328     uint16_t tmp;
1329     uint16_t pd, pd1, pd2;
1330 
1331     tmp = prev >> 8;
1332     pd = prev ^ value;
1333     pd1 = pd & 0x000F;
1334     pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1335     tmp ^= (pd1 << 3) | (pd1 << 8);
1336     tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1337 
1338     return tmp;
1339 }
1340 
1341 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1342 {
1343     uint32_t i;
1344     uint16_t crc = 0xFFFF;
1345     int odd;
1346 
1347     odd = count & 1;
1348     count &= ~1;
1349     for (i = 0; i != count; i++) {
1350         crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1351     }
1352     if (odd) {
1353         crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1354     }
1355 
1356     return crc;
1357 }
1358 
1359 #define CMDLINE_ADDR 0x017ff000
1360 
1361 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1362                           const char *arch,
1363                           uint32_t RAM_size, int boot_device,
1364                           uint32_t kernel_image, uint32_t kernel_size,
1365                           const char *cmdline,
1366                           uint32_t initrd_image, uint32_t initrd_size,
1367                           uint32_t NVRAM_image,
1368                           int width, int height, int depth)
1369 {
1370     uint16_t crc;
1371 
1372     /* Set parameters for Open Hack'Ware BIOS */
1373     NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1374     NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1375     NVRAM_set_word(nvram,   0x14, NVRAM_size);
1376     NVRAM_set_string(nvram, 0x20, arch, 16);
1377     NVRAM_set_lword(nvram,  0x30, RAM_size);
1378     NVRAM_set_byte(nvram,   0x34, boot_device);
1379     NVRAM_set_lword(nvram,  0x38, kernel_image);
1380     NVRAM_set_lword(nvram,  0x3C, kernel_size);
1381     if (cmdline) {
1382         /* XXX: put the cmdline in NVRAM too ? */
1383         pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1384         NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1385         NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1386     } else {
1387         NVRAM_set_lword(nvram,  0x40, 0);
1388         NVRAM_set_lword(nvram,  0x44, 0);
1389     }
1390     NVRAM_set_lword(nvram,  0x48, initrd_image);
1391     NVRAM_set_lword(nvram,  0x4C, initrd_size);
1392     NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1393 
1394     NVRAM_set_word(nvram,   0x54, width);
1395     NVRAM_set_word(nvram,   0x56, height);
1396     NVRAM_set_word(nvram,   0x58, depth);
1397     crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1398     NVRAM_set_word(nvram,   0xFC, crc);
1399 
1400     return 0;
1401 }
1402 
1403 /* CPU device-tree ID helpers */
1404 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1405 {
1406     return cpu->cpu_dt_id;
1407 }
1408 
1409 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1410 {
1411     CPUState *cs;
1412 
1413     CPU_FOREACH(cs) {
1414         PowerPCCPU *cpu = POWERPC_CPU(cs);
1415 
1416         if (cpu->cpu_dt_id == cpu_dt_id) {
1417             return cpu;
1418         }
1419     }
1420 
1421     return NULL;
1422 }
1423