xref: /openbmc/qemu/hw/ppc/ppc.c (revision 3a6e4ce684e48988f9736aecc6b365609e83f8d1)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 //#define PPC_DEBUG_IRQ
41 //#define PPC_DEBUG_TB
42 
43 #ifdef PPC_DEBUG_IRQ
44 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
45 #else
46 #  define LOG_IRQ(...) do { } while (0)
47 #endif
48 
49 
50 #ifdef PPC_DEBUG_TB
51 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
52 #else
53 #  define LOG_TB(...) do { } while (0)
54 #endif
55 
56 static void cpu_ppc_tb_stop (CPUPPCState *env);
57 static void cpu_ppc_tb_start (CPUPPCState *env);
58 
59 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
60 {
61     CPUState *cs = CPU(cpu);
62     CPUPPCState *env = &cpu->env;
63     unsigned int old_pending;
64     bool locked = false;
65 
66     /* We may already have the BQL if coming from the reset path */
67     if (!qemu_mutex_iothread_locked()) {
68         locked = true;
69         qemu_mutex_lock_iothread();
70     }
71 
72     old_pending = env->pending_interrupts;
73 
74     if (level) {
75         env->pending_interrupts |= 1 << n_IRQ;
76         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
77     } else {
78         env->pending_interrupts &= ~(1 << n_IRQ);
79         if (env->pending_interrupts == 0) {
80             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
81         }
82     }
83 
84     if (old_pending != env->pending_interrupts) {
85         kvmppc_set_interrupt(cpu, n_IRQ, level);
86     }
87 
88 
89     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
90                 "req %08x\n", __func__, env, n_IRQ, level,
91                 env->pending_interrupts, CPU(cpu)->interrupt_request);
92 
93     if (locked) {
94         qemu_mutex_unlock_iothread();
95     }
96 }
97 
98 /* PowerPC 6xx / 7xx internal IRQ controller */
99 static void ppc6xx_set_irq(void *opaque, int pin, int level)
100 {
101     PowerPCCPU *cpu = opaque;
102     CPUPPCState *env = &cpu->env;
103     int cur_level;
104 
105     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
106                 env, pin, level);
107     cur_level = (env->irq_input_state >> pin) & 1;
108     /* Don't generate spurious events */
109     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
110         CPUState *cs = CPU(cpu);
111 
112         switch (pin) {
113         case PPC6xx_INPUT_TBEN:
114             /* Level sensitive - active high */
115             LOG_IRQ("%s: %s the time base\n",
116                         __func__, level ? "start" : "stop");
117             if (level) {
118                 cpu_ppc_tb_start(env);
119             } else {
120                 cpu_ppc_tb_stop(env);
121             }
122             break;
123         case PPC6xx_INPUT_INT:
124             /* Level sensitive - active high */
125             LOG_IRQ("%s: set the external IRQ state to %d\n",
126                         __func__, level);
127             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128             break;
129         case PPC6xx_INPUT_SMI:
130             /* Level sensitive - active high */
131             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                         __func__, level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134             break;
135         case PPC6xx_INPUT_MCP:
136             /* Negative edge sensitive */
137             /* XXX: TODO: actual reaction may depends on HID0 status
138              *            603/604/740/750: check HID0[EMCP]
139              */
140             if (cur_level == 1 && level == 0) {
141                 LOG_IRQ("%s: raise machine check state\n",
142                             __func__);
143                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144             }
145             break;
146         case PPC6xx_INPUT_CKSTP_IN:
147             /* Level sensitive - active low */
148             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149             /* XXX: Note that the only way to restart the CPU is to reset it */
150             if (level) {
151                 LOG_IRQ("%s: stop the CPU\n", __func__);
152                 cs->halted = 1;
153             }
154             break;
155         case PPC6xx_INPUT_HRESET:
156             /* Level sensitive - active low */
157             if (level) {
158                 LOG_IRQ("%s: reset the CPU\n", __func__);
159                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160             }
161             break;
162         case PPC6xx_INPUT_SRESET:
163             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                         __func__, level);
165             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166             break;
167         default:
168             g_assert_not_reached();
169         }
170         if (level)
171             env->irq_input_state |= 1 << pin;
172         else
173             env->irq_input_state &= ~(1 << pin);
174     }
175 }
176 
177 void ppc6xx_irq_init(PowerPCCPU *cpu)
178 {
179     CPUPPCState *env = &cpu->env;
180 
181     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
182                                                   PPC6xx_INPUT_NB);
183 }
184 
185 #if defined(TARGET_PPC64)
186 /* PowerPC 970 internal IRQ controller */
187 static void ppc970_set_irq(void *opaque, int pin, int level)
188 {
189     PowerPCCPU *cpu = opaque;
190     CPUPPCState *env = &cpu->env;
191     int cur_level;
192 
193     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
194                 env, pin, level);
195     cur_level = (env->irq_input_state >> pin) & 1;
196     /* Don't generate spurious events */
197     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
198         CPUState *cs = CPU(cpu);
199 
200         switch (pin) {
201         case PPC970_INPUT_INT:
202             /* Level sensitive - active high */
203             LOG_IRQ("%s: set the external IRQ state to %d\n",
204                         __func__, level);
205             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
206             break;
207         case PPC970_INPUT_THINT:
208             /* Level sensitive - active high */
209             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
210                         level);
211             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
212             break;
213         case PPC970_INPUT_MCP:
214             /* Negative edge sensitive */
215             /* XXX: TODO: actual reaction may depends on HID0 status
216              *            603/604/740/750: check HID0[EMCP]
217              */
218             if (cur_level == 1 && level == 0) {
219                 LOG_IRQ("%s: raise machine check state\n",
220                             __func__);
221                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
222             }
223             break;
224         case PPC970_INPUT_CKSTP:
225             /* Level sensitive - active low */
226             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
227             if (level) {
228                 LOG_IRQ("%s: stop the CPU\n", __func__);
229                 cs->halted = 1;
230             } else {
231                 LOG_IRQ("%s: restart the CPU\n", __func__);
232                 cs->halted = 0;
233                 qemu_cpu_kick(cs);
234             }
235             break;
236         case PPC970_INPUT_HRESET:
237             /* Level sensitive - active low */
238             if (level) {
239                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
240             }
241             break;
242         case PPC970_INPUT_SRESET:
243             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
244                         __func__, level);
245             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
246             break;
247         case PPC970_INPUT_TBEN:
248             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
249                         level);
250             /* XXX: TODO */
251             break;
252         default:
253             g_assert_not_reached();
254         }
255         if (level)
256             env->irq_input_state |= 1 << pin;
257         else
258             env->irq_input_state &= ~(1 << pin);
259     }
260 }
261 
262 void ppc970_irq_init(PowerPCCPU *cpu)
263 {
264     CPUPPCState *env = &cpu->env;
265 
266     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
267                                                   PPC970_INPUT_NB);
268 }
269 
270 /* POWER7 internal IRQ controller */
271 static void power7_set_irq(void *opaque, int pin, int level)
272 {
273     PowerPCCPU *cpu = opaque;
274 
275     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
276             &cpu->env, pin, level);
277 
278     switch (pin) {
279     case POWER7_INPUT_INT:
280         /* Level sensitive - active high */
281         LOG_IRQ("%s: set the external IRQ state to %d\n",
282                 __func__, level);
283         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
284         break;
285     default:
286         g_assert_not_reached();
287     }
288 }
289 
290 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
291 {
292     CPUPPCState *env = &cpu->env;
293 
294     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
295                                                   POWER7_INPUT_NB);
296 }
297 
298 /* POWER9 internal IRQ controller */
299 static void power9_set_irq(void *opaque, int pin, int level)
300 {
301     PowerPCCPU *cpu = opaque;
302 
303     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
304             &cpu->env, pin, level);
305 
306     switch (pin) {
307     case POWER9_INPUT_INT:
308         /* Level sensitive - active high */
309         LOG_IRQ("%s: set the external IRQ state to %d\n",
310                 __func__, level);
311         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
312         break;
313     case POWER9_INPUT_HINT:
314         /* Level sensitive - active high */
315         LOG_IRQ("%s: set the external IRQ state to %d\n",
316                 __func__, level);
317         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
318         break;
319     default:
320         g_assert_not_reached();
321     }
322 }
323 
324 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
325 {
326     CPUPPCState *env = &cpu->env;
327 
328     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
329                                                   POWER9_INPUT_NB);
330 }
331 #endif /* defined(TARGET_PPC64) */
332 
333 void ppc40x_core_reset(PowerPCCPU *cpu)
334 {
335     CPUPPCState *env = &cpu->env;
336     target_ulong dbsr;
337 
338     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
339     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
340     dbsr = env->spr[SPR_40x_DBSR];
341     dbsr &= ~0x00000300;
342     dbsr |= 0x00000100;
343     env->spr[SPR_40x_DBSR] = dbsr;
344 }
345 
346 void ppc40x_chip_reset(PowerPCCPU *cpu)
347 {
348     CPUPPCState *env = &cpu->env;
349     target_ulong dbsr;
350 
351     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
352     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
353     /* XXX: TODO reset all internal peripherals */
354     dbsr = env->spr[SPR_40x_DBSR];
355     dbsr &= ~0x00000300;
356     dbsr |= 0x00000200;
357     env->spr[SPR_40x_DBSR] = dbsr;
358 }
359 
360 void ppc40x_system_reset(PowerPCCPU *cpu)
361 {
362     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
363     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
364 }
365 
366 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
367 {
368     PowerPCCPU *cpu = env_archcpu(env);
369 
370     switch ((val >> 28) & 0x3) {
371     case 0x0:
372         /* No action */
373         break;
374     case 0x1:
375         /* Core reset */
376         ppc40x_core_reset(cpu);
377         break;
378     case 0x2:
379         /* Chip reset */
380         ppc40x_chip_reset(cpu);
381         break;
382     case 0x3:
383         /* System reset */
384         ppc40x_system_reset(cpu);
385         break;
386     }
387 }
388 
389 /* PowerPC 40x internal IRQ controller */
390 static void ppc40x_set_irq(void *opaque, int pin, int level)
391 {
392     PowerPCCPU *cpu = opaque;
393     CPUPPCState *env = &cpu->env;
394     int cur_level;
395 
396     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
397                 env, pin, level);
398     cur_level = (env->irq_input_state >> pin) & 1;
399     /* Don't generate spurious events */
400     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
401         CPUState *cs = CPU(cpu);
402 
403         switch (pin) {
404         case PPC40x_INPUT_RESET_SYS:
405             if (level) {
406                 LOG_IRQ("%s: reset the PowerPC system\n",
407                             __func__);
408                 ppc40x_system_reset(cpu);
409             }
410             break;
411         case PPC40x_INPUT_RESET_CHIP:
412             if (level) {
413                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
414                 ppc40x_chip_reset(cpu);
415             }
416             break;
417         case PPC40x_INPUT_RESET_CORE:
418             /* XXX: TODO: update DBSR[MRR] */
419             if (level) {
420                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
421                 ppc40x_core_reset(cpu);
422             }
423             break;
424         case PPC40x_INPUT_CINT:
425             /* Level sensitive - active high */
426             LOG_IRQ("%s: set the critical IRQ state to %d\n",
427                         __func__, level);
428             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
429             break;
430         case PPC40x_INPUT_INT:
431             /* Level sensitive - active high */
432             LOG_IRQ("%s: set the external IRQ state to %d\n",
433                         __func__, level);
434             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
435             break;
436         case PPC40x_INPUT_HALT:
437             /* Level sensitive - active low */
438             if (level) {
439                 LOG_IRQ("%s: stop the CPU\n", __func__);
440                 cs->halted = 1;
441             } else {
442                 LOG_IRQ("%s: restart the CPU\n", __func__);
443                 cs->halted = 0;
444                 qemu_cpu_kick(cs);
445             }
446             break;
447         case PPC40x_INPUT_DEBUG:
448             /* Level sensitive - active high */
449             LOG_IRQ("%s: set the debug pin state to %d\n",
450                         __func__, level);
451             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
452             break;
453         default:
454             g_assert_not_reached();
455         }
456         if (level)
457             env->irq_input_state |= 1 << pin;
458         else
459             env->irq_input_state &= ~(1 << pin);
460     }
461 }
462 
463 void ppc40x_irq_init(PowerPCCPU *cpu)
464 {
465     CPUPPCState *env = &cpu->env;
466 
467     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
468                                                   cpu, PPC40x_INPUT_NB);
469 }
470 
471 /* PowerPC E500 internal IRQ controller */
472 static void ppce500_set_irq(void *opaque, int pin, int level)
473 {
474     PowerPCCPU *cpu = opaque;
475     CPUPPCState *env = &cpu->env;
476     int cur_level;
477 
478     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
479                 env, pin, level);
480     cur_level = (env->irq_input_state >> pin) & 1;
481     /* Don't generate spurious events */
482     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
483         switch (pin) {
484         case PPCE500_INPUT_MCK:
485             if (level) {
486                 LOG_IRQ("%s: reset the PowerPC system\n",
487                             __func__);
488                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
489             }
490             break;
491         case PPCE500_INPUT_RESET_CORE:
492             if (level) {
493                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
494                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
495             }
496             break;
497         case PPCE500_INPUT_CINT:
498             /* Level sensitive - active high */
499             LOG_IRQ("%s: set the critical IRQ state to %d\n",
500                         __func__, level);
501             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
502             break;
503         case PPCE500_INPUT_INT:
504             /* Level sensitive - active high */
505             LOG_IRQ("%s: set the core IRQ state to %d\n",
506                         __func__, level);
507             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
508             break;
509         case PPCE500_INPUT_DEBUG:
510             /* Level sensitive - active high */
511             LOG_IRQ("%s: set the debug pin state to %d\n",
512                         __func__, level);
513             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
514             break;
515         default:
516             g_assert_not_reached();
517         }
518         if (level)
519             env->irq_input_state |= 1 << pin;
520         else
521             env->irq_input_state &= ~(1 << pin);
522     }
523 }
524 
525 void ppce500_irq_init(PowerPCCPU *cpu)
526 {
527     CPUPPCState *env = &cpu->env;
528 
529     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
530                                                   cpu, PPCE500_INPUT_NB);
531 }
532 
533 /* Enable or Disable the E500 EPR capability */
534 void ppce500_set_mpic_proxy(bool enabled)
535 {
536     CPUState *cs;
537 
538     CPU_FOREACH(cs) {
539         PowerPCCPU *cpu = POWERPC_CPU(cs);
540 
541         cpu->env.mpic_proxy = enabled;
542         if (kvm_enabled()) {
543             kvmppc_set_mpic_proxy(cpu, enabled);
544         }
545     }
546 }
547 
548 /*****************************************************************************/
549 /* PowerPC time base and decrementer emulation */
550 
551 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
552 {
553     /* TB time in tb periods */
554     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
555 }
556 
557 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
558 {
559     ppc_tb_t *tb_env = env->tb_env;
560     uint64_t tb;
561 
562     if (kvm_enabled()) {
563         return env->spr[SPR_TBL];
564     }
565 
566     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
567     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
568 
569     return tb;
570 }
571 
572 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
573 {
574     ppc_tb_t *tb_env = env->tb_env;
575     uint64_t tb;
576 
577     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
578     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
579 
580     return tb >> 32;
581 }
582 
583 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
584 {
585     if (kvm_enabled()) {
586         return env->spr[SPR_TBU];
587     }
588 
589     return _cpu_ppc_load_tbu(env);
590 }
591 
592 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
593                                     int64_t *tb_offsetp, uint64_t value)
594 {
595     *tb_offsetp = value -
596         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
597 
598     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
599                 __func__, value, *tb_offsetp);
600 }
601 
602 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
603 {
604     ppc_tb_t *tb_env = env->tb_env;
605     uint64_t tb;
606 
607     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
608     tb &= 0xFFFFFFFF00000000ULL;
609     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
610                      &tb_env->tb_offset, tb | (uint64_t)value);
611 }
612 
613 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
614 {
615     ppc_tb_t *tb_env = env->tb_env;
616     uint64_t tb;
617 
618     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
619     tb &= 0x00000000FFFFFFFFULL;
620     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
621                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
622 }
623 
624 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
625 {
626     _cpu_ppc_store_tbu(env, value);
627 }
628 
629 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
630 {
631     ppc_tb_t *tb_env = env->tb_env;
632     uint64_t tb;
633 
634     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
635     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
636 
637     return tb;
638 }
639 
640 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
641 {
642     ppc_tb_t *tb_env = env->tb_env;
643     uint64_t tb;
644 
645     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
646     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
647 
648     return tb >> 32;
649 }
650 
651 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
652 {
653     ppc_tb_t *tb_env = env->tb_env;
654     uint64_t tb;
655 
656     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
657     tb &= 0xFFFFFFFF00000000ULL;
658     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
659                      &tb_env->atb_offset, tb | (uint64_t)value);
660 }
661 
662 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
663 {
664     ppc_tb_t *tb_env = env->tb_env;
665     uint64_t tb;
666 
667     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
668     tb &= 0x00000000FFFFFFFFULL;
669     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
670                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
671 }
672 
673 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
674 {
675     ppc_tb_t *tb_env = env->tb_env;
676 
677     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
678                           tb_env->vtb_offset);
679 }
680 
681 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
682 {
683     ppc_tb_t *tb_env = env->tb_env;
684 
685     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
686                      &tb_env->vtb_offset, value);
687 }
688 
689 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
690 {
691     ppc_tb_t *tb_env = env->tb_env;
692     uint64_t tb;
693 
694     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
695                         tb_env->tb_offset);
696     tb &= 0xFFFFFFUL;
697     tb |= (value & ~0xFFFFFFUL);
698     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
699                      &tb_env->tb_offset, tb);
700 }
701 
702 static void cpu_ppc_tb_stop (CPUPPCState *env)
703 {
704     ppc_tb_t *tb_env = env->tb_env;
705     uint64_t tb, atb, vmclk;
706 
707     /* If the time base is already frozen, do nothing */
708     if (tb_env->tb_freq != 0) {
709         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
710         /* Get the time base */
711         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
712         /* Get the alternate time base */
713         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
714         /* Store the time base value (ie compute the current offset) */
715         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
716         /* Store the alternate time base value (compute the current offset) */
717         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
718         /* Set the time base frequency to zero */
719         tb_env->tb_freq = 0;
720         /* Now, the time bases are frozen to tb_offset / atb_offset value */
721     }
722 }
723 
724 static void cpu_ppc_tb_start (CPUPPCState *env)
725 {
726     ppc_tb_t *tb_env = env->tb_env;
727     uint64_t tb, atb, vmclk;
728 
729     /* If the time base is not frozen, do nothing */
730     if (tb_env->tb_freq == 0) {
731         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
732         /* Get the time base from tb_offset */
733         tb = tb_env->tb_offset;
734         /* Get the alternate time base from atb_offset */
735         atb = tb_env->atb_offset;
736         /* Restore the tb frequency from the decrementer frequency */
737         tb_env->tb_freq = tb_env->decr_freq;
738         /* Store the time base value */
739         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
740         /* Store the alternate time base value */
741         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
742     }
743 }
744 
745 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
746 {
747     ppc_tb_t *tb_env = env->tb_env;
748     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
749     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
750 }
751 
752 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
753 {
754     ppc_tb_t *tb_env = env->tb_env;
755     int64_t decr, diff;
756 
757     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
758     if (diff >= 0) {
759         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
760     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
761         decr = 0;
762     }  else {
763         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
764     }
765     LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
766 
767     return decr;
768 }
769 
770 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
771 {
772     ppc_tb_t *tb_env = env->tb_env;
773     uint64_t decr;
774 
775     if (kvm_enabled()) {
776         return env->spr[SPR_DECR];
777     }
778 
779     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
780 
781     /*
782      * If large decrementer is enabled then the decrementer is signed extened
783      * to 64 bits, otherwise it is a 32 bit value.
784      */
785     if (env->spr[SPR_LPCR] & LPCR_LD) {
786         return decr;
787     }
788     return (uint32_t) decr;
789 }
790 
791 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
792 {
793     PowerPCCPU *cpu = env_archcpu(env);
794     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
795     ppc_tb_t *tb_env = env->tb_env;
796     uint64_t hdecr;
797 
798     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
799 
800     /*
801      * If we have a large decrementer (POWER9 or later) then hdecr is sign
802      * extended to 64 bits, otherwise it is 32 bits.
803      */
804     if (pcc->lrg_decr_bits > 32) {
805         return hdecr;
806     }
807     return (uint32_t) hdecr;
808 }
809 
810 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
811 {
812     ppc_tb_t *tb_env = env->tb_env;
813 
814     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
815                           tb_env->purr_offset);
816 }
817 
818 /* When decrementer expires,
819  * all we need to do is generate or queue a CPU exception
820  */
821 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
822 {
823     /* Raise it */
824     LOG_TB("raise decrementer exception\n");
825     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
826 }
827 
828 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
829 {
830     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
831 }
832 
833 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
834 {
835     CPUPPCState *env = &cpu->env;
836 
837     /* Raise it */
838     LOG_TB("raise hv decrementer exception\n");
839 
840     /* The architecture specifies that we don't deliver HDEC
841      * interrupts in a PM state. Not only they don't cause a
842      * wakeup but they also get effectively discarded.
843      */
844     if (!env->resume_as_sreset) {
845         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
846     }
847 }
848 
849 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
850 {
851     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
852 }
853 
854 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
855                                  QEMUTimer *timer,
856                                  void (*raise_excp)(void *),
857                                  void (*lower_excp)(PowerPCCPU *),
858                                  target_ulong decr, target_ulong value,
859                                  int nr_bits)
860 {
861     CPUPPCState *env = &cpu->env;
862     ppc_tb_t *tb_env = env->tb_env;
863     uint64_t now, next;
864     bool negative;
865 
866     /* Truncate value to decr_width and sign extend for simplicity */
867     value &= ((1ULL << nr_bits) - 1);
868     negative = !!(value & (1ULL << (nr_bits - 1)));
869     if (negative) {
870         value |= (0xFFFFFFFFULL << nr_bits);
871     }
872 
873     LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
874                 decr, value);
875 
876     if (kvm_enabled()) {
877         /* KVM handles decrementer exceptions, we don't need our own timer */
878         return;
879     }
880 
881     /*
882      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
883      * interrupt.
884      *
885      * If we get a really small DEC value, we can assume that by the time we
886      * handled it we should inject an interrupt already.
887      *
888      * On MSB level based DEC implementations the MSB always means the interrupt
889      * is pending, so raise it on those.
890      *
891      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
892      * an edge interrupt, so raise it here too.
893      */
894     if ((value < 3) ||
895         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
896         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
897           && !(decr & (1ULL << (nr_bits - 1))))) {
898         (*raise_excp)(cpu);
899         return;
900     }
901 
902     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
903     if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
904         (*lower_excp)(cpu);
905     }
906 
907     /* Calculate the next timer event */
908     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
909     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
910     *nextp = next;
911 
912     /* Adjust timer */
913     timer_mod(timer, next);
914 }
915 
916 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
917                                        target_ulong value, int nr_bits)
918 {
919     ppc_tb_t *tb_env = cpu->env.tb_env;
920 
921     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
922                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
923                          value, nr_bits);
924 }
925 
926 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
927 {
928     PowerPCCPU *cpu = env_archcpu(env);
929     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
930     int nr_bits = 32;
931 
932     if (env->spr[SPR_LPCR] & LPCR_LD) {
933         nr_bits = pcc->lrg_decr_bits;
934     }
935 
936     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
937 }
938 
939 static void cpu_ppc_decr_cb(void *opaque)
940 {
941     PowerPCCPU *cpu = opaque;
942 
943     cpu_ppc_decr_excp(cpu);
944 }
945 
946 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
947                                         target_ulong value, int nr_bits)
948 {
949     ppc_tb_t *tb_env = cpu->env.tb_env;
950 
951     if (tb_env->hdecr_timer != NULL) {
952         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
953                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
954                              hdecr, value, nr_bits);
955     }
956 }
957 
958 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
959 {
960     PowerPCCPU *cpu = env_archcpu(env);
961     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
962 
963     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
964                          pcc->lrg_decr_bits);
965 }
966 
967 static void cpu_ppc_hdecr_cb(void *opaque)
968 {
969     PowerPCCPU *cpu = opaque;
970 
971     cpu_ppc_hdecr_excp(cpu);
972 }
973 
974 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
975 {
976     ppc_tb_t *tb_env = env->tb_env;
977 
978     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979                      &tb_env->purr_offset, value);
980 }
981 
982 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
983 {
984     CPUPPCState *env = opaque;
985     PowerPCCPU *cpu = env_archcpu(env);
986     ppc_tb_t *tb_env = env->tb_env;
987 
988     tb_env->tb_freq = freq;
989     tb_env->decr_freq = freq;
990     /* There is a bug in Linux 2.4 kernels:
991      * if a decrementer exception is pending when it enables msr_ee at startup,
992      * it's not ready to handle it...
993      */
994     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
995     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
996     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
997 }
998 
999 static void timebase_save(PPCTimebase *tb)
1000 {
1001     uint64_t ticks = cpu_get_host_ticks();
1002     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1003 
1004     if (!first_ppc_cpu->env.tb_env) {
1005         error_report("No timebase object");
1006         return;
1007     }
1008 
1009     /* not used anymore, we keep it for compatibility */
1010     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1011     /*
1012      * tb_offset is only expected to be changed by QEMU so
1013      * there is no need to update it from KVM here
1014      */
1015     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1016 
1017     tb->runstate_paused =
1018         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
1019 }
1020 
1021 static void timebase_load(PPCTimebase *tb)
1022 {
1023     CPUState *cpu;
1024     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1025     int64_t tb_off_adj, tb_off;
1026     unsigned long freq;
1027 
1028     if (!first_ppc_cpu->env.tb_env) {
1029         error_report("No timebase object");
1030         return;
1031     }
1032 
1033     freq = first_ppc_cpu->env.tb_env->tb_freq;
1034 
1035     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1036 
1037     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1038     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1039                         (tb_off_adj - tb_off) / freq);
1040 
1041     /* Set new offset to all CPUs */
1042     CPU_FOREACH(cpu) {
1043         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1044         pcpu->env.tb_env->tb_offset = tb_off_adj;
1045         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1046     }
1047 }
1048 
1049 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1050                                    RunState state)
1051 {
1052     PPCTimebase *tb = opaque;
1053 
1054     if (running) {
1055         timebase_load(tb);
1056     } else {
1057         timebase_save(tb);
1058     }
1059 }
1060 
1061 /*
1062  * When migrating a running guest, read the clock just
1063  * before migration, so that the guest clock counts
1064  * during the events between:
1065  *
1066  *  * vm_stop()
1067  *  *
1068  *  * pre_save()
1069  *
1070  *  This reduces clock difference on migration from 5s
1071  *  to 0.1s (when max_downtime == 5s), because sending the
1072  *  final pages of memory (which happens between vm_stop()
1073  *  and pre_save()) takes max_downtime.
1074  */
1075 static int timebase_pre_save(void *opaque)
1076 {
1077     PPCTimebase *tb = opaque;
1078 
1079     /* guest_timebase won't be overridden in case of paused guest or savevm */
1080     if (!tb->runstate_paused) {
1081         timebase_save(tb);
1082     }
1083 
1084     return 0;
1085 }
1086 
1087 const VMStateDescription vmstate_ppc_timebase = {
1088     .name = "timebase",
1089     .version_id = 1,
1090     .minimum_version_id = 1,
1091     .minimum_version_id_old = 1,
1092     .pre_save = timebase_pre_save,
1093     .fields      = (VMStateField []) {
1094         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1095         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1096         VMSTATE_END_OF_LIST()
1097     },
1098 };
1099 
1100 /* Set up (once) timebase frequency (in Hz) */
1101 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1102 {
1103     PowerPCCPU *cpu = env_archcpu(env);
1104     ppc_tb_t *tb_env;
1105 
1106     tb_env = g_malloc0(sizeof(ppc_tb_t));
1107     env->tb_env = tb_env;
1108     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1109     if (is_book3s_arch2x(env)) {
1110         /* All Book3S 64bit CPUs implement level based DEC logic */
1111         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1112     }
1113     /* Create new timer */
1114     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1115     if (env->has_hv_mode) {
1116         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1117                                                 cpu);
1118     } else {
1119         tb_env->hdecr_timer = NULL;
1120     }
1121     cpu_ppc_set_tb_clk(env, freq);
1122 
1123     return &cpu_ppc_set_tb_clk;
1124 }
1125 
1126 /* Specific helpers for POWER & PowerPC 601 RTC */
1127 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1128 {
1129     _cpu_ppc_store_tbu(env, value);
1130 }
1131 
1132 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1133 {
1134     return _cpu_ppc_load_tbu(env);
1135 }
1136 
1137 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1138 {
1139     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1140 }
1141 
1142 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1143 {
1144     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1145 }
1146 
1147 /*****************************************************************************/
1148 /* PowerPC 40x timers */
1149 
1150 /* PIT, FIT & WDT */
1151 typedef struct ppc40x_timer_t ppc40x_timer_t;
1152 struct ppc40x_timer_t {
1153     uint64_t pit_reload;  /* PIT auto-reload value        */
1154     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1155     QEMUTimer *fit_timer;
1156     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1157     QEMUTimer *wdt_timer;
1158 
1159     /* 405 have the PIT, 440 have a DECR.  */
1160     unsigned int decr_excp;
1161 };
1162 
1163 /* Fixed interval timer */
1164 static void cpu_4xx_fit_cb (void *opaque)
1165 {
1166     PowerPCCPU *cpu;
1167     CPUPPCState *env;
1168     ppc_tb_t *tb_env;
1169     ppc40x_timer_t *ppc40x_timer;
1170     uint64_t now, next;
1171 
1172     env = opaque;
1173     cpu = env_archcpu(env);
1174     tb_env = env->tb_env;
1175     ppc40x_timer = tb_env->opaque;
1176     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1177     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1178     case 0:
1179         next = 1 << 9;
1180         break;
1181     case 1:
1182         next = 1 << 13;
1183         break;
1184     case 2:
1185         next = 1 << 17;
1186         break;
1187     case 3:
1188         next = 1 << 21;
1189         break;
1190     default:
1191         /* Cannot occur, but makes gcc happy */
1192         return;
1193     }
1194     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1195     if (next == now)
1196         next++;
1197     timer_mod(ppc40x_timer->fit_timer, next);
1198     env->spr[SPR_40x_TSR] |= 1 << 26;
1199     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1200         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1201     }
1202     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1203            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1204            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1205 }
1206 
1207 /* Programmable interval timer */
1208 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1209 {
1210     ppc40x_timer_t *ppc40x_timer;
1211     uint64_t now, next;
1212 
1213     ppc40x_timer = tb_env->opaque;
1214     if (ppc40x_timer->pit_reload <= 1 ||
1215         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1216         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1217         /* Stop PIT */
1218         LOG_TB("%s: stop PIT\n", __func__);
1219         timer_del(tb_env->decr_timer);
1220     } else {
1221         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1222                     __func__, ppc40x_timer->pit_reload);
1223         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1224         next = now + muldiv64(ppc40x_timer->pit_reload,
1225                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1226         if (is_excp)
1227             next += tb_env->decr_next - now;
1228         if (next == now)
1229             next++;
1230         timer_mod(tb_env->decr_timer, next);
1231         tb_env->decr_next = next;
1232     }
1233 }
1234 
1235 static void cpu_4xx_pit_cb (void *opaque)
1236 {
1237     PowerPCCPU *cpu;
1238     CPUPPCState *env;
1239     ppc_tb_t *tb_env;
1240     ppc40x_timer_t *ppc40x_timer;
1241 
1242     env = opaque;
1243     cpu = env_archcpu(env);
1244     tb_env = env->tb_env;
1245     ppc40x_timer = tb_env->opaque;
1246     env->spr[SPR_40x_TSR] |= 1 << 27;
1247     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1248         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1249     }
1250     start_stop_pit(env, tb_env, 1);
1251     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1252            "%016" PRIx64 "\n", __func__,
1253            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1254            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1255            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1256            ppc40x_timer->pit_reload);
1257 }
1258 
1259 /* Watchdog timer */
1260 static void cpu_4xx_wdt_cb (void *opaque)
1261 {
1262     PowerPCCPU *cpu;
1263     CPUPPCState *env;
1264     ppc_tb_t *tb_env;
1265     ppc40x_timer_t *ppc40x_timer;
1266     uint64_t now, next;
1267 
1268     env = opaque;
1269     cpu = env_archcpu(env);
1270     tb_env = env->tb_env;
1271     ppc40x_timer = tb_env->opaque;
1272     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1273     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1274     case 0:
1275         next = 1 << 17;
1276         break;
1277     case 1:
1278         next = 1 << 21;
1279         break;
1280     case 2:
1281         next = 1 << 25;
1282         break;
1283     case 3:
1284         next = 1 << 29;
1285         break;
1286     default:
1287         /* Cannot occur, but makes gcc happy */
1288         return;
1289     }
1290     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1291     if (next == now)
1292         next++;
1293     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1294            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1295     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1296     case 0x0:
1297     case 0x1:
1298         timer_mod(ppc40x_timer->wdt_timer, next);
1299         ppc40x_timer->wdt_next = next;
1300         env->spr[SPR_40x_TSR] |= 1U << 31;
1301         break;
1302     case 0x2:
1303         timer_mod(ppc40x_timer->wdt_timer, next);
1304         ppc40x_timer->wdt_next = next;
1305         env->spr[SPR_40x_TSR] |= 1 << 30;
1306         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1307             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1308         }
1309         break;
1310     case 0x3:
1311         env->spr[SPR_40x_TSR] &= ~0x30000000;
1312         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1313         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1314         case 0x0:
1315             /* No reset */
1316             break;
1317         case 0x1: /* Core reset */
1318             ppc40x_core_reset(cpu);
1319             break;
1320         case 0x2: /* Chip reset */
1321             ppc40x_chip_reset(cpu);
1322             break;
1323         case 0x3: /* System reset */
1324             ppc40x_system_reset(cpu);
1325             break;
1326         }
1327     }
1328 }
1329 
1330 void store_40x_pit (CPUPPCState *env, target_ulong val)
1331 {
1332     ppc_tb_t *tb_env;
1333     ppc40x_timer_t *ppc40x_timer;
1334 
1335     tb_env = env->tb_env;
1336     ppc40x_timer = tb_env->opaque;
1337     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1338     ppc40x_timer->pit_reload = val;
1339     start_stop_pit(env, tb_env, 0);
1340 }
1341 
1342 target_ulong load_40x_pit (CPUPPCState *env)
1343 {
1344     return cpu_ppc_load_decr(env);
1345 }
1346 
1347 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1348 {
1349     CPUPPCState *env = opaque;
1350     ppc_tb_t *tb_env = env->tb_env;
1351 
1352     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1353                 freq);
1354     tb_env->tb_freq = freq;
1355     tb_env->decr_freq = freq;
1356     /* XXX: we should also update all timers */
1357 }
1358 
1359 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1360                                   unsigned int decr_excp)
1361 {
1362     ppc_tb_t *tb_env;
1363     ppc40x_timer_t *ppc40x_timer;
1364 
1365     tb_env = g_malloc0(sizeof(ppc_tb_t));
1366     env->tb_env = tb_env;
1367     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1368     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1369     tb_env->tb_freq = freq;
1370     tb_env->decr_freq = freq;
1371     tb_env->opaque = ppc40x_timer;
1372     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1373     if (ppc40x_timer != NULL) {
1374         /* We use decr timer for PIT */
1375         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1376         ppc40x_timer->fit_timer =
1377             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1378         ppc40x_timer->wdt_timer =
1379             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1380         ppc40x_timer->decr_excp = decr_excp;
1381     }
1382 
1383     return &ppc_40x_set_tb_clk;
1384 }
1385 
1386 /*****************************************************************************/
1387 /* Embedded PowerPC Device Control Registers */
1388 typedef struct ppc_dcrn_t ppc_dcrn_t;
1389 struct ppc_dcrn_t {
1390     dcr_read_cb dcr_read;
1391     dcr_write_cb dcr_write;
1392     void *opaque;
1393 };
1394 
1395 /* XXX: on 460, DCR addresses are 32 bits wide,
1396  *      using DCRIPR to get the 22 upper bits of the DCR address
1397  */
1398 #define DCRN_NB 1024
1399 struct ppc_dcr_t {
1400     ppc_dcrn_t dcrn[DCRN_NB];
1401     int (*read_error)(int dcrn);
1402     int (*write_error)(int dcrn);
1403 };
1404 
1405 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1406 {
1407     ppc_dcrn_t *dcr;
1408 
1409     if (dcrn < 0 || dcrn >= DCRN_NB)
1410         goto error;
1411     dcr = &dcr_env->dcrn[dcrn];
1412     if (dcr->dcr_read == NULL)
1413         goto error;
1414     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1415 
1416     return 0;
1417 
1418  error:
1419     if (dcr_env->read_error != NULL)
1420         return (*dcr_env->read_error)(dcrn);
1421 
1422     return -1;
1423 }
1424 
1425 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1426 {
1427     ppc_dcrn_t *dcr;
1428 
1429     if (dcrn < 0 || dcrn >= DCRN_NB)
1430         goto error;
1431     dcr = &dcr_env->dcrn[dcrn];
1432     if (dcr->dcr_write == NULL)
1433         goto error;
1434     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1435 
1436     return 0;
1437 
1438  error:
1439     if (dcr_env->write_error != NULL)
1440         return (*dcr_env->write_error)(dcrn);
1441 
1442     return -1;
1443 }
1444 
1445 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1446                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1447 {
1448     ppc_dcr_t *dcr_env;
1449     ppc_dcrn_t *dcr;
1450 
1451     dcr_env = env->dcr_env;
1452     if (dcr_env == NULL)
1453         return -1;
1454     if (dcrn < 0 || dcrn >= DCRN_NB)
1455         return -1;
1456     dcr = &dcr_env->dcrn[dcrn];
1457     if (dcr->opaque != NULL ||
1458         dcr->dcr_read != NULL ||
1459         dcr->dcr_write != NULL)
1460         return -1;
1461     dcr->opaque = opaque;
1462     dcr->dcr_read = dcr_read;
1463     dcr->dcr_write = dcr_write;
1464 
1465     return 0;
1466 }
1467 
1468 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1469                   int (*write_error)(int dcrn))
1470 {
1471     ppc_dcr_t *dcr_env;
1472 
1473     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1474     dcr_env->read_error = read_error;
1475     dcr_env->write_error = write_error;
1476     env->dcr_env = dcr_env;
1477 
1478     return 0;
1479 }
1480 
1481 /*****************************************************************************/
1482 
1483 int ppc_cpu_pir(PowerPCCPU *cpu)
1484 {
1485     CPUPPCState *env = &cpu->env;
1486     return env->spr_cb[SPR_PIR].default_value;
1487 }
1488 
1489 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1490 {
1491     CPUState *cs;
1492 
1493     CPU_FOREACH(cs) {
1494         PowerPCCPU *cpu = POWERPC_CPU(cs);
1495 
1496         if (ppc_cpu_pir(cpu) == pir) {
1497             return cpu;
1498         }
1499     }
1500 
1501     return NULL;
1502 }
1503 
1504 void ppc_irq_reset(PowerPCCPU *cpu)
1505 {
1506     CPUPPCState *env = &cpu->env;
1507 
1508     env->irq_input_state = 0;
1509     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1510 }
1511