xref: /openbmc/qemu/hw/ppc/ppc.c (revision 30d0647bcfa99d4a141eaa843a9fb5b091ddbb76)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
42 
43 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
44 {
45     CPUPPCState *env = &cpu->env;
46     unsigned int old_pending;
47 
48     /* We may already have the BQL if coming from the reset path */
49     QEMU_IOTHREAD_LOCK_GUARD();
50 
51     old_pending = env->pending_interrupts;
52 
53     if (level) {
54         env->pending_interrupts |= irq;
55     } else {
56         env->pending_interrupts &= ~irq;
57     }
58 
59     if (old_pending != env->pending_interrupts) {
60         ppc_maybe_interrupt(env);
61         kvmppc_set_interrupt(cpu, irq, level);
62     }
63 
64     trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
65                            CPU(cpu)->interrupt_request);
66 }
67 
68 /* PowerPC 6xx / 7xx internal IRQ controller */
69 static void ppc6xx_set_irq(void *opaque, int pin, int level)
70 {
71     PowerPCCPU *cpu = opaque;
72     CPUPPCState *env = &cpu->env;
73     int cur_level;
74 
75     trace_ppc_irq_set(env, pin, level);
76 
77     cur_level = (env->irq_input_state >> pin) & 1;
78     /* Don't generate spurious events */
79     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
80         CPUState *cs = CPU(cpu);
81 
82         switch (pin) {
83         case PPC6xx_INPUT_TBEN:
84             /* Level sensitive - active high */
85             trace_ppc_irq_set_state("time base", level);
86             if (level) {
87                 cpu_ppc_tb_start(env);
88             } else {
89                 cpu_ppc_tb_stop(env);
90             }
91             break;
92         case PPC6xx_INPUT_INT:
93             /* Level sensitive - active high */
94             trace_ppc_irq_set_state("external IRQ", level);
95             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
96             break;
97         case PPC6xx_INPUT_SMI:
98             /* Level sensitive - active high */
99             trace_ppc_irq_set_state("SMI IRQ", level);
100             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
101             break;
102         case PPC6xx_INPUT_MCP:
103             /* Negative edge sensitive */
104             /* XXX: TODO: actual reaction may depends on HID0 status
105              *            603/604/740/750: check HID0[EMCP]
106              */
107             if (cur_level == 1 && level == 0) {
108                 trace_ppc_irq_set_state("machine check", 1);
109                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
110             }
111             break;
112         case PPC6xx_INPUT_CKSTP_IN:
113             /* Level sensitive - active low */
114             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
115             /* XXX: Note that the only way to restart the CPU is to reset it */
116             if (level) {
117                 trace_ppc_irq_cpu("stop");
118                 cs->halted = 1;
119             }
120             break;
121         case PPC6xx_INPUT_HRESET:
122             /* Level sensitive - active low */
123             if (level) {
124                 trace_ppc_irq_reset("CPU");
125                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
126             }
127             break;
128         case PPC6xx_INPUT_SRESET:
129             trace_ppc_irq_set_state("RESET IRQ", level);
130             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
131             break;
132         default:
133             g_assert_not_reached();
134         }
135         if (level)
136             env->irq_input_state |= 1 << pin;
137         else
138             env->irq_input_state &= ~(1 << pin);
139     }
140 }
141 
142 void ppc6xx_irq_init(PowerPCCPU *cpu)
143 {
144     qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
145 }
146 
147 #if defined(TARGET_PPC64)
148 /* PowerPC 970 internal IRQ controller */
149 static void ppc970_set_irq(void *opaque, int pin, int level)
150 {
151     PowerPCCPU *cpu = opaque;
152     CPUPPCState *env = &cpu->env;
153     int cur_level;
154 
155     trace_ppc_irq_set(env, pin, level);
156 
157     cur_level = (env->irq_input_state >> pin) & 1;
158     /* Don't generate spurious events */
159     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
160         CPUState *cs = CPU(cpu);
161 
162         switch (pin) {
163         case PPC970_INPUT_INT:
164             /* Level sensitive - active high */
165             trace_ppc_irq_set_state("external IRQ", level);
166             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
167             break;
168         case PPC970_INPUT_THINT:
169             /* Level sensitive - active high */
170             trace_ppc_irq_set_state("SMI IRQ", level);
171             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
172             break;
173         case PPC970_INPUT_MCP:
174             /* Negative edge sensitive */
175             /* XXX: TODO: actual reaction may depends on HID0 status
176              *            603/604/740/750: check HID0[EMCP]
177              */
178             if (cur_level == 1 && level == 0) {
179                 trace_ppc_irq_set_state("machine check", 1);
180                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
181             }
182             break;
183         case PPC970_INPUT_CKSTP:
184             /* Level sensitive - active low */
185             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
186             if (level) {
187                 trace_ppc_irq_cpu("stop");
188                 cs->halted = 1;
189             } else {
190                 trace_ppc_irq_cpu("restart");
191                 cs->halted = 0;
192                 qemu_cpu_kick(cs);
193             }
194             break;
195         case PPC970_INPUT_HRESET:
196             /* Level sensitive - active low */
197             if (level) {
198                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
199             }
200             break;
201         case PPC970_INPUT_SRESET:
202             trace_ppc_irq_set_state("RESET IRQ", level);
203             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
204             break;
205         case PPC970_INPUT_TBEN:
206             trace_ppc_irq_set_state("TBEN IRQ", level);
207             /* XXX: TODO */
208             break;
209         default:
210             g_assert_not_reached();
211         }
212         if (level)
213             env->irq_input_state |= 1 << pin;
214         else
215             env->irq_input_state &= ~(1 << pin);
216     }
217 }
218 
219 void ppc970_irq_init(PowerPCCPU *cpu)
220 {
221     qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
222 }
223 
224 /* POWER7 internal IRQ controller */
225 static void power7_set_irq(void *opaque, int pin, int level)
226 {
227     PowerPCCPU *cpu = opaque;
228 
229     trace_ppc_irq_set(&cpu->env, pin, level);
230 
231     switch (pin) {
232     case POWER7_INPUT_INT:
233         /* Level sensitive - active high */
234         trace_ppc_irq_set_state("external IRQ", level);
235         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
236         break;
237     default:
238         g_assert_not_reached();
239     }
240 }
241 
242 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
243 {
244     qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
245 }
246 
247 /* POWER9 internal IRQ controller */
248 static void power9_set_irq(void *opaque, int pin, int level)
249 {
250     PowerPCCPU *cpu = opaque;
251 
252     trace_ppc_irq_set(&cpu->env, pin, level);
253 
254     switch (pin) {
255     case POWER9_INPUT_INT:
256         /* Level sensitive - active high */
257         trace_ppc_irq_set_state("external IRQ", level);
258         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
259         break;
260     case POWER9_INPUT_HINT:
261         /* Level sensitive - active high */
262         trace_ppc_irq_set_state("HV external IRQ", level);
263         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
264         break;
265     default:
266         g_assert_not_reached();
267         return;
268     }
269 }
270 
271 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
272 {
273     qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
274 }
275 #endif /* defined(TARGET_PPC64) */
276 
277 void ppc40x_core_reset(PowerPCCPU *cpu)
278 {
279     CPUPPCState *env = &cpu->env;
280     target_ulong dbsr;
281 
282     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
283     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
284     dbsr = env->spr[SPR_40x_DBSR];
285     dbsr &= ~0x00000300;
286     dbsr |= 0x00000100;
287     env->spr[SPR_40x_DBSR] = dbsr;
288 }
289 
290 void ppc40x_chip_reset(PowerPCCPU *cpu)
291 {
292     CPUPPCState *env = &cpu->env;
293     target_ulong dbsr;
294 
295     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
296     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
297     /* XXX: TODO reset all internal peripherals */
298     dbsr = env->spr[SPR_40x_DBSR];
299     dbsr &= ~0x00000300;
300     dbsr |= 0x00000200;
301     env->spr[SPR_40x_DBSR] = dbsr;
302 }
303 
304 void ppc40x_system_reset(PowerPCCPU *cpu)
305 {
306     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
307     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
308 }
309 
310 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
311 {
312     PowerPCCPU *cpu = env_archcpu(env);
313 
314     qemu_mutex_lock_iothread();
315 
316     switch ((val >> 28) & 0x3) {
317     case 0x0:
318         /* No action */
319         break;
320     case 0x1:
321         /* Core reset */
322         ppc40x_core_reset(cpu);
323         break;
324     case 0x2:
325         /* Chip reset */
326         ppc40x_chip_reset(cpu);
327         break;
328     case 0x3:
329         /* System reset */
330         ppc40x_system_reset(cpu);
331         break;
332     }
333 
334     qemu_mutex_unlock_iothread();
335 }
336 
337 /* PowerPC 40x internal IRQ controller */
338 static void ppc40x_set_irq(void *opaque, int pin, int level)
339 {
340     PowerPCCPU *cpu = opaque;
341     CPUPPCState *env = &cpu->env;
342     int cur_level;
343 
344     trace_ppc_irq_set(env, pin, level);
345 
346     cur_level = (env->irq_input_state >> pin) & 1;
347     /* Don't generate spurious events */
348     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
349         CPUState *cs = CPU(cpu);
350 
351         switch (pin) {
352         case PPC40x_INPUT_RESET_SYS:
353             if (level) {
354                 trace_ppc_irq_reset("system");
355                 ppc40x_system_reset(cpu);
356             }
357             break;
358         case PPC40x_INPUT_RESET_CHIP:
359             if (level) {
360                 trace_ppc_irq_reset("chip");
361                 ppc40x_chip_reset(cpu);
362             }
363             break;
364         case PPC40x_INPUT_RESET_CORE:
365             /* XXX: TODO: update DBSR[MRR] */
366             if (level) {
367                 trace_ppc_irq_reset("core");
368                 ppc40x_core_reset(cpu);
369             }
370             break;
371         case PPC40x_INPUT_CINT:
372             /* Level sensitive - active high */
373             trace_ppc_irq_set_state("critical IRQ", level);
374             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
375             break;
376         case PPC40x_INPUT_INT:
377             /* Level sensitive - active high */
378             trace_ppc_irq_set_state("external IRQ", level);
379             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
380             break;
381         case PPC40x_INPUT_HALT:
382             /* Level sensitive - active low */
383             if (level) {
384                 trace_ppc_irq_cpu("stop");
385                 cs->halted = 1;
386             } else {
387                 trace_ppc_irq_cpu("restart");
388                 cs->halted = 0;
389                 qemu_cpu_kick(cs);
390             }
391             break;
392         case PPC40x_INPUT_DEBUG:
393             /* Level sensitive - active high */
394             trace_ppc_irq_set_state("debug pin", level);
395             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
396             break;
397         default:
398             g_assert_not_reached();
399         }
400         if (level)
401             env->irq_input_state |= 1 << pin;
402         else
403             env->irq_input_state &= ~(1 << pin);
404     }
405 }
406 
407 void ppc40x_irq_init(PowerPCCPU *cpu)
408 {
409     qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
410 }
411 
412 /* PowerPC E500 internal IRQ controller */
413 static void ppce500_set_irq(void *opaque, int pin, int level)
414 {
415     PowerPCCPU *cpu = opaque;
416     CPUPPCState *env = &cpu->env;
417     int cur_level;
418 
419     trace_ppc_irq_set(env, pin, level);
420 
421     cur_level = (env->irq_input_state >> pin) & 1;
422     /* Don't generate spurious events */
423     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
424         switch (pin) {
425         case PPCE500_INPUT_MCK:
426             if (level) {
427                 trace_ppc_irq_reset("system");
428                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
429             }
430             break;
431         case PPCE500_INPUT_RESET_CORE:
432             if (level) {
433                 trace_ppc_irq_reset("core");
434                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
435             }
436             break;
437         case PPCE500_INPUT_CINT:
438             /* Level sensitive - active high */
439             trace_ppc_irq_set_state("critical IRQ", level);
440             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
441             break;
442         case PPCE500_INPUT_INT:
443             /* Level sensitive - active high */
444             trace_ppc_irq_set_state("core IRQ", level);
445             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
446             break;
447         case PPCE500_INPUT_DEBUG:
448             /* Level sensitive - active high */
449             trace_ppc_irq_set_state("debug pin", level);
450             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
451             break;
452         default:
453             g_assert_not_reached();
454         }
455         if (level)
456             env->irq_input_state |= 1 << pin;
457         else
458             env->irq_input_state &= ~(1 << pin);
459     }
460 }
461 
462 void ppce500_irq_init(PowerPCCPU *cpu)
463 {
464     qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
465 }
466 
467 /* Enable or Disable the E500 EPR capability */
468 void ppce500_set_mpic_proxy(bool enabled)
469 {
470     CPUState *cs;
471 
472     CPU_FOREACH(cs) {
473         PowerPCCPU *cpu = POWERPC_CPU(cs);
474 
475         cpu->env.mpic_proxy = enabled;
476         if (kvm_enabled()) {
477             kvmppc_set_mpic_proxy(cpu, enabled);
478         }
479     }
480 }
481 
482 /*****************************************************************************/
483 /* PowerPC time base and decrementer emulation */
484 
485 /*
486  * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
487  * TB ticks are arrived at by multiplying tb_freq then dividing by
488  * ns per second, and rounding down. TB ticks drive all clocks and
489  * timers in the target machine.
490  *
491  * Converting TB intervals to ns for the purpose of setting a
492  * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
493  * up. Rounding down could cause the timer to fire before the TB
494  * value has been reached.
495  */
496 static uint64_t ns_to_tb(uint32_t freq, int64_t clock)
497 {
498     return muldiv64(clock, freq, NANOSECONDS_PER_SECOND);
499 }
500 
501 /* virtual clock in TB ticks, not adjusted by TB offset */
502 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb)
503 {
504     return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq);
505 }
506 
507 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
508 {
509     /* TB time in tb periods */
510     return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset;
511 }
512 
513 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
514 {
515     ppc_tb_t *tb_env = env->tb_env;
516     uint64_t tb;
517 
518     if (kvm_enabled()) {
519         return env->spr[SPR_TBL];
520     }
521 
522     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
523                         tb_env->tb_offset);
524     trace_ppc_tb_load(tb);
525 
526     return tb;
527 }
528 
529 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
530 {
531     ppc_tb_t *tb_env = env->tb_env;
532     uint64_t tb;
533 
534     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
535                         tb_env->tb_offset);
536     trace_ppc_tb_load(tb);
537 
538     return tb >> 32;
539 }
540 
541 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
542 {
543     if (kvm_enabled()) {
544         return env->spr[SPR_TBU];
545     }
546 
547     return _cpu_ppc_load_tbu(env);
548 }
549 
550 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
551                                     int64_t *tb_offsetp, uint64_t value)
552 {
553     *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk);
554 
555     trace_ppc_tb_store(value, *tb_offsetp);
556 }
557 
558 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
559 {
560     ppc_tb_t *tb_env = env->tb_env;
561     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
562     uint64_t tb;
563 
564     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
565     tb &= 0xFFFFFFFF00000000ULL;
566     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value);
567 }
568 
569 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
570 {
571     ppc_tb_t *tb_env = env->tb_env;
572     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
573     uint64_t tb;
574 
575     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
576     tb &= 0x00000000FFFFFFFFULL;
577     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset,
578                      ((uint64_t)value << 32) | tb);
579 }
580 
581 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
582 {
583     _cpu_ppc_store_tbu(env, value);
584 }
585 
586 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
587 {
588     ppc_tb_t *tb_env = env->tb_env;
589     uint64_t tb;
590 
591     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
592                         tb_env->atb_offset);
593     trace_ppc_tb_load(tb);
594 
595     return tb;
596 }
597 
598 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
599 {
600     ppc_tb_t *tb_env = env->tb_env;
601     uint64_t tb;
602 
603     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
604                         tb_env->atb_offset);
605     trace_ppc_tb_load(tb);
606 
607     return tb >> 32;
608 }
609 
610 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
611 {
612     ppc_tb_t *tb_env = env->tb_env;
613     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
614     uint64_t tb;
615 
616     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
617     tb &= 0xFFFFFFFF00000000ULL;
618     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value);
619 }
620 
621 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
622 {
623     ppc_tb_t *tb_env = env->tb_env;
624     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
625     uint64_t tb;
626 
627     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
628     tb &= 0x00000000FFFFFFFFULL;
629     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset,
630                      ((uint64_t)value << 32) | tb);
631 }
632 
633 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
634 {
635     ppc_tb_t *tb_env = env->tb_env;
636 
637     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
638                           tb_env->vtb_offset);
639 }
640 
641 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
642 {
643     ppc_tb_t *tb_env = env->tb_env;
644 
645     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
646                      &tb_env->vtb_offset, value);
647 }
648 
649 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
650 {
651     ppc_tb_t *tb_env = env->tb_env;
652     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
653     uint64_t tb;
654 
655     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
656     tb &= 0xFFFFFFUL;
657     tb |= (value & ~0xFFFFFFUL);
658     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb);
659 }
660 
661 static void cpu_ppc_tb_stop (CPUPPCState *env)
662 {
663     ppc_tb_t *tb_env = env->tb_env;
664     uint64_t tb, atb, vmclk;
665 
666     /* If the time base is already frozen, do nothing */
667     if (tb_env->tb_freq != 0) {
668         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
669         /* Get the time base */
670         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
671         /* Get the alternate time base */
672         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
673         /* Store the time base value (ie compute the current offset) */
674         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
675         /* Store the alternate time base value (compute the current offset) */
676         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
677         /* Set the time base frequency to zero */
678         tb_env->tb_freq = 0;
679         /* Now, the time bases are frozen to tb_offset / atb_offset value */
680     }
681 }
682 
683 static void cpu_ppc_tb_start (CPUPPCState *env)
684 {
685     ppc_tb_t *tb_env = env->tb_env;
686     uint64_t tb, atb, vmclk;
687 
688     /* If the time base is not frozen, do nothing */
689     if (tb_env->tb_freq == 0) {
690         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
691         /* Get the time base from tb_offset */
692         tb = tb_env->tb_offset;
693         /* Get the alternate time base from atb_offset */
694         atb = tb_env->atb_offset;
695         /* Restore the tb frequency from the decrementer frequency */
696         tb_env->tb_freq = tb_env->decr_freq;
697         /* Store the time base value */
698         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
699         /* Store the alternate time base value */
700         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
701     }
702 }
703 
704 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
705 {
706     ppc_tb_t *tb_env = env->tb_env;
707     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
708     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
709 }
710 
711 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
712 {
713     ppc_tb_t *tb_env = env->tb_env;
714     uint64_t now, n;
715     int64_t decr;
716 
717     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
718     n = ns_to_tb(tb_env->decr_freq, now);
719     if (next > n && tb_env->flags & PPC_TIMER_BOOKE) {
720         decr = 0;
721     } else {
722         decr = next - n;
723     }
724 
725     trace_ppc_decr_load(decr);
726 
727     return decr;
728 }
729 
730 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
731 {
732     ppc_tb_t *tb_env = env->tb_env;
733     uint64_t decr;
734 
735     if (kvm_enabled()) {
736         return env->spr[SPR_DECR];
737     }
738 
739     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
740 
741     /*
742      * If large decrementer is enabled then the decrementer is signed extened
743      * to 64 bits, otherwise it is a 32 bit value.
744      */
745     if (env->spr[SPR_LPCR] & LPCR_LD) {
746         PowerPCCPU *cpu = env_archcpu(env);
747         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
748         return sextract64(decr, 0, pcc->lrg_decr_bits);
749     }
750     return (uint32_t) decr;
751 }
752 
753 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
754 {
755     PowerPCCPU *cpu = env_archcpu(env);
756     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
757     ppc_tb_t *tb_env = env->tb_env;
758     uint64_t hdecr;
759 
760     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
761 
762     /*
763      * If we have a large decrementer (POWER9 or later) then hdecr is sign
764      * extended to 64 bits, otherwise it is 32 bits.
765      */
766     if (pcc->lrg_decr_bits > 32) {
767         return sextract64(hdecr, 0, pcc->lrg_decr_bits);
768     }
769     return (uint32_t) hdecr;
770 }
771 
772 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
773 {
774     ppc_tb_t *tb_env = env->tb_env;
775 
776     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
777                           tb_env->purr_offset);
778 }
779 
780 /* When decrementer expires,
781  * all we need to do is generate or queue a CPU exception
782  */
783 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
784 {
785     /* Raise it */
786     trace_ppc_decr_excp("raise");
787     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
788 }
789 
790 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
791 {
792     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
793 }
794 
795 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
796 {
797     CPUPPCState *env = &cpu->env;
798 
799     /* Raise it */
800     trace_ppc_decr_excp("raise HV");
801 
802     /* The architecture specifies that we don't deliver HDEC
803      * interrupts in a PM state. Not only they don't cause a
804      * wakeup but they also get effectively discarded.
805      */
806     if (!env->resume_as_sreset) {
807         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
808     }
809 }
810 
811 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
812 {
813     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
814 }
815 
816 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
817                                  QEMUTimer *timer,
818                                  void (*raise_excp)(void *),
819                                  void (*lower_excp)(PowerPCCPU *),
820                                  uint32_t flags, target_ulong decr,
821                                  target_ulong value, int nr_bits)
822 {
823     CPUPPCState *env = &cpu->env;
824     ppc_tb_t *tb_env = env->tb_env;
825     uint64_t now, next;
826     int64_t signed_value;
827     int64_t signed_decr;
828 
829     /* Truncate value to decr_width and sign extend for simplicity */
830     value = extract64(value, 0, nr_bits);
831     decr = extract64(decr, 0, nr_bits);
832     signed_value = sextract64(value, 0, nr_bits);
833     signed_decr = sextract64(decr, 0, nr_bits);
834 
835     trace_ppc_decr_store(nr_bits, decr, value);
836 
837     if (kvm_enabled()) {
838         /* KVM handles decrementer exceptions, we don't need our own timer */
839         return;
840     }
841 
842     /*
843      * Calculate the next decrementer event and set a timer.
844      * decr_next is in timebase units to keep rounding simple. Note it is
845      * not adjusted by tb_offset because if TB changes via tb_offset changing,
846      * decrementer does not change, so not directly comparable with TB.
847      */
848     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
849     next = ns_to_tb(tb_env->decr_freq, now) + value;
850     *nextp = next; /* nextp is in timebase units */
851 
852     /*
853      * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
854      *
855      * On MSB level based DEC implementations the MSB always means the interrupt
856      * is pending, so raise it on those.
857      *
858      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
859      * an edge interrupt, so raise it here too.
860      */
861     if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
862         ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
863           && signed_decr >= 0)) {
864         (*raise_excp)(cpu);
865         return;
866     }
867 
868     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
869     if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) {
870         (*lower_excp)(cpu);
871     }
872 
873     /* Adjust timer */
874     timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next));
875 }
876 
877 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
878                                        target_ulong value, int nr_bits)
879 {
880     ppc_tb_t *tb_env = cpu->env.tb_env;
881 
882     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
883                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower,
884                          tb_env->flags, decr, value, nr_bits);
885 }
886 
887 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
888 {
889     PowerPCCPU *cpu = env_archcpu(env);
890     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
891     int nr_bits = 32;
892 
893     if (env->spr[SPR_LPCR] & LPCR_LD) {
894         nr_bits = pcc->lrg_decr_bits;
895     }
896 
897     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
898 }
899 
900 static void cpu_ppc_decr_cb(void *opaque)
901 {
902     PowerPCCPU *cpu = opaque;
903 
904     cpu_ppc_decr_excp(cpu);
905 }
906 
907 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
908                                         target_ulong value, int nr_bits)
909 {
910     ppc_tb_t *tb_env = cpu->env.tb_env;
911 
912     if (tb_env->hdecr_timer != NULL) {
913         /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
914         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
915                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
916                              PPC_DECR_UNDERFLOW_TRIGGERED,
917                              hdecr, value, nr_bits);
918     }
919 }
920 
921 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
922 {
923     PowerPCCPU *cpu = env_archcpu(env);
924     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
925 
926     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
927                          pcc->lrg_decr_bits);
928 }
929 
930 static void cpu_ppc_hdecr_cb(void *opaque)
931 {
932     PowerPCCPU *cpu = opaque;
933 
934     cpu_ppc_hdecr_excp(cpu);
935 }
936 
937 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
938 {
939     ppc_tb_t *tb_env = env->tb_env;
940 
941     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
942                      &tb_env->purr_offset, value);
943 }
944 
945 static void timebase_save(PPCTimebase *tb)
946 {
947     uint64_t ticks = cpu_get_host_ticks();
948     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
949 
950     if (!first_ppc_cpu->env.tb_env) {
951         error_report("No timebase object");
952         return;
953     }
954 
955     /* not used anymore, we keep it for compatibility */
956     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
957     /*
958      * tb_offset is only expected to be changed by QEMU so
959      * there is no need to update it from KVM here
960      */
961     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
962 
963     tb->runstate_paused =
964         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
965 }
966 
967 static void timebase_load(PPCTimebase *tb)
968 {
969     CPUState *cpu;
970     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
971     int64_t tb_off_adj, tb_off;
972     unsigned long freq;
973 
974     if (!first_ppc_cpu->env.tb_env) {
975         error_report("No timebase object");
976         return;
977     }
978 
979     freq = first_ppc_cpu->env.tb_env->tb_freq;
980 
981     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
982 
983     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
984     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
985                         (tb_off_adj - tb_off) / freq);
986 
987     /* Set new offset to all CPUs */
988     CPU_FOREACH(cpu) {
989         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
990         pcpu->env.tb_env->tb_offset = tb_off_adj;
991         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
992     }
993 }
994 
995 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
996                                    RunState state)
997 {
998     PPCTimebase *tb = opaque;
999 
1000     if (running) {
1001         timebase_load(tb);
1002     } else {
1003         timebase_save(tb);
1004     }
1005 }
1006 
1007 /*
1008  * When migrating a running guest, read the clock just
1009  * before migration, so that the guest clock counts
1010  * during the events between:
1011  *
1012  *  * vm_stop()
1013  *  *
1014  *  * pre_save()
1015  *
1016  *  This reduces clock difference on migration from 5s
1017  *  to 0.1s (when max_downtime == 5s), because sending the
1018  *  final pages of memory (which happens between vm_stop()
1019  *  and pre_save()) takes max_downtime.
1020  */
1021 static int timebase_pre_save(void *opaque)
1022 {
1023     PPCTimebase *tb = opaque;
1024 
1025     /* guest_timebase won't be overridden in case of paused guest or savevm */
1026     if (!tb->runstate_paused) {
1027         timebase_save(tb);
1028     }
1029 
1030     return 0;
1031 }
1032 
1033 const VMStateDescription vmstate_ppc_timebase = {
1034     .name = "timebase",
1035     .version_id = 1,
1036     .minimum_version_id = 1,
1037     .pre_save = timebase_pre_save,
1038     .fields      = (VMStateField []) {
1039         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1040         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1041         VMSTATE_END_OF_LIST()
1042     },
1043 };
1044 
1045 /* Set up (once) timebase frequency (in Hz) */
1046 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq)
1047 {
1048     PowerPCCPU *cpu = env_archcpu(env);
1049     ppc_tb_t *tb_env;
1050 
1051     tb_env = g_new0(ppc_tb_t, 1);
1052     env->tb_env = tb_env;
1053     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1054     if (is_book3s_arch2x(env)) {
1055         /* All Book3S 64bit CPUs implement level based DEC logic */
1056         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1057     }
1058     /* Create new timer */
1059     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1060                                       &cpu_ppc_decr_cb, cpu);
1061     if (env->has_hv_mode && !cpu->vhyp) {
1062         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1063                                            &cpu_ppc_hdecr_cb, cpu);
1064     } else {
1065         tb_env->hdecr_timer = NULL;
1066     }
1067 
1068     tb_env->tb_freq = freq;
1069     tb_env->decr_freq = freq;
1070 }
1071 
1072 void cpu_ppc_tb_reset(CPUPPCState *env)
1073 {
1074     PowerPCCPU *cpu = env_archcpu(env);
1075     ppc_tb_t *tb_env = env->tb_env;
1076 
1077     timer_del(tb_env->decr_timer);
1078     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
1079     tb_env->decr_next = 0;
1080     if (tb_env->hdecr_timer != NULL) {
1081         timer_del(tb_env->hdecr_timer);
1082         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
1083         tb_env->hdecr_next = 0;
1084     }
1085 
1086     /*
1087      * There is a bug in Linux 2.4 kernels:
1088      * if a decrementer exception is pending when it enables msr_ee at startup,
1089      * it's not ready to handle it...
1090      */
1091     cpu_ppc_store_decr(env, -1);
1092     cpu_ppc_store_hdecr(env, -1);
1093     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1094 }
1095 
1096 void cpu_ppc_tb_free(CPUPPCState *env)
1097 {
1098     timer_free(env->tb_env->decr_timer);
1099     timer_free(env->tb_env->hdecr_timer);
1100     g_free(env->tb_env);
1101 }
1102 
1103 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1104 void cpu_ppc_hdecr_init(CPUPPCState *env)
1105 {
1106     PowerPCCPU *cpu = env_archcpu(env);
1107 
1108     assert(env->tb_env->hdecr_timer == NULL);
1109 
1110     env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1111                                             &cpu_ppc_hdecr_cb, cpu);
1112 }
1113 
1114 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1115 {
1116     PowerPCCPU *cpu = env_archcpu(env);
1117 
1118     timer_free(env->tb_env->hdecr_timer);
1119     env->tb_env->hdecr_timer = NULL;
1120 
1121     cpu_ppc_hdecr_lower(cpu);
1122 }
1123 
1124 /*****************************************************************************/
1125 /* PowerPC 40x timers */
1126 
1127 /* PIT, FIT & WDT */
1128 typedef struct ppc40x_timer_t ppc40x_timer_t;
1129 struct ppc40x_timer_t {
1130     uint64_t pit_reload;  /* PIT auto-reload value        */
1131     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1132     QEMUTimer *fit_timer;
1133     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1134     QEMUTimer *wdt_timer;
1135 
1136     /* 405 have the PIT, 440 have a DECR.  */
1137     unsigned int decr_excp;
1138 };
1139 
1140 /* Fixed interval timer */
1141 static void cpu_4xx_fit_cb (void *opaque)
1142 {
1143     PowerPCCPU *cpu = opaque;
1144     CPUPPCState *env = &cpu->env;
1145     ppc_tb_t *tb_env;
1146     ppc40x_timer_t *ppc40x_timer;
1147     uint64_t now, next;
1148 
1149     tb_env = env->tb_env;
1150     ppc40x_timer = tb_env->opaque;
1151     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1152     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1153     case 0:
1154         next = 1 << 9;
1155         break;
1156     case 1:
1157         next = 1 << 13;
1158         break;
1159     case 2:
1160         next = 1 << 17;
1161         break;
1162     case 3:
1163         next = 1 << 21;
1164         break;
1165     default:
1166         /* Cannot occur, but makes gcc happy */
1167         return;
1168     }
1169     next = now + tb_to_ns_round_up(tb_env->tb_freq, next);
1170     timer_mod(ppc40x_timer->fit_timer, next);
1171     env->spr[SPR_40x_TSR] |= 1 << 26;
1172     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1173         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1174     }
1175     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1176                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1177 }
1178 
1179 /* Programmable interval timer */
1180 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1181 {
1182     ppc40x_timer_t *ppc40x_timer;
1183     uint64_t now, next;
1184 
1185     ppc40x_timer = tb_env->opaque;
1186     if (ppc40x_timer->pit_reload <= 1 ||
1187         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1188         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1189         /* Stop PIT */
1190         trace_ppc4xx_pit_stop();
1191         timer_del(tb_env->decr_timer);
1192     } else {
1193         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1194         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1195 
1196         if (is_excp) {
1197             tb_env->decr_next += ppc40x_timer->pit_reload;
1198         } else {
1199             tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now)
1200                                 + ppc40x_timer->pit_reload;
1201         }
1202         next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next);
1203         timer_mod(tb_env->decr_timer, next);
1204     }
1205 }
1206 
1207 static void cpu_4xx_pit_cb (void *opaque)
1208 {
1209     PowerPCCPU *cpu = opaque;
1210     CPUPPCState *env = &cpu->env;
1211     ppc_tb_t *tb_env;
1212     ppc40x_timer_t *ppc40x_timer;
1213 
1214     tb_env = env->tb_env;
1215     ppc40x_timer = tb_env->opaque;
1216     env->spr[SPR_40x_TSR] |= 1 << 27;
1217     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1218         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1219     }
1220     start_stop_pit(env, tb_env, 1);
1221     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1222            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1223            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1224            ppc40x_timer->pit_reload);
1225 }
1226 
1227 /* Watchdog timer */
1228 static void cpu_4xx_wdt_cb (void *opaque)
1229 {
1230     PowerPCCPU *cpu = opaque;
1231     CPUPPCState *env = &cpu->env;
1232     ppc_tb_t *tb_env;
1233     ppc40x_timer_t *ppc40x_timer;
1234     uint64_t now, next;
1235 
1236     tb_env = env->tb_env;
1237     ppc40x_timer = tb_env->opaque;
1238     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1239     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1240     case 0:
1241         next = 1 << 17;
1242         break;
1243     case 1:
1244         next = 1 << 21;
1245         break;
1246     case 2:
1247         next = 1 << 25;
1248         break;
1249     case 3:
1250         next = 1 << 29;
1251         break;
1252     default:
1253         /* Cannot occur, but makes gcc happy */
1254         return;
1255     }
1256     next = now + tb_to_ns_round_up(tb_env->decr_freq, next);
1257     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1258     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1259     case 0x0:
1260     case 0x1:
1261         timer_mod(ppc40x_timer->wdt_timer, next);
1262         ppc40x_timer->wdt_next = next;
1263         env->spr[SPR_40x_TSR] |= 1U << 31;
1264         break;
1265     case 0x2:
1266         timer_mod(ppc40x_timer->wdt_timer, next);
1267         ppc40x_timer->wdt_next = next;
1268         env->spr[SPR_40x_TSR] |= 1 << 30;
1269         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1270             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1271         }
1272         break;
1273     case 0x3:
1274         env->spr[SPR_40x_TSR] &= ~0x30000000;
1275         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1276         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1277         case 0x0:
1278             /* No reset */
1279             break;
1280         case 0x1: /* Core reset */
1281             ppc40x_core_reset(cpu);
1282             break;
1283         case 0x2: /* Chip reset */
1284             ppc40x_chip_reset(cpu);
1285             break;
1286         case 0x3: /* System reset */
1287             ppc40x_system_reset(cpu);
1288             break;
1289         }
1290     }
1291 }
1292 
1293 void store_40x_pit (CPUPPCState *env, target_ulong val)
1294 {
1295     ppc_tb_t *tb_env;
1296     ppc40x_timer_t *ppc40x_timer;
1297 
1298     tb_env = env->tb_env;
1299     ppc40x_timer = tb_env->opaque;
1300     trace_ppc40x_store_pit(val);
1301     ppc40x_timer->pit_reload = val;
1302     start_stop_pit(env, tb_env, 0);
1303 }
1304 
1305 target_ulong load_40x_pit (CPUPPCState *env)
1306 {
1307     return cpu_ppc_load_decr(env);
1308 }
1309 
1310 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1311 {
1312     PowerPCCPU *cpu = env_archcpu(env);
1313 
1314     trace_ppc40x_store_tcr(val);
1315 
1316     env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1317     if (val & 0x80000000) {
1318         ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1319     }
1320 }
1321 
1322 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1323 {
1324     PowerPCCPU *cpu = env_archcpu(env);
1325     ppc_tb_t *tb_env;
1326 
1327     trace_ppc40x_store_tsr(val);
1328 
1329     tb_env = env->tb_env;
1330     env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1331     start_stop_pit(env, tb_env, 1);
1332     cpu_4xx_wdt_cb(cpu);
1333 }
1334 
1335 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1336 {
1337     CPUPPCState *env = opaque;
1338     ppc_tb_t *tb_env = env->tb_env;
1339 
1340     trace_ppc40x_set_tb_clk(freq);
1341     tb_env->tb_freq = freq;
1342     tb_env->decr_freq = freq;
1343     /* XXX: we should also update all timers */
1344 }
1345 
1346 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1347                                   unsigned int decr_excp)
1348 {
1349     ppc_tb_t *tb_env;
1350     ppc40x_timer_t *ppc40x_timer;
1351     PowerPCCPU *cpu = env_archcpu(env);
1352 
1353     trace_ppc40x_timers_init(freq);
1354 
1355     tb_env = g_new0(ppc_tb_t, 1);
1356     ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1357 
1358     env->tb_env = tb_env;
1359     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1360     tb_env->tb_freq = freq;
1361     tb_env->decr_freq = freq;
1362     tb_env->opaque = ppc40x_timer;
1363 
1364     /* We use decr timer for PIT */
1365     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1366     ppc40x_timer->fit_timer =
1367         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1368     ppc40x_timer->wdt_timer =
1369         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1370     ppc40x_timer->decr_excp = decr_excp;
1371 
1372     return &ppc_40x_set_tb_clk;
1373 }
1374 
1375 /*****************************************************************************/
1376 /* Embedded PowerPC Device Control Registers */
1377 typedef struct ppc_dcrn_t ppc_dcrn_t;
1378 struct ppc_dcrn_t {
1379     dcr_read_cb dcr_read;
1380     dcr_write_cb dcr_write;
1381     void *opaque;
1382 };
1383 
1384 /* XXX: on 460, DCR addresses are 32 bits wide,
1385  *      using DCRIPR to get the 22 upper bits of the DCR address
1386  */
1387 #define DCRN_NB 1024
1388 struct ppc_dcr_t {
1389     ppc_dcrn_t dcrn[DCRN_NB];
1390     int (*read_error)(int dcrn);
1391     int (*write_error)(int dcrn);
1392 };
1393 
1394 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1395 {
1396     ppc_dcrn_t *dcr;
1397 
1398     if (dcrn < 0 || dcrn >= DCRN_NB)
1399         goto error;
1400     dcr = &dcr_env->dcrn[dcrn];
1401     if (dcr->dcr_read == NULL)
1402         goto error;
1403     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1404     trace_ppc_dcr_read(dcrn, *valp);
1405 
1406     return 0;
1407 
1408  error:
1409     if (dcr_env->read_error != NULL)
1410         return (*dcr_env->read_error)(dcrn);
1411 
1412     return -1;
1413 }
1414 
1415 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1416 {
1417     ppc_dcrn_t *dcr;
1418 
1419     if (dcrn < 0 || dcrn >= DCRN_NB)
1420         goto error;
1421     dcr = &dcr_env->dcrn[dcrn];
1422     if (dcr->dcr_write == NULL)
1423         goto error;
1424     trace_ppc_dcr_write(dcrn, val);
1425     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1426 
1427     return 0;
1428 
1429  error:
1430     if (dcr_env->write_error != NULL)
1431         return (*dcr_env->write_error)(dcrn);
1432 
1433     return -1;
1434 }
1435 
1436 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1437                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1438 {
1439     ppc_dcr_t *dcr_env;
1440     ppc_dcrn_t *dcr;
1441 
1442     dcr_env = env->dcr_env;
1443     if (dcr_env == NULL)
1444         return -1;
1445     if (dcrn < 0 || dcrn >= DCRN_NB)
1446         return -1;
1447     dcr = &dcr_env->dcrn[dcrn];
1448     if (dcr->opaque != NULL ||
1449         dcr->dcr_read != NULL ||
1450         dcr->dcr_write != NULL)
1451         return -1;
1452     dcr->opaque = opaque;
1453     dcr->dcr_read = dcr_read;
1454     dcr->dcr_write = dcr_write;
1455 
1456     return 0;
1457 }
1458 
1459 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1460                   int (*write_error)(int dcrn))
1461 {
1462     ppc_dcr_t *dcr_env;
1463 
1464     dcr_env = g_new0(ppc_dcr_t, 1);
1465     dcr_env->read_error = read_error;
1466     dcr_env->write_error = write_error;
1467     env->dcr_env = dcr_env;
1468 
1469     return 0;
1470 }
1471 
1472 /*****************************************************************************/
1473 
1474 int ppc_cpu_pir(PowerPCCPU *cpu)
1475 {
1476     CPUPPCState *env = &cpu->env;
1477     return env->spr_cb[SPR_PIR].default_value;
1478 }
1479 
1480 int ppc_cpu_tir(PowerPCCPU *cpu)
1481 {
1482     CPUPPCState *env = &cpu->env;
1483     return env->spr_cb[SPR_TIR].default_value;
1484 }
1485 
1486 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1487 {
1488     CPUState *cs;
1489 
1490     CPU_FOREACH(cs) {
1491         PowerPCCPU *cpu = POWERPC_CPU(cs);
1492 
1493         if (ppc_cpu_pir(cpu) == pir) {
1494             return cpu;
1495         }
1496     }
1497 
1498     return NULL;
1499 }
1500 
1501 void ppc_irq_reset(PowerPCCPU *cpu)
1502 {
1503     CPUPPCState *env = &cpu->env;
1504 
1505     env->irq_input_state = 0;
1506     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1507 }
1508