xref: /openbmc/qemu/hw/ppc/ppc.c (revision 2b548a4255ca07cf4d467b7fb3bdf2ab79b7dff5)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40 
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43 
44 #ifdef PPC_DEBUG_IRQ
45 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 #  define LOG_IRQ(...) do { } while (0)
48 #endif
49 
50 
51 #ifdef PPC_DEBUG_TB
52 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 #  define LOG_TB(...) do { } while (0)
55 #endif
56 
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59 
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62     CPUState *cs = CPU(cpu);
63     CPUPPCState *env = &cpu->env;
64     unsigned int old_pending;
65     bool locked = false;
66 
67     /* We may already have the BQL if coming from the reset path */
68     if (!qemu_mutex_iothread_locked()) {
69         locked = true;
70         qemu_mutex_lock_iothread();
71     }
72 
73     old_pending = env->pending_interrupts;
74 
75     if (level) {
76         env->pending_interrupts |= 1 << n_IRQ;
77         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78     } else {
79         env->pending_interrupts &= ~(1 << n_IRQ);
80         if (env->pending_interrupts == 0) {
81             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82         }
83     }
84 
85     if (old_pending != env->pending_interrupts) {
86         kvmppc_set_interrupt(cpu, n_IRQ, level);
87     }
88 
89 
90     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91                 "req %08x\n", __func__, env, n_IRQ, level,
92                 env->pending_interrupts, CPU(cpu)->interrupt_request);
93 
94     if (locked) {
95         qemu_mutex_unlock_iothread();
96     }
97 }
98 
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
101 {
102     PowerPCCPU *cpu = opaque;
103     CPUPPCState *env = &cpu->env;
104     int cur_level;
105 
106     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107                 env, pin, level);
108     cur_level = (env->irq_input_state >> pin) & 1;
109     /* Don't generate spurious events */
110     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111         CPUState *cs = CPU(cpu);
112 
113         switch (pin) {
114         case PPC6xx_INPUT_TBEN:
115             /* Level sensitive - active high */
116             LOG_IRQ("%s: %s the time base\n",
117                         __func__, level ? "start" : "stop");
118             if (level) {
119                 cpu_ppc_tb_start(env);
120             } else {
121                 cpu_ppc_tb_stop(env);
122             }
123         case PPC6xx_INPUT_INT:
124             /* Level sensitive - active high */
125             LOG_IRQ("%s: set the external IRQ state to %d\n",
126                         __func__, level);
127             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128             break;
129         case PPC6xx_INPUT_SMI:
130             /* Level sensitive - active high */
131             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                         __func__, level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134             break;
135         case PPC6xx_INPUT_MCP:
136             /* Negative edge sensitive */
137             /* XXX: TODO: actual reaction may depends on HID0 status
138              *            603/604/740/750: check HID0[EMCP]
139              */
140             if (cur_level == 1 && level == 0) {
141                 LOG_IRQ("%s: raise machine check state\n",
142                             __func__);
143                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144             }
145             break;
146         case PPC6xx_INPUT_CKSTP_IN:
147             /* Level sensitive - active low */
148             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149             /* XXX: Note that the only way to restart the CPU is to reset it */
150             if (level) {
151                 LOG_IRQ("%s: stop the CPU\n", __func__);
152                 cs->halted = 1;
153             }
154             break;
155         case PPC6xx_INPUT_HRESET:
156             /* Level sensitive - active low */
157             if (level) {
158                 LOG_IRQ("%s: reset the CPU\n", __func__);
159                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160             }
161             break;
162         case PPC6xx_INPUT_SRESET:
163             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                         __func__, level);
165             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166             break;
167         default:
168             /* Unknown pin - do nothing */
169             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170             return;
171         }
172         if (level)
173             env->irq_input_state |= 1 << pin;
174         else
175             env->irq_input_state &= ~(1 << pin);
176     }
177 }
178 
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
180 {
181     CPUPPCState *env = &cpu->env;
182 
183     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184                                                   PPC6xx_INPUT_NB);
185 }
186 
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
190 {
191     PowerPCCPU *cpu = opaque;
192     CPUPPCState *env = &cpu->env;
193     int cur_level;
194 
195     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196                 env, pin, level);
197     cur_level = (env->irq_input_state >> pin) & 1;
198     /* Don't generate spurious events */
199     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200         CPUState *cs = CPU(cpu);
201 
202         switch (pin) {
203         case PPC970_INPUT_INT:
204             /* Level sensitive - active high */
205             LOG_IRQ("%s: set the external IRQ state to %d\n",
206                         __func__, level);
207             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208             break;
209         case PPC970_INPUT_THINT:
210             /* Level sensitive - active high */
211             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212                         level);
213             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214             break;
215         case PPC970_INPUT_MCP:
216             /* Negative edge sensitive */
217             /* XXX: TODO: actual reaction may depends on HID0 status
218              *            603/604/740/750: check HID0[EMCP]
219              */
220             if (cur_level == 1 && level == 0) {
221                 LOG_IRQ("%s: raise machine check state\n",
222                             __func__);
223                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224             }
225             break;
226         case PPC970_INPUT_CKSTP:
227             /* Level sensitive - active low */
228             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229             if (level) {
230                 LOG_IRQ("%s: stop the CPU\n", __func__);
231                 cs->halted = 1;
232             } else {
233                 LOG_IRQ("%s: restart the CPU\n", __func__);
234                 cs->halted = 0;
235                 qemu_cpu_kick(cs);
236             }
237             break;
238         case PPC970_INPUT_HRESET:
239             /* Level sensitive - active low */
240             if (level) {
241                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242             }
243             break;
244         case PPC970_INPUT_SRESET:
245             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246                         __func__, level);
247             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248             break;
249         case PPC970_INPUT_TBEN:
250             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251                         level);
252             /* XXX: TODO */
253             break;
254         default:
255             /* Unknown pin - do nothing */
256             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257             return;
258         }
259         if (level)
260             env->irq_input_state |= 1 << pin;
261         else
262             env->irq_input_state &= ~(1 << pin);
263     }
264 }
265 
266 void ppc970_irq_init(PowerPCCPU *cpu)
267 {
268     CPUPPCState *env = &cpu->env;
269 
270     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271                                                   PPC970_INPUT_NB);
272 }
273 
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
276 {
277     PowerPCCPU *cpu = opaque;
278 
279     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
280             &cpu->env, pin, level);
281 
282     switch (pin) {
283     case POWER7_INPUT_INT:
284         /* Level sensitive - active high */
285         LOG_IRQ("%s: set the external IRQ state to %d\n",
286                 __func__, level);
287         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
288         break;
289     default:
290         /* Unknown pin - do nothing */
291         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
292         return;
293     }
294 }
295 
296 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
297 {
298     CPUPPCState *env = &cpu->env;
299 
300     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
301                                                   POWER7_INPUT_NB);
302 }
303 
304 /* POWER9 internal IRQ controller */
305 static void power9_set_irq(void *opaque, int pin, int level)
306 {
307     PowerPCCPU *cpu = opaque;
308 
309     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
310             &cpu->env, pin, level);
311 
312     switch (pin) {
313     case POWER9_INPUT_INT:
314         /* Level sensitive - active high */
315         LOG_IRQ("%s: set the external IRQ state to %d\n",
316                 __func__, level);
317         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
318         break;
319     case POWER9_INPUT_HINT:
320         /* Level sensitive - active high */
321         LOG_IRQ("%s: set the external IRQ state to %d\n",
322                 __func__, level);
323         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
324         break;
325     default:
326         /* Unknown pin - do nothing */
327         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
328         return;
329     }
330 }
331 
332 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
333 {
334     CPUPPCState *env = &cpu->env;
335 
336     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
337                                                   POWER9_INPUT_NB);
338 }
339 #endif /* defined(TARGET_PPC64) */
340 
341 void ppc40x_core_reset(PowerPCCPU *cpu)
342 {
343     CPUPPCState *env = &cpu->env;
344     target_ulong dbsr;
345 
346     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
347     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
348     dbsr = env->spr[SPR_40x_DBSR];
349     dbsr &= ~0x00000300;
350     dbsr |= 0x00000100;
351     env->spr[SPR_40x_DBSR] = dbsr;
352 }
353 
354 void ppc40x_chip_reset(PowerPCCPU *cpu)
355 {
356     CPUPPCState *env = &cpu->env;
357     target_ulong dbsr;
358 
359     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
360     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
361     /* XXX: TODO reset all internal peripherals */
362     dbsr = env->spr[SPR_40x_DBSR];
363     dbsr &= ~0x00000300;
364     dbsr |= 0x00000200;
365     env->spr[SPR_40x_DBSR] = dbsr;
366 }
367 
368 void ppc40x_system_reset(PowerPCCPU *cpu)
369 {
370     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
371     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372 }
373 
374 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
375 {
376     PowerPCCPU *cpu = env_archcpu(env);
377 
378     switch ((val >> 28) & 0x3) {
379     case 0x0:
380         /* No action */
381         break;
382     case 0x1:
383         /* Core reset */
384         ppc40x_core_reset(cpu);
385         break;
386     case 0x2:
387         /* Chip reset */
388         ppc40x_chip_reset(cpu);
389         break;
390     case 0x3:
391         /* System reset */
392         ppc40x_system_reset(cpu);
393         break;
394     }
395 }
396 
397 /* PowerPC 40x internal IRQ controller */
398 static void ppc40x_set_irq(void *opaque, int pin, int level)
399 {
400     PowerPCCPU *cpu = opaque;
401     CPUPPCState *env = &cpu->env;
402     int cur_level;
403 
404     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405                 env, pin, level);
406     cur_level = (env->irq_input_state >> pin) & 1;
407     /* Don't generate spurious events */
408     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409         CPUState *cs = CPU(cpu);
410 
411         switch (pin) {
412         case PPC40x_INPUT_RESET_SYS:
413             if (level) {
414                 LOG_IRQ("%s: reset the PowerPC system\n",
415                             __func__);
416                 ppc40x_system_reset(cpu);
417             }
418             break;
419         case PPC40x_INPUT_RESET_CHIP:
420             if (level) {
421                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
422                 ppc40x_chip_reset(cpu);
423             }
424             break;
425         case PPC40x_INPUT_RESET_CORE:
426             /* XXX: TODO: update DBSR[MRR] */
427             if (level) {
428                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
429                 ppc40x_core_reset(cpu);
430             }
431             break;
432         case PPC40x_INPUT_CINT:
433             /* Level sensitive - active high */
434             LOG_IRQ("%s: set the critical IRQ state to %d\n",
435                         __func__, level);
436             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
437             break;
438         case PPC40x_INPUT_INT:
439             /* Level sensitive - active high */
440             LOG_IRQ("%s: set the external IRQ state to %d\n",
441                         __func__, level);
442             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
443             break;
444         case PPC40x_INPUT_HALT:
445             /* Level sensitive - active low */
446             if (level) {
447                 LOG_IRQ("%s: stop the CPU\n", __func__);
448                 cs->halted = 1;
449             } else {
450                 LOG_IRQ("%s: restart the CPU\n", __func__);
451                 cs->halted = 0;
452                 qemu_cpu_kick(cs);
453             }
454             break;
455         case PPC40x_INPUT_DEBUG:
456             /* Level sensitive - active high */
457             LOG_IRQ("%s: set the debug pin state to %d\n",
458                         __func__, level);
459             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
460             break;
461         default:
462             /* Unknown pin - do nothing */
463             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
464             return;
465         }
466         if (level)
467             env->irq_input_state |= 1 << pin;
468         else
469             env->irq_input_state &= ~(1 << pin);
470     }
471 }
472 
473 void ppc40x_irq_init(PowerPCCPU *cpu)
474 {
475     CPUPPCState *env = &cpu->env;
476 
477     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
478                                                   cpu, PPC40x_INPUT_NB);
479 }
480 
481 /* PowerPC E500 internal IRQ controller */
482 static void ppce500_set_irq(void *opaque, int pin, int level)
483 {
484     PowerPCCPU *cpu = opaque;
485     CPUPPCState *env = &cpu->env;
486     int cur_level;
487 
488     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
489                 env, pin, level);
490     cur_level = (env->irq_input_state >> pin) & 1;
491     /* Don't generate spurious events */
492     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
493         switch (pin) {
494         case PPCE500_INPUT_MCK:
495             if (level) {
496                 LOG_IRQ("%s: reset the PowerPC system\n",
497                             __func__);
498                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
499             }
500             break;
501         case PPCE500_INPUT_RESET_CORE:
502             if (level) {
503                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
504                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
505             }
506             break;
507         case PPCE500_INPUT_CINT:
508             /* Level sensitive - active high */
509             LOG_IRQ("%s: set the critical IRQ state to %d\n",
510                         __func__, level);
511             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
512             break;
513         case PPCE500_INPUT_INT:
514             /* Level sensitive - active high */
515             LOG_IRQ("%s: set the core IRQ state to %d\n",
516                         __func__, level);
517             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
518             break;
519         case PPCE500_INPUT_DEBUG:
520             /* Level sensitive - active high */
521             LOG_IRQ("%s: set the debug pin state to %d\n",
522                         __func__, level);
523             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
524             break;
525         default:
526             /* Unknown pin - do nothing */
527             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
528             return;
529         }
530         if (level)
531             env->irq_input_state |= 1 << pin;
532         else
533             env->irq_input_state &= ~(1 << pin);
534     }
535 }
536 
537 void ppce500_irq_init(PowerPCCPU *cpu)
538 {
539     CPUPPCState *env = &cpu->env;
540 
541     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
542                                                   cpu, PPCE500_INPUT_NB);
543 }
544 
545 /* Enable or Disable the E500 EPR capability */
546 void ppce500_set_mpic_proxy(bool enabled)
547 {
548     CPUState *cs;
549 
550     CPU_FOREACH(cs) {
551         PowerPCCPU *cpu = POWERPC_CPU(cs);
552 
553         cpu->env.mpic_proxy = enabled;
554         if (kvm_enabled()) {
555             kvmppc_set_mpic_proxy(cpu, enabled);
556         }
557     }
558 }
559 
560 /*****************************************************************************/
561 /* PowerPC time base and decrementer emulation */
562 
563 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
564 {
565     /* TB time in tb periods */
566     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
567 }
568 
569 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
570 {
571     ppc_tb_t *tb_env = env->tb_env;
572     uint64_t tb;
573 
574     if (kvm_enabled()) {
575         return env->spr[SPR_TBL];
576     }
577 
578     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
580 
581     return tb;
582 }
583 
584 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
585 {
586     ppc_tb_t *tb_env = env->tb_env;
587     uint64_t tb;
588 
589     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
590     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
591 
592     return tb >> 32;
593 }
594 
595 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
596 {
597     if (kvm_enabled()) {
598         return env->spr[SPR_TBU];
599     }
600 
601     return _cpu_ppc_load_tbu(env);
602 }
603 
604 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
605                                     int64_t *tb_offsetp, uint64_t value)
606 {
607     *tb_offsetp = value -
608         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
609 
610     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
611                 __func__, value, *tb_offsetp);
612 }
613 
614 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
615 {
616     ppc_tb_t *tb_env = env->tb_env;
617     uint64_t tb;
618 
619     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
620     tb &= 0xFFFFFFFF00000000ULL;
621     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
622                      &tb_env->tb_offset, tb | (uint64_t)value);
623 }
624 
625 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
626 {
627     ppc_tb_t *tb_env = env->tb_env;
628     uint64_t tb;
629 
630     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
631     tb &= 0x00000000FFFFFFFFULL;
632     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
633                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
634 }
635 
636 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
637 {
638     _cpu_ppc_store_tbu(env, value);
639 }
640 
641 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
642 {
643     ppc_tb_t *tb_env = env->tb_env;
644     uint64_t tb;
645 
646     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
647     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
648 
649     return tb;
650 }
651 
652 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
653 {
654     ppc_tb_t *tb_env = env->tb_env;
655     uint64_t tb;
656 
657     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
658     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
659 
660     return tb >> 32;
661 }
662 
663 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
664 {
665     ppc_tb_t *tb_env = env->tb_env;
666     uint64_t tb;
667 
668     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
669     tb &= 0xFFFFFFFF00000000ULL;
670     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
671                      &tb_env->atb_offset, tb | (uint64_t)value);
672 }
673 
674 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
675 {
676     ppc_tb_t *tb_env = env->tb_env;
677     uint64_t tb;
678 
679     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
680     tb &= 0x00000000FFFFFFFFULL;
681     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
682                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
683 }
684 
685 static void cpu_ppc_tb_stop (CPUPPCState *env)
686 {
687     ppc_tb_t *tb_env = env->tb_env;
688     uint64_t tb, atb, vmclk;
689 
690     /* If the time base is already frozen, do nothing */
691     if (tb_env->tb_freq != 0) {
692         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
693         /* Get the time base */
694         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
695         /* Get the alternate time base */
696         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
697         /* Store the time base value (ie compute the current offset) */
698         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
699         /* Store the alternate time base value (compute the current offset) */
700         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
701         /* Set the time base frequency to zero */
702         tb_env->tb_freq = 0;
703         /* Now, the time bases are frozen to tb_offset / atb_offset value */
704     }
705 }
706 
707 static void cpu_ppc_tb_start (CPUPPCState *env)
708 {
709     ppc_tb_t *tb_env = env->tb_env;
710     uint64_t tb, atb, vmclk;
711 
712     /* If the time base is not frozen, do nothing */
713     if (tb_env->tb_freq == 0) {
714         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
715         /* Get the time base from tb_offset */
716         tb = tb_env->tb_offset;
717         /* Get the alternate time base from atb_offset */
718         atb = tb_env->atb_offset;
719         /* Restore the tb frequency from the decrementer frequency */
720         tb_env->tb_freq = tb_env->decr_freq;
721         /* Store the time base value */
722         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
723         /* Store the alternate time base value */
724         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
725     }
726 }
727 
728 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
729 {
730     ppc_tb_t *tb_env = env->tb_env;
731     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
732     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
733 }
734 
735 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
736 {
737     ppc_tb_t *tb_env = env->tb_env;
738     int64_t decr, diff;
739 
740     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
741     if (diff >= 0) {
742         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
743     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
744         decr = 0;
745     }  else {
746         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
747     }
748     LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
749 
750     return decr;
751 }
752 
753 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
754 {
755     ppc_tb_t *tb_env = env->tb_env;
756     uint64_t decr;
757 
758     if (kvm_enabled()) {
759         return env->spr[SPR_DECR];
760     }
761 
762     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
763 
764     /*
765      * If large decrementer is enabled then the decrementer is signed extened
766      * to 64 bits, otherwise it is a 32 bit value.
767      */
768     if (env->spr[SPR_LPCR] & LPCR_LD) {
769         return decr;
770     }
771     return (uint32_t) decr;
772 }
773 
774 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
775 {
776     PowerPCCPU *cpu = env_archcpu(env);
777     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
778     ppc_tb_t *tb_env = env->tb_env;
779     uint64_t hdecr;
780 
781     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
782 
783     /*
784      * If we have a large decrementer (POWER9 or later) then hdecr is sign
785      * extended to 64 bits, otherwise it is 32 bits.
786      */
787     if (pcc->lrg_decr_bits > 32) {
788         return hdecr;
789     }
790     return (uint32_t) hdecr;
791 }
792 
793 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
794 {
795     ppc_tb_t *tb_env = env->tb_env;
796     uint64_t diff;
797 
798     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
799 
800     return tb_env->purr_load +
801         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
802 }
803 
804 /* When decrementer expires,
805  * all we need to do is generate or queue a CPU exception
806  */
807 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
808 {
809     /* Raise it */
810     LOG_TB("raise decrementer exception\n");
811     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
812 }
813 
814 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
815 {
816     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
817 }
818 
819 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
820 {
821     CPUPPCState *env = &cpu->env;
822 
823     /* Raise it */
824     LOG_TB("raise hv decrementer exception\n");
825 
826     /* The architecture specifies that we don't deliver HDEC
827      * interrupts in a PM state. Not only they don't cause a
828      * wakeup but they also get effectively discarded.
829      */
830     if (!env->resume_as_sreset) {
831         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
832     }
833 }
834 
835 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
836 {
837     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
838 }
839 
840 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
841                                  QEMUTimer *timer,
842                                  void (*raise_excp)(void *),
843                                  void (*lower_excp)(PowerPCCPU *),
844                                  target_ulong decr, target_ulong value,
845                                  int nr_bits)
846 {
847     CPUPPCState *env = &cpu->env;
848     ppc_tb_t *tb_env = env->tb_env;
849     uint64_t now, next;
850     bool negative;
851 
852     /* Truncate value to decr_width and sign extend for simplicity */
853     value &= ((1ULL << nr_bits) - 1);
854     negative = !!(value & (1ULL << (nr_bits - 1)));
855     if (negative) {
856         value |= (0xFFFFFFFFULL << nr_bits);
857     }
858 
859     LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
860                 decr, value);
861 
862     if (kvm_enabled()) {
863         /* KVM handles decrementer exceptions, we don't need our own timer */
864         return;
865     }
866 
867     /*
868      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
869      * interrupt.
870      *
871      * If we get a really small DEC value, we can assume that by the time we
872      * handled it we should inject an interrupt already.
873      *
874      * On MSB level based DEC implementations the MSB always means the interrupt
875      * is pending, so raise it on those.
876      *
877      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
878      * an edge interrupt, so raise it here too.
879      */
880     if ((value < 3) ||
881         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
882         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
883           && !(decr & (1ULL << (nr_bits - 1))))) {
884         (*raise_excp)(cpu);
885         return;
886     }
887 
888     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
889     if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
890         (*lower_excp)(cpu);
891     }
892 
893     /* Calculate the next timer event */
894     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
895     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
896     *nextp = next;
897 
898     /* Adjust timer */
899     timer_mod(timer, next);
900 }
901 
902 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
903                                        target_ulong value, int nr_bits)
904 {
905     ppc_tb_t *tb_env = cpu->env.tb_env;
906 
907     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
908                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
909                          value, nr_bits);
910 }
911 
912 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
913 {
914     PowerPCCPU *cpu = env_archcpu(env);
915     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
916     int nr_bits = 32;
917 
918     if (env->spr[SPR_LPCR] & LPCR_LD) {
919         nr_bits = pcc->lrg_decr_bits;
920     }
921 
922     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
923 }
924 
925 static void cpu_ppc_decr_cb(void *opaque)
926 {
927     PowerPCCPU *cpu = opaque;
928 
929     cpu_ppc_decr_excp(cpu);
930 }
931 
932 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
933                                         target_ulong value, int nr_bits)
934 {
935     ppc_tb_t *tb_env = cpu->env.tb_env;
936 
937     if (tb_env->hdecr_timer != NULL) {
938         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
939                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
940                              hdecr, value, nr_bits);
941     }
942 }
943 
944 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
945 {
946     PowerPCCPU *cpu = env_archcpu(env);
947     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
948 
949     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
950                          pcc->lrg_decr_bits);
951 }
952 
953 static void cpu_ppc_hdecr_cb(void *opaque)
954 {
955     PowerPCCPU *cpu = opaque;
956 
957     cpu_ppc_hdecr_excp(cpu);
958 }
959 
960 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
961 {
962     ppc_tb_t *tb_env = cpu->env.tb_env;
963 
964     tb_env->purr_load = value;
965     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
966 }
967 
968 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
969 {
970     CPUPPCState *env = opaque;
971     PowerPCCPU *cpu = env_archcpu(env);
972     ppc_tb_t *tb_env = env->tb_env;
973 
974     tb_env->tb_freq = freq;
975     tb_env->decr_freq = freq;
976     /* There is a bug in Linux 2.4 kernels:
977      * if a decrementer exception is pending when it enables msr_ee at startup,
978      * it's not ready to handle it...
979      */
980     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
981     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
982     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
983 }
984 
985 static void timebase_save(PPCTimebase *tb)
986 {
987     uint64_t ticks = cpu_get_host_ticks();
988     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
989 
990     if (!first_ppc_cpu->env.tb_env) {
991         error_report("No timebase object");
992         return;
993     }
994 
995     /* not used anymore, we keep it for compatibility */
996     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
997     /*
998      * tb_offset is only expected to be changed by QEMU so
999      * there is no need to update it from KVM here
1000      */
1001     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1002 
1003     tb->runstate_paused = runstate_check(RUN_STATE_PAUSED);
1004 }
1005 
1006 static void timebase_load(PPCTimebase *tb)
1007 {
1008     CPUState *cpu;
1009     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1010     int64_t tb_off_adj, tb_off;
1011     unsigned long freq;
1012 
1013     if (!first_ppc_cpu->env.tb_env) {
1014         error_report("No timebase object");
1015         return;
1016     }
1017 
1018     freq = first_ppc_cpu->env.tb_env->tb_freq;
1019 
1020     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1021 
1022     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1023     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1024                         (tb_off_adj - tb_off) / freq);
1025 
1026     /* Set new offset to all CPUs */
1027     CPU_FOREACH(cpu) {
1028         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1029         pcpu->env.tb_env->tb_offset = tb_off_adj;
1030         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1031     }
1032 }
1033 
1034 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1035                                    RunState state)
1036 {
1037     PPCTimebase *tb = opaque;
1038 
1039     if (running) {
1040         timebase_load(tb);
1041     } else {
1042         timebase_save(tb);
1043     }
1044 }
1045 
1046 /*
1047  * When migrating a running guest, read the clock just
1048  * before migration, so that the guest clock counts
1049  * during the events between:
1050  *
1051  *  * vm_stop()
1052  *  *
1053  *  * pre_save()
1054  *
1055  *  This reduces clock difference on migration from 5s
1056  *  to 0.1s (when max_downtime == 5s), because sending the
1057  *  final pages of memory (which happens between vm_stop()
1058  *  and pre_save()) takes max_downtime.
1059  */
1060 static int timebase_pre_save(void *opaque)
1061 {
1062     PPCTimebase *tb = opaque;
1063 
1064     /* guest_timebase won't be overridden in case of paused guest */
1065     if (!tb->runstate_paused) {
1066         timebase_save(tb);
1067     }
1068 
1069     return 0;
1070 }
1071 
1072 const VMStateDescription vmstate_ppc_timebase = {
1073     .name = "timebase",
1074     .version_id = 1,
1075     .minimum_version_id = 1,
1076     .minimum_version_id_old = 1,
1077     .pre_save = timebase_pre_save,
1078     .fields      = (VMStateField []) {
1079         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1080         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1081         VMSTATE_END_OF_LIST()
1082     },
1083 };
1084 
1085 /* Set up (once) timebase frequency (in Hz) */
1086 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1087 {
1088     PowerPCCPU *cpu = env_archcpu(env);
1089     ppc_tb_t *tb_env;
1090 
1091     tb_env = g_malloc0(sizeof(ppc_tb_t));
1092     env->tb_env = tb_env;
1093     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1094     if (is_book3s_arch2x(env)) {
1095         /* All Book3S 64bit CPUs implement level based DEC logic */
1096         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1097     }
1098     /* Create new timer */
1099     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1100     if (env->has_hv_mode) {
1101         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1102                                                 cpu);
1103     } else {
1104         tb_env->hdecr_timer = NULL;
1105     }
1106     cpu_ppc_set_tb_clk(env, freq);
1107 
1108     return &cpu_ppc_set_tb_clk;
1109 }
1110 
1111 /* Specific helpers for POWER & PowerPC 601 RTC */
1112 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1113 {
1114     _cpu_ppc_store_tbu(env, value);
1115 }
1116 
1117 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1118 {
1119     return _cpu_ppc_load_tbu(env);
1120 }
1121 
1122 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1123 {
1124     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1125 }
1126 
1127 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1128 {
1129     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1130 }
1131 
1132 /*****************************************************************************/
1133 /* PowerPC 40x timers */
1134 
1135 /* PIT, FIT & WDT */
1136 typedef struct ppc40x_timer_t ppc40x_timer_t;
1137 struct ppc40x_timer_t {
1138     uint64_t pit_reload;  /* PIT auto-reload value        */
1139     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1140     QEMUTimer *fit_timer;
1141     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1142     QEMUTimer *wdt_timer;
1143 
1144     /* 405 have the PIT, 440 have a DECR.  */
1145     unsigned int decr_excp;
1146 };
1147 
1148 /* Fixed interval timer */
1149 static void cpu_4xx_fit_cb (void *opaque)
1150 {
1151     PowerPCCPU *cpu;
1152     CPUPPCState *env;
1153     ppc_tb_t *tb_env;
1154     ppc40x_timer_t *ppc40x_timer;
1155     uint64_t now, next;
1156 
1157     env = opaque;
1158     cpu = env_archcpu(env);
1159     tb_env = env->tb_env;
1160     ppc40x_timer = tb_env->opaque;
1161     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1162     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1163     case 0:
1164         next = 1 << 9;
1165         break;
1166     case 1:
1167         next = 1 << 13;
1168         break;
1169     case 2:
1170         next = 1 << 17;
1171         break;
1172     case 3:
1173         next = 1 << 21;
1174         break;
1175     default:
1176         /* Cannot occur, but makes gcc happy */
1177         return;
1178     }
1179     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1180     if (next == now)
1181         next++;
1182     timer_mod(ppc40x_timer->fit_timer, next);
1183     env->spr[SPR_40x_TSR] |= 1 << 26;
1184     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1185         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1186     }
1187     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1188            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1189            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1190 }
1191 
1192 /* Programmable interval timer */
1193 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1194 {
1195     ppc40x_timer_t *ppc40x_timer;
1196     uint64_t now, next;
1197 
1198     ppc40x_timer = tb_env->opaque;
1199     if (ppc40x_timer->pit_reload <= 1 ||
1200         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1201         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1202         /* Stop PIT */
1203         LOG_TB("%s: stop PIT\n", __func__);
1204         timer_del(tb_env->decr_timer);
1205     } else {
1206         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1207                     __func__, ppc40x_timer->pit_reload);
1208         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1209         next = now + muldiv64(ppc40x_timer->pit_reload,
1210                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1211         if (is_excp)
1212             next += tb_env->decr_next - now;
1213         if (next == now)
1214             next++;
1215         timer_mod(tb_env->decr_timer, next);
1216         tb_env->decr_next = next;
1217     }
1218 }
1219 
1220 static void cpu_4xx_pit_cb (void *opaque)
1221 {
1222     PowerPCCPU *cpu;
1223     CPUPPCState *env;
1224     ppc_tb_t *tb_env;
1225     ppc40x_timer_t *ppc40x_timer;
1226 
1227     env = opaque;
1228     cpu = env_archcpu(env);
1229     tb_env = env->tb_env;
1230     ppc40x_timer = tb_env->opaque;
1231     env->spr[SPR_40x_TSR] |= 1 << 27;
1232     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1233         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1234     }
1235     start_stop_pit(env, tb_env, 1);
1236     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1237            "%016" PRIx64 "\n", __func__,
1238            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1239            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1240            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1241            ppc40x_timer->pit_reload);
1242 }
1243 
1244 /* Watchdog timer */
1245 static void cpu_4xx_wdt_cb (void *opaque)
1246 {
1247     PowerPCCPU *cpu;
1248     CPUPPCState *env;
1249     ppc_tb_t *tb_env;
1250     ppc40x_timer_t *ppc40x_timer;
1251     uint64_t now, next;
1252 
1253     env = opaque;
1254     cpu = env_archcpu(env);
1255     tb_env = env->tb_env;
1256     ppc40x_timer = tb_env->opaque;
1257     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1258     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1259     case 0:
1260         next = 1 << 17;
1261         break;
1262     case 1:
1263         next = 1 << 21;
1264         break;
1265     case 2:
1266         next = 1 << 25;
1267         break;
1268     case 3:
1269         next = 1 << 29;
1270         break;
1271     default:
1272         /* Cannot occur, but makes gcc happy */
1273         return;
1274     }
1275     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1276     if (next == now)
1277         next++;
1278     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1279            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1280     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1281     case 0x0:
1282     case 0x1:
1283         timer_mod(ppc40x_timer->wdt_timer, next);
1284         ppc40x_timer->wdt_next = next;
1285         env->spr[SPR_40x_TSR] |= 1U << 31;
1286         break;
1287     case 0x2:
1288         timer_mod(ppc40x_timer->wdt_timer, next);
1289         ppc40x_timer->wdt_next = next;
1290         env->spr[SPR_40x_TSR] |= 1 << 30;
1291         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1292             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1293         }
1294         break;
1295     case 0x3:
1296         env->spr[SPR_40x_TSR] &= ~0x30000000;
1297         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1298         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1299         case 0x0:
1300             /* No reset */
1301             break;
1302         case 0x1: /* Core reset */
1303             ppc40x_core_reset(cpu);
1304             break;
1305         case 0x2: /* Chip reset */
1306             ppc40x_chip_reset(cpu);
1307             break;
1308         case 0x3: /* System reset */
1309             ppc40x_system_reset(cpu);
1310             break;
1311         }
1312     }
1313 }
1314 
1315 void store_40x_pit (CPUPPCState *env, target_ulong val)
1316 {
1317     ppc_tb_t *tb_env;
1318     ppc40x_timer_t *ppc40x_timer;
1319 
1320     tb_env = env->tb_env;
1321     ppc40x_timer = tb_env->opaque;
1322     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1323     ppc40x_timer->pit_reload = val;
1324     start_stop_pit(env, tb_env, 0);
1325 }
1326 
1327 target_ulong load_40x_pit (CPUPPCState *env)
1328 {
1329     return cpu_ppc_load_decr(env);
1330 }
1331 
1332 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1333 {
1334     CPUPPCState *env = opaque;
1335     ppc_tb_t *tb_env = env->tb_env;
1336 
1337     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1338                 freq);
1339     tb_env->tb_freq = freq;
1340     tb_env->decr_freq = freq;
1341     /* XXX: we should also update all timers */
1342 }
1343 
1344 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1345                                   unsigned int decr_excp)
1346 {
1347     ppc_tb_t *tb_env;
1348     ppc40x_timer_t *ppc40x_timer;
1349 
1350     tb_env = g_malloc0(sizeof(ppc_tb_t));
1351     env->tb_env = tb_env;
1352     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1353     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1354     tb_env->tb_freq = freq;
1355     tb_env->decr_freq = freq;
1356     tb_env->opaque = ppc40x_timer;
1357     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1358     if (ppc40x_timer != NULL) {
1359         /* We use decr timer for PIT */
1360         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1361         ppc40x_timer->fit_timer =
1362             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1363         ppc40x_timer->wdt_timer =
1364             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1365         ppc40x_timer->decr_excp = decr_excp;
1366     }
1367 
1368     return &ppc_40x_set_tb_clk;
1369 }
1370 
1371 /*****************************************************************************/
1372 /* Embedded PowerPC Device Control Registers */
1373 typedef struct ppc_dcrn_t ppc_dcrn_t;
1374 struct ppc_dcrn_t {
1375     dcr_read_cb dcr_read;
1376     dcr_write_cb dcr_write;
1377     void *opaque;
1378 };
1379 
1380 /* XXX: on 460, DCR addresses are 32 bits wide,
1381  *      using DCRIPR to get the 22 upper bits of the DCR address
1382  */
1383 #define DCRN_NB 1024
1384 struct ppc_dcr_t {
1385     ppc_dcrn_t dcrn[DCRN_NB];
1386     int (*read_error)(int dcrn);
1387     int (*write_error)(int dcrn);
1388 };
1389 
1390 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1391 {
1392     ppc_dcrn_t *dcr;
1393 
1394     if (dcrn < 0 || dcrn >= DCRN_NB)
1395         goto error;
1396     dcr = &dcr_env->dcrn[dcrn];
1397     if (dcr->dcr_read == NULL)
1398         goto error;
1399     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1400 
1401     return 0;
1402 
1403  error:
1404     if (dcr_env->read_error != NULL)
1405         return (*dcr_env->read_error)(dcrn);
1406 
1407     return -1;
1408 }
1409 
1410 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1411 {
1412     ppc_dcrn_t *dcr;
1413 
1414     if (dcrn < 0 || dcrn >= DCRN_NB)
1415         goto error;
1416     dcr = &dcr_env->dcrn[dcrn];
1417     if (dcr->dcr_write == NULL)
1418         goto error;
1419     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1420 
1421     return 0;
1422 
1423  error:
1424     if (dcr_env->write_error != NULL)
1425         return (*dcr_env->write_error)(dcrn);
1426 
1427     return -1;
1428 }
1429 
1430 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1431                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1432 {
1433     ppc_dcr_t *dcr_env;
1434     ppc_dcrn_t *dcr;
1435 
1436     dcr_env = env->dcr_env;
1437     if (dcr_env == NULL)
1438         return -1;
1439     if (dcrn < 0 || dcrn >= DCRN_NB)
1440         return -1;
1441     dcr = &dcr_env->dcrn[dcrn];
1442     if (dcr->opaque != NULL ||
1443         dcr->dcr_read != NULL ||
1444         dcr->dcr_write != NULL)
1445         return -1;
1446     dcr->opaque = opaque;
1447     dcr->dcr_read = dcr_read;
1448     dcr->dcr_write = dcr_write;
1449 
1450     return 0;
1451 }
1452 
1453 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1454                   int (*write_error)(int dcrn))
1455 {
1456     ppc_dcr_t *dcr_env;
1457 
1458     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1459     dcr_env->read_error = read_error;
1460     dcr_env->write_error = write_error;
1461     env->dcr_env = dcr_env;
1462 
1463     return 0;
1464 }
1465 
1466 /*****************************************************************************/
1467 /* Debug port */
1468 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1469 {
1470     addr &= 0xF;
1471     switch (addr) {
1472     case 0:
1473         printf("%c", val);
1474         break;
1475     case 1:
1476         printf("\n");
1477         fflush(stdout);
1478         break;
1479     case 2:
1480         printf("Set loglevel to %04" PRIx32 "\n", val);
1481         qemu_set_log(val | 0x100);
1482         break;
1483     }
1484 }
1485 
1486 int ppc_cpu_pir(PowerPCCPU *cpu)
1487 {
1488     CPUPPCState *env = &cpu->env;
1489     return env->spr_cb[SPR_PIR].default_value;
1490 }
1491 
1492 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1493 {
1494     CPUState *cs;
1495 
1496     CPU_FOREACH(cs) {
1497         PowerPCCPU *cpu = POWERPC_CPU(cs);
1498 
1499         if (ppc_cpu_pir(cpu) == pir) {
1500             return cpu;
1501         }
1502     }
1503 
1504     return NULL;
1505 }
1506 
1507 void ppc_irq_reset(PowerPCCPU *cpu)
1508 {
1509     CPUPPCState *env = &cpu->env;
1510 
1511     env->irq_input_state = 0;
1512     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1513 }
1514