xref: /openbmc/qemu/hw/ppc/ppc.c (revision 21f5826a)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
31 #include "qemu/log.h"
32 #include "qemu/error-report.h"
33 #include "hw/loader.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "trace.h"
37 
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
40 
41 #ifdef PPC_DEBUG_IRQ
42 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
43 #else
44 #  define LOG_IRQ(...) do { } while (0)
45 #endif
46 
47 
48 #ifdef PPC_DEBUG_TB
49 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
50 #else
51 #  define LOG_TB(...) do { } while (0)
52 #endif
53 
54 #define NSEC_PER_SEC    1000000000LL
55 
56 static void cpu_ppc_tb_stop (CPUPPCState *env);
57 static void cpu_ppc_tb_start (CPUPPCState *env);
58 
59 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
60 {
61     CPUState *cs = CPU(cpu);
62     CPUPPCState *env = &cpu->env;
63     unsigned int old_pending = env->pending_interrupts;
64 
65     if (level) {
66         env->pending_interrupts |= 1 << n_IRQ;
67         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
68     } else {
69         env->pending_interrupts &= ~(1 << n_IRQ);
70         if (env->pending_interrupts == 0) {
71             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
72         }
73     }
74 
75     if (old_pending != env->pending_interrupts) {
76 #ifdef CONFIG_KVM
77         kvmppc_set_interrupt(cpu, n_IRQ, level);
78 #endif
79     }
80 
81     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
82                 "req %08x\n", __func__, env, n_IRQ, level,
83                 env->pending_interrupts, CPU(cpu)->interrupt_request);
84 }
85 
86 /* PowerPC 6xx / 7xx internal IRQ controller */
87 static void ppc6xx_set_irq(void *opaque, int pin, int level)
88 {
89     PowerPCCPU *cpu = opaque;
90     CPUPPCState *env = &cpu->env;
91     int cur_level;
92 
93     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
94                 env, pin, level);
95     cur_level = (env->irq_input_state >> pin) & 1;
96     /* Don't generate spurious events */
97     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
98         CPUState *cs = CPU(cpu);
99 
100         switch (pin) {
101         case PPC6xx_INPUT_TBEN:
102             /* Level sensitive - active high */
103             LOG_IRQ("%s: %s the time base\n",
104                         __func__, level ? "start" : "stop");
105             if (level) {
106                 cpu_ppc_tb_start(env);
107             } else {
108                 cpu_ppc_tb_stop(env);
109             }
110         case PPC6xx_INPUT_INT:
111             /* Level sensitive - active high */
112             LOG_IRQ("%s: set the external IRQ state to %d\n",
113                         __func__, level);
114             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
115             break;
116         case PPC6xx_INPUT_SMI:
117             /* Level sensitive - active high */
118             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
119                         __func__, level);
120             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
121             break;
122         case PPC6xx_INPUT_MCP:
123             /* Negative edge sensitive */
124             /* XXX: TODO: actual reaction may depends on HID0 status
125              *            603/604/740/750: check HID0[EMCP]
126              */
127             if (cur_level == 1 && level == 0) {
128                 LOG_IRQ("%s: raise machine check state\n",
129                             __func__);
130                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
131             }
132             break;
133         case PPC6xx_INPUT_CKSTP_IN:
134             /* Level sensitive - active low */
135             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
136             /* XXX: Note that the only way to restart the CPU is to reset it */
137             if (level) {
138                 LOG_IRQ("%s: stop the CPU\n", __func__);
139                 cs->halted = 1;
140             }
141             break;
142         case PPC6xx_INPUT_HRESET:
143             /* Level sensitive - active low */
144             if (level) {
145                 LOG_IRQ("%s: reset the CPU\n", __func__);
146                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
147             }
148             break;
149         case PPC6xx_INPUT_SRESET:
150             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
151                         __func__, level);
152             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
153             break;
154         default:
155             /* Unknown pin - do nothing */
156             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
157             return;
158         }
159         if (level)
160             env->irq_input_state |= 1 << pin;
161         else
162             env->irq_input_state &= ~(1 << pin);
163     }
164 }
165 
166 void ppc6xx_irq_init(CPUPPCState *env)
167 {
168     PowerPCCPU *cpu = ppc_env_get_cpu(env);
169 
170     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
171                                                   PPC6xx_INPUT_NB);
172 }
173 
174 #if defined(TARGET_PPC64)
175 /* PowerPC 970 internal IRQ controller */
176 static void ppc970_set_irq(void *opaque, int pin, int level)
177 {
178     PowerPCCPU *cpu = opaque;
179     CPUPPCState *env = &cpu->env;
180     int cur_level;
181 
182     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
183                 env, pin, level);
184     cur_level = (env->irq_input_state >> pin) & 1;
185     /* Don't generate spurious events */
186     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
187         CPUState *cs = CPU(cpu);
188 
189         switch (pin) {
190         case PPC970_INPUT_INT:
191             /* Level sensitive - active high */
192             LOG_IRQ("%s: set the external IRQ state to %d\n",
193                         __func__, level);
194             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
195             break;
196         case PPC970_INPUT_THINT:
197             /* Level sensitive - active high */
198             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
199                         level);
200             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
201             break;
202         case PPC970_INPUT_MCP:
203             /* Negative edge sensitive */
204             /* XXX: TODO: actual reaction may depends on HID0 status
205              *            603/604/740/750: check HID0[EMCP]
206              */
207             if (cur_level == 1 && level == 0) {
208                 LOG_IRQ("%s: raise machine check state\n",
209                             __func__);
210                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
211             }
212             break;
213         case PPC970_INPUT_CKSTP:
214             /* Level sensitive - active low */
215             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
216             if (level) {
217                 LOG_IRQ("%s: stop the CPU\n", __func__);
218                 cs->halted = 1;
219             } else {
220                 LOG_IRQ("%s: restart the CPU\n", __func__);
221                 cs->halted = 0;
222                 qemu_cpu_kick(cs);
223             }
224             break;
225         case PPC970_INPUT_HRESET:
226             /* Level sensitive - active low */
227             if (level) {
228                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
229             }
230             break;
231         case PPC970_INPUT_SRESET:
232             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
233                         __func__, level);
234             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
235             break;
236         case PPC970_INPUT_TBEN:
237             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
238                         level);
239             /* XXX: TODO */
240             break;
241         default:
242             /* Unknown pin - do nothing */
243             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
244             return;
245         }
246         if (level)
247             env->irq_input_state |= 1 << pin;
248         else
249             env->irq_input_state &= ~(1 << pin);
250     }
251 }
252 
253 void ppc970_irq_init(CPUPPCState *env)
254 {
255     PowerPCCPU *cpu = ppc_env_get_cpu(env);
256 
257     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
258                                                   PPC970_INPUT_NB);
259 }
260 
261 /* POWER7 internal IRQ controller */
262 static void power7_set_irq(void *opaque, int pin, int level)
263 {
264     PowerPCCPU *cpu = opaque;
265     CPUPPCState *env = &cpu->env;
266 
267     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
268                 env, pin, level);
269 
270     switch (pin) {
271     case POWER7_INPUT_INT:
272         /* Level sensitive - active high */
273         LOG_IRQ("%s: set the external IRQ state to %d\n",
274                 __func__, level);
275         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
276         break;
277     default:
278         /* Unknown pin - do nothing */
279         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
280         return;
281     }
282     if (level) {
283         env->irq_input_state |= 1 << pin;
284     } else {
285         env->irq_input_state &= ~(1 << pin);
286     }
287 }
288 
289 void ppcPOWER7_irq_init(CPUPPCState *env)
290 {
291     PowerPCCPU *cpu = ppc_env_get_cpu(env);
292 
293     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
294                                                   POWER7_INPUT_NB);
295 }
296 #endif /* defined(TARGET_PPC64) */
297 
298 /* PowerPC 40x internal IRQ controller */
299 static void ppc40x_set_irq(void *opaque, int pin, int level)
300 {
301     PowerPCCPU *cpu = opaque;
302     CPUPPCState *env = &cpu->env;
303     int cur_level;
304 
305     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
306                 env, pin, level);
307     cur_level = (env->irq_input_state >> pin) & 1;
308     /* Don't generate spurious events */
309     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
310         CPUState *cs = CPU(cpu);
311 
312         switch (pin) {
313         case PPC40x_INPUT_RESET_SYS:
314             if (level) {
315                 LOG_IRQ("%s: reset the PowerPC system\n",
316                             __func__);
317                 ppc40x_system_reset(cpu);
318             }
319             break;
320         case PPC40x_INPUT_RESET_CHIP:
321             if (level) {
322                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
323                 ppc40x_chip_reset(cpu);
324             }
325             break;
326         case PPC40x_INPUT_RESET_CORE:
327             /* XXX: TODO: update DBSR[MRR] */
328             if (level) {
329                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
330                 ppc40x_core_reset(cpu);
331             }
332             break;
333         case PPC40x_INPUT_CINT:
334             /* Level sensitive - active high */
335             LOG_IRQ("%s: set the critical IRQ state to %d\n",
336                         __func__, level);
337             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
338             break;
339         case PPC40x_INPUT_INT:
340             /* Level sensitive - active high */
341             LOG_IRQ("%s: set the external IRQ state to %d\n",
342                         __func__, level);
343             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
344             break;
345         case PPC40x_INPUT_HALT:
346             /* Level sensitive - active low */
347             if (level) {
348                 LOG_IRQ("%s: stop the CPU\n", __func__);
349                 cs->halted = 1;
350             } else {
351                 LOG_IRQ("%s: restart the CPU\n", __func__);
352                 cs->halted = 0;
353                 qemu_cpu_kick(cs);
354             }
355             break;
356         case PPC40x_INPUT_DEBUG:
357             /* Level sensitive - active high */
358             LOG_IRQ("%s: set the debug pin state to %d\n",
359                         __func__, level);
360             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
361             break;
362         default:
363             /* Unknown pin - do nothing */
364             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
365             return;
366         }
367         if (level)
368             env->irq_input_state |= 1 << pin;
369         else
370             env->irq_input_state &= ~(1 << pin);
371     }
372 }
373 
374 void ppc40x_irq_init(CPUPPCState *env)
375 {
376     PowerPCCPU *cpu = ppc_env_get_cpu(env);
377 
378     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
379                                                   cpu, PPC40x_INPUT_NB);
380 }
381 
382 /* PowerPC E500 internal IRQ controller */
383 static void ppce500_set_irq(void *opaque, int pin, int level)
384 {
385     PowerPCCPU *cpu = opaque;
386     CPUPPCState *env = &cpu->env;
387     int cur_level;
388 
389     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
390                 env, pin, level);
391     cur_level = (env->irq_input_state >> pin) & 1;
392     /* Don't generate spurious events */
393     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
394         switch (pin) {
395         case PPCE500_INPUT_MCK:
396             if (level) {
397                 LOG_IRQ("%s: reset the PowerPC system\n",
398                             __func__);
399                 qemu_system_reset_request();
400             }
401             break;
402         case PPCE500_INPUT_RESET_CORE:
403             if (level) {
404                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
405                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
406             }
407             break;
408         case PPCE500_INPUT_CINT:
409             /* Level sensitive - active high */
410             LOG_IRQ("%s: set the critical IRQ state to %d\n",
411                         __func__, level);
412             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
413             break;
414         case PPCE500_INPUT_INT:
415             /* Level sensitive - active high */
416             LOG_IRQ("%s: set the core IRQ state to %d\n",
417                         __func__, level);
418             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
419             break;
420         case PPCE500_INPUT_DEBUG:
421             /* Level sensitive - active high */
422             LOG_IRQ("%s: set the debug pin state to %d\n",
423                         __func__, level);
424             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
425             break;
426         default:
427             /* Unknown pin - do nothing */
428             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
429             return;
430         }
431         if (level)
432             env->irq_input_state |= 1 << pin;
433         else
434             env->irq_input_state &= ~(1 << pin);
435     }
436 }
437 
438 void ppce500_irq_init(CPUPPCState *env)
439 {
440     PowerPCCPU *cpu = ppc_env_get_cpu(env);
441 
442     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
443                                                   cpu, PPCE500_INPUT_NB);
444 }
445 
446 /* Enable or Disable the E500 EPR capability */
447 void ppce500_set_mpic_proxy(bool enabled)
448 {
449     CPUState *cs;
450 
451     CPU_FOREACH(cs) {
452         PowerPCCPU *cpu = POWERPC_CPU(cs);
453 
454         cpu->env.mpic_proxy = enabled;
455         if (kvm_enabled()) {
456             kvmppc_set_mpic_proxy(cpu, enabled);
457         }
458     }
459 }
460 
461 /*****************************************************************************/
462 /* PowerPC time base and decrementer emulation */
463 
464 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
465 {
466     /* TB time in tb periods */
467     return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
468 }
469 
470 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
471 {
472     ppc_tb_t *tb_env = env->tb_env;
473     uint64_t tb;
474 
475     if (kvm_enabled()) {
476         return env->spr[SPR_TBL];
477     }
478 
479     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
480     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
481 
482     return tb;
483 }
484 
485 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
486 {
487     ppc_tb_t *tb_env = env->tb_env;
488     uint64_t tb;
489 
490     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
491     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
492 
493     return tb >> 32;
494 }
495 
496 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
497 {
498     if (kvm_enabled()) {
499         return env->spr[SPR_TBU];
500     }
501 
502     return _cpu_ppc_load_tbu(env);
503 }
504 
505 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
506                                     int64_t *tb_offsetp, uint64_t value)
507 {
508     *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
509     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
510                 __func__, value, *tb_offsetp);
511 }
512 
513 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
514 {
515     ppc_tb_t *tb_env = env->tb_env;
516     uint64_t tb;
517 
518     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
519     tb &= 0xFFFFFFFF00000000ULL;
520     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
521                      &tb_env->tb_offset, tb | (uint64_t)value);
522 }
523 
524 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
525 {
526     ppc_tb_t *tb_env = env->tb_env;
527     uint64_t tb;
528 
529     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
530     tb &= 0x00000000FFFFFFFFULL;
531     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
532                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
533 }
534 
535 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
536 {
537     _cpu_ppc_store_tbu(env, value);
538 }
539 
540 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
541 {
542     ppc_tb_t *tb_env = env->tb_env;
543     uint64_t tb;
544 
545     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
546     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
547 
548     return tb;
549 }
550 
551 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
552 {
553     ppc_tb_t *tb_env = env->tb_env;
554     uint64_t tb;
555 
556     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
557     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
558 
559     return tb >> 32;
560 }
561 
562 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
563 {
564     ppc_tb_t *tb_env = env->tb_env;
565     uint64_t tb;
566 
567     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
568     tb &= 0xFFFFFFFF00000000ULL;
569     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
570                      &tb_env->atb_offset, tb | (uint64_t)value);
571 }
572 
573 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
574 {
575     ppc_tb_t *tb_env = env->tb_env;
576     uint64_t tb;
577 
578     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
579     tb &= 0x00000000FFFFFFFFULL;
580     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
581                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
582 }
583 
584 static void cpu_ppc_tb_stop (CPUPPCState *env)
585 {
586     ppc_tb_t *tb_env = env->tb_env;
587     uint64_t tb, atb, vmclk;
588 
589     /* If the time base is already frozen, do nothing */
590     if (tb_env->tb_freq != 0) {
591         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
592         /* Get the time base */
593         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
594         /* Get the alternate time base */
595         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
596         /* Store the time base value (ie compute the current offset) */
597         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
598         /* Store the alternate time base value (compute the current offset) */
599         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
600         /* Set the time base frequency to zero */
601         tb_env->tb_freq = 0;
602         /* Now, the time bases are frozen to tb_offset / atb_offset value */
603     }
604 }
605 
606 static void cpu_ppc_tb_start (CPUPPCState *env)
607 {
608     ppc_tb_t *tb_env = env->tb_env;
609     uint64_t tb, atb, vmclk;
610 
611     /* If the time base is not frozen, do nothing */
612     if (tb_env->tb_freq == 0) {
613         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
614         /* Get the time base from tb_offset */
615         tb = tb_env->tb_offset;
616         /* Get the alternate time base from atb_offset */
617         atb = tb_env->atb_offset;
618         /* Restore the tb frequency from the decrementer frequency */
619         tb_env->tb_freq = tb_env->decr_freq;
620         /* Store the time base value */
621         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
622         /* Store the alternate time base value */
623         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
624     }
625 }
626 
627 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
628 {
629     ppc_tb_t *tb_env = env->tb_env;
630     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
631     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
632 }
633 
634 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
635 {
636     ppc_tb_t *tb_env = env->tb_env;
637     uint32_t decr;
638     int64_t diff;
639 
640     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
641     if (diff >= 0) {
642         decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
643     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
644         decr = 0;
645     }  else {
646         decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
647     }
648     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
649 
650     return decr;
651 }
652 
653 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
654 {
655     ppc_tb_t *tb_env = env->tb_env;
656 
657     if (kvm_enabled()) {
658         return env->spr[SPR_DECR];
659     }
660 
661     return _cpu_ppc_load_decr(env, tb_env->decr_next);
662 }
663 
664 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
665 {
666     ppc_tb_t *tb_env = env->tb_env;
667 
668     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
669 }
670 
671 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
672 {
673     ppc_tb_t *tb_env = env->tb_env;
674     uint64_t diff;
675 
676     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
677 
678     return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
679 }
680 
681 /* When decrementer expires,
682  * all we need to do is generate or queue a CPU exception
683  */
684 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
685 {
686     /* Raise it */
687     LOG_TB("raise decrementer exception\n");
688     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
689 }
690 
691 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
692 {
693     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
694 }
695 
696 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
697 {
698     /* Raise it */
699     LOG_TB("raise decrementer exception\n");
700     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
701 }
702 
703 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
704 {
705     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
706 }
707 
708 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
709                                  QEMUTimer *timer,
710                                  void (*raise_excp)(void *),
711                                  void (*lower_excp)(PowerPCCPU *),
712                                  uint32_t decr, uint32_t value)
713 {
714     CPUPPCState *env = &cpu->env;
715     ppc_tb_t *tb_env = env->tb_env;
716     uint64_t now, next;
717 
718     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
719                 decr, value);
720 
721     if (kvm_enabled()) {
722         /* KVM handles decrementer exceptions, we don't need our own timer */
723         return;
724     }
725 
726     /*
727      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
728      * interrupt.
729      *
730      * If we get a really small DEC value, we can assume that by the time we
731      * handled it we should inject an interrupt already.
732      *
733      * On MSB level based DEC implementations the MSB always means the interrupt
734      * is pending, so raise it on those.
735      *
736      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
737      * an edge interrupt, so raise it here too.
738      */
739     if ((value < 3) ||
740         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
741         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
742           && !(decr & 0x80000000))) {
743         (*raise_excp)(cpu);
744         return;
745     }
746 
747     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
748     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
749         (*lower_excp)(cpu);
750     }
751 
752     /* Calculate the next timer event */
753     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
754     next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
755     *nextp = next;
756 
757     /* Adjust timer */
758     timer_mod(timer, next);
759 }
760 
761 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
762                                        uint32_t value)
763 {
764     ppc_tb_t *tb_env = cpu->env.tb_env;
765 
766     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
767                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
768                          value);
769 }
770 
771 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
772 {
773     PowerPCCPU *cpu = ppc_env_get_cpu(env);
774 
775     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
776 }
777 
778 static void cpu_ppc_decr_cb(void *opaque)
779 {
780     PowerPCCPU *cpu = opaque;
781 
782     cpu_ppc_decr_excp(cpu);
783 }
784 
785 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
786                                         uint32_t value)
787 {
788     ppc_tb_t *tb_env = cpu->env.tb_env;
789 
790     if (tb_env->hdecr_timer != NULL) {
791         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
792                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
793                              hdecr, value);
794     }
795 }
796 
797 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
798 {
799     PowerPCCPU *cpu = ppc_env_get_cpu(env);
800 
801     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
802 }
803 
804 static void cpu_ppc_hdecr_cb(void *opaque)
805 {
806     PowerPCCPU *cpu = opaque;
807 
808     cpu_ppc_hdecr_excp(cpu);
809 }
810 
811 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
812 {
813     ppc_tb_t *tb_env = cpu->env.tb_env;
814 
815     tb_env->purr_load = value;
816     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
817 }
818 
819 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
820 {
821     CPUPPCState *env = opaque;
822     PowerPCCPU *cpu = ppc_env_get_cpu(env);
823     ppc_tb_t *tb_env = env->tb_env;
824 
825     tb_env->tb_freq = freq;
826     tb_env->decr_freq = freq;
827     /* There is a bug in Linux 2.4 kernels:
828      * if a decrementer exception is pending when it enables msr_ee at startup,
829      * it's not ready to handle it...
830      */
831     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
832     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
833     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
834 }
835 
836 static void timebase_pre_save(void *opaque)
837 {
838     PPCTimebase *tb = opaque;
839     uint64_t ticks = cpu_get_real_ticks();
840     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
841 
842     if (!first_ppc_cpu->env.tb_env) {
843         error_report("No timebase object");
844         return;
845     }
846 
847     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
848     /*
849      * tb_offset is only expected to be changed by migration so
850      * there is no need to update it from KVM here
851      */
852     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
853 }
854 
855 static int timebase_post_load(void *opaque, int version_id)
856 {
857     PPCTimebase *tb_remote = opaque;
858     CPUState *cpu;
859     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
860     int64_t tb_off_adj, tb_off, ns_diff;
861     int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
862     unsigned long freq;
863 
864     if (!first_ppc_cpu->env.tb_env) {
865         error_report("No timebase object");
866         return -1;
867     }
868 
869     freq = first_ppc_cpu->env.tb_env->tb_freq;
870     /*
871      * Calculate timebase on the destination side of migration.
872      * The destination timebase must be not less than the source timebase.
873      * We try to adjust timebase by downtime if host clocks are not
874      * too much out of sync (1 second for now).
875      */
876     host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
877     ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
878     migration_duration_ns = MIN(NSEC_PER_SEC, ns_diff);
879     migration_duration_tb = muldiv64(migration_duration_ns, freq, NSEC_PER_SEC);
880     guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
881 
882     tb_off_adj = guest_tb - cpu_get_real_ticks();
883 
884     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
885     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
886                         (tb_off_adj - tb_off) / freq);
887 
888     /* Set new offset to all CPUs */
889     CPU_FOREACH(cpu) {
890         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
891         pcpu->env.tb_env->tb_offset = tb_off_adj;
892     }
893 
894     return 0;
895 }
896 
897 const VMStateDescription vmstate_ppc_timebase = {
898     .name = "timebase",
899     .version_id = 1,
900     .minimum_version_id = 1,
901     .minimum_version_id_old = 1,
902     .pre_save = timebase_pre_save,
903     .post_load = timebase_post_load,
904     .fields      = (VMStateField []) {
905         VMSTATE_UINT64(guest_timebase, PPCTimebase),
906         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
907         VMSTATE_END_OF_LIST()
908     },
909 };
910 
911 /* Set up (once) timebase frequency (in Hz) */
912 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
913 {
914     PowerPCCPU *cpu = ppc_env_get_cpu(env);
915     ppc_tb_t *tb_env;
916 
917     tb_env = g_malloc0(sizeof(ppc_tb_t));
918     env->tb_env = tb_env;
919     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
920     if (env->insns_flags & PPC_SEGMENT_64B) {
921         /* All Book3S 64bit CPUs implement level based DEC logic */
922         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
923     }
924     /* Create new timer */
925     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
926     if (0) {
927         /* XXX: find a suitable condition to enable the hypervisor decrementer
928          */
929         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
930                                                 cpu);
931     } else {
932         tb_env->hdecr_timer = NULL;
933     }
934     cpu_ppc_set_tb_clk(env, freq);
935 
936     return &cpu_ppc_set_tb_clk;
937 }
938 
939 /* Specific helpers for POWER & PowerPC 601 RTC */
940 #if 0
941 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
942 {
943     return cpu_ppc_tb_init(env, 7812500);
944 }
945 #endif
946 
947 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
948 {
949     _cpu_ppc_store_tbu(env, value);
950 }
951 
952 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
953 {
954     return _cpu_ppc_load_tbu(env);
955 }
956 
957 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
958 {
959     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
960 }
961 
962 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
963 {
964     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
965 }
966 
967 /*****************************************************************************/
968 /* PowerPC 40x timers */
969 
970 /* PIT, FIT & WDT */
971 typedef struct ppc40x_timer_t ppc40x_timer_t;
972 struct ppc40x_timer_t {
973     uint64_t pit_reload;  /* PIT auto-reload value        */
974     uint64_t fit_next;    /* Tick for next FIT interrupt  */
975     QEMUTimer *fit_timer;
976     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
977     QEMUTimer *wdt_timer;
978 
979     /* 405 have the PIT, 440 have a DECR.  */
980     unsigned int decr_excp;
981 };
982 
983 /* Fixed interval timer */
984 static void cpu_4xx_fit_cb (void *opaque)
985 {
986     PowerPCCPU *cpu;
987     CPUPPCState *env;
988     ppc_tb_t *tb_env;
989     ppc40x_timer_t *ppc40x_timer;
990     uint64_t now, next;
991 
992     env = opaque;
993     cpu = ppc_env_get_cpu(env);
994     tb_env = env->tb_env;
995     ppc40x_timer = tb_env->opaque;
996     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
997     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
998     case 0:
999         next = 1 << 9;
1000         break;
1001     case 1:
1002         next = 1 << 13;
1003         break;
1004     case 2:
1005         next = 1 << 17;
1006         break;
1007     case 3:
1008         next = 1 << 21;
1009         break;
1010     default:
1011         /* Cannot occur, but makes gcc happy */
1012         return;
1013     }
1014     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
1015     if (next == now)
1016         next++;
1017     timer_mod(ppc40x_timer->fit_timer, next);
1018     env->spr[SPR_40x_TSR] |= 1 << 26;
1019     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1020         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1021     }
1022     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1023            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1024            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1025 }
1026 
1027 /* Programmable interval timer */
1028 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1029 {
1030     ppc40x_timer_t *ppc40x_timer;
1031     uint64_t now, next;
1032 
1033     ppc40x_timer = tb_env->opaque;
1034     if (ppc40x_timer->pit_reload <= 1 ||
1035         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1036         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1037         /* Stop PIT */
1038         LOG_TB("%s: stop PIT\n", __func__);
1039         timer_del(tb_env->decr_timer);
1040     } else {
1041         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1042                     __func__, ppc40x_timer->pit_reload);
1043         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1044         next = now + muldiv64(ppc40x_timer->pit_reload,
1045                               get_ticks_per_sec(), tb_env->decr_freq);
1046         if (is_excp)
1047             next += tb_env->decr_next - now;
1048         if (next == now)
1049             next++;
1050         timer_mod(tb_env->decr_timer, next);
1051         tb_env->decr_next = next;
1052     }
1053 }
1054 
1055 static void cpu_4xx_pit_cb (void *opaque)
1056 {
1057     PowerPCCPU *cpu;
1058     CPUPPCState *env;
1059     ppc_tb_t *tb_env;
1060     ppc40x_timer_t *ppc40x_timer;
1061 
1062     env = opaque;
1063     cpu = ppc_env_get_cpu(env);
1064     tb_env = env->tb_env;
1065     ppc40x_timer = tb_env->opaque;
1066     env->spr[SPR_40x_TSR] |= 1 << 27;
1067     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1068         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1069     }
1070     start_stop_pit(env, tb_env, 1);
1071     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1072            "%016" PRIx64 "\n", __func__,
1073            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1074            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1075            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1076            ppc40x_timer->pit_reload);
1077 }
1078 
1079 /* Watchdog timer */
1080 static void cpu_4xx_wdt_cb (void *opaque)
1081 {
1082     PowerPCCPU *cpu;
1083     CPUPPCState *env;
1084     ppc_tb_t *tb_env;
1085     ppc40x_timer_t *ppc40x_timer;
1086     uint64_t now, next;
1087 
1088     env = opaque;
1089     cpu = ppc_env_get_cpu(env);
1090     tb_env = env->tb_env;
1091     ppc40x_timer = tb_env->opaque;
1092     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1093     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1094     case 0:
1095         next = 1 << 17;
1096         break;
1097     case 1:
1098         next = 1 << 21;
1099         break;
1100     case 2:
1101         next = 1 << 25;
1102         break;
1103     case 3:
1104         next = 1 << 29;
1105         break;
1106     default:
1107         /* Cannot occur, but makes gcc happy */
1108         return;
1109     }
1110     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1111     if (next == now)
1112         next++;
1113     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1114            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1115     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1116     case 0x0:
1117     case 0x1:
1118         timer_mod(ppc40x_timer->wdt_timer, next);
1119         ppc40x_timer->wdt_next = next;
1120         env->spr[SPR_40x_TSR] |= 1U << 31;
1121         break;
1122     case 0x2:
1123         timer_mod(ppc40x_timer->wdt_timer, next);
1124         ppc40x_timer->wdt_next = next;
1125         env->spr[SPR_40x_TSR] |= 1 << 30;
1126         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1127             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1128         }
1129         break;
1130     case 0x3:
1131         env->spr[SPR_40x_TSR] &= ~0x30000000;
1132         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1133         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1134         case 0x0:
1135             /* No reset */
1136             break;
1137         case 0x1: /* Core reset */
1138             ppc40x_core_reset(cpu);
1139             break;
1140         case 0x2: /* Chip reset */
1141             ppc40x_chip_reset(cpu);
1142             break;
1143         case 0x3: /* System reset */
1144             ppc40x_system_reset(cpu);
1145             break;
1146         }
1147     }
1148 }
1149 
1150 void store_40x_pit (CPUPPCState *env, target_ulong val)
1151 {
1152     ppc_tb_t *tb_env;
1153     ppc40x_timer_t *ppc40x_timer;
1154 
1155     tb_env = env->tb_env;
1156     ppc40x_timer = tb_env->opaque;
1157     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1158     ppc40x_timer->pit_reload = val;
1159     start_stop_pit(env, tb_env, 0);
1160 }
1161 
1162 target_ulong load_40x_pit (CPUPPCState *env)
1163 {
1164     return cpu_ppc_load_decr(env);
1165 }
1166 
1167 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1168 {
1169     CPUPPCState *env = opaque;
1170     ppc_tb_t *tb_env = env->tb_env;
1171 
1172     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1173                 freq);
1174     tb_env->tb_freq = freq;
1175     tb_env->decr_freq = freq;
1176     /* XXX: we should also update all timers */
1177 }
1178 
1179 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1180                                   unsigned int decr_excp)
1181 {
1182     ppc_tb_t *tb_env;
1183     ppc40x_timer_t *ppc40x_timer;
1184 
1185     tb_env = g_malloc0(sizeof(ppc_tb_t));
1186     env->tb_env = tb_env;
1187     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1188     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1189     tb_env->tb_freq = freq;
1190     tb_env->decr_freq = freq;
1191     tb_env->opaque = ppc40x_timer;
1192     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1193     if (ppc40x_timer != NULL) {
1194         /* We use decr timer for PIT */
1195         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1196         ppc40x_timer->fit_timer =
1197             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1198         ppc40x_timer->wdt_timer =
1199             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1200         ppc40x_timer->decr_excp = decr_excp;
1201     }
1202 
1203     return &ppc_40x_set_tb_clk;
1204 }
1205 
1206 /*****************************************************************************/
1207 /* Embedded PowerPC Device Control Registers */
1208 typedef struct ppc_dcrn_t ppc_dcrn_t;
1209 struct ppc_dcrn_t {
1210     dcr_read_cb dcr_read;
1211     dcr_write_cb dcr_write;
1212     void *opaque;
1213 };
1214 
1215 /* XXX: on 460, DCR addresses are 32 bits wide,
1216  *      using DCRIPR to get the 22 upper bits of the DCR address
1217  */
1218 #define DCRN_NB 1024
1219 struct ppc_dcr_t {
1220     ppc_dcrn_t dcrn[DCRN_NB];
1221     int (*read_error)(int dcrn);
1222     int (*write_error)(int dcrn);
1223 };
1224 
1225 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1226 {
1227     ppc_dcrn_t *dcr;
1228 
1229     if (dcrn < 0 || dcrn >= DCRN_NB)
1230         goto error;
1231     dcr = &dcr_env->dcrn[dcrn];
1232     if (dcr->dcr_read == NULL)
1233         goto error;
1234     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1235 
1236     return 0;
1237 
1238  error:
1239     if (dcr_env->read_error != NULL)
1240         return (*dcr_env->read_error)(dcrn);
1241 
1242     return -1;
1243 }
1244 
1245 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1246 {
1247     ppc_dcrn_t *dcr;
1248 
1249     if (dcrn < 0 || dcrn >= DCRN_NB)
1250         goto error;
1251     dcr = &dcr_env->dcrn[dcrn];
1252     if (dcr->dcr_write == NULL)
1253         goto error;
1254     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1255 
1256     return 0;
1257 
1258  error:
1259     if (dcr_env->write_error != NULL)
1260         return (*dcr_env->write_error)(dcrn);
1261 
1262     return -1;
1263 }
1264 
1265 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1266                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1267 {
1268     ppc_dcr_t *dcr_env;
1269     ppc_dcrn_t *dcr;
1270 
1271     dcr_env = env->dcr_env;
1272     if (dcr_env == NULL)
1273         return -1;
1274     if (dcrn < 0 || dcrn >= DCRN_NB)
1275         return -1;
1276     dcr = &dcr_env->dcrn[dcrn];
1277     if (dcr->opaque != NULL ||
1278         dcr->dcr_read != NULL ||
1279         dcr->dcr_write != NULL)
1280         return -1;
1281     dcr->opaque = opaque;
1282     dcr->dcr_read = dcr_read;
1283     dcr->dcr_write = dcr_write;
1284 
1285     return 0;
1286 }
1287 
1288 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1289                   int (*write_error)(int dcrn))
1290 {
1291     ppc_dcr_t *dcr_env;
1292 
1293     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1294     dcr_env->read_error = read_error;
1295     dcr_env->write_error = write_error;
1296     env->dcr_env = dcr_env;
1297 
1298     return 0;
1299 }
1300 
1301 /*****************************************************************************/
1302 /* Debug port */
1303 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1304 {
1305     addr &= 0xF;
1306     switch (addr) {
1307     case 0:
1308         printf("%c", val);
1309         break;
1310     case 1:
1311         printf("\n");
1312         fflush(stdout);
1313         break;
1314     case 2:
1315         printf("Set loglevel to %04" PRIx32 "\n", val);
1316         qemu_set_log(val | 0x100);
1317         break;
1318     }
1319 }
1320 
1321 /*****************************************************************************/
1322 /* NVRAM helpers */
1323 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1324 {
1325     return (*nvram->read_fn)(nvram->opaque, addr);
1326 }
1327 
1328 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1329 {
1330     (*nvram->write_fn)(nvram->opaque, addr, val);
1331 }
1332 
1333 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1334 {
1335     nvram_write(nvram, addr, value);
1336 }
1337 
1338 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1339 {
1340     return nvram_read(nvram, addr);
1341 }
1342 
1343 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1344 {
1345     nvram_write(nvram, addr, value >> 8);
1346     nvram_write(nvram, addr + 1, value & 0xFF);
1347 }
1348 
1349 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1350 {
1351     uint16_t tmp;
1352 
1353     tmp = nvram_read(nvram, addr) << 8;
1354     tmp |= nvram_read(nvram, addr + 1);
1355 
1356     return tmp;
1357 }
1358 
1359 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1360 {
1361     nvram_write(nvram, addr, value >> 24);
1362     nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1363     nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1364     nvram_write(nvram, addr + 3, value & 0xFF);
1365 }
1366 
1367 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1368 {
1369     uint32_t tmp;
1370 
1371     tmp = nvram_read(nvram, addr) << 24;
1372     tmp |= nvram_read(nvram, addr + 1) << 16;
1373     tmp |= nvram_read(nvram, addr + 2) << 8;
1374     tmp |= nvram_read(nvram, addr + 3);
1375 
1376     return tmp;
1377 }
1378 
1379 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1380                              uint32_t max)
1381 {
1382     int i;
1383 
1384     for (i = 0; i < max && str[i] != '\0'; i++) {
1385         nvram_write(nvram, addr + i, str[i]);
1386     }
1387     nvram_write(nvram, addr + i, str[i]);
1388     nvram_write(nvram, addr + max - 1, '\0');
1389 }
1390 
1391 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1392 {
1393     int i;
1394 
1395     memset(dst, 0, max);
1396     for (i = 0; i < max; i++) {
1397         dst[i] = NVRAM_get_byte(nvram, addr + i);
1398         if (dst[i] == '\0')
1399             break;
1400     }
1401 
1402     return i;
1403 }
1404 
1405 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1406 {
1407     uint16_t tmp;
1408     uint16_t pd, pd1, pd2;
1409 
1410     tmp = prev >> 8;
1411     pd = prev ^ value;
1412     pd1 = pd & 0x000F;
1413     pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1414     tmp ^= (pd1 << 3) | (pd1 << 8);
1415     tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1416 
1417     return tmp;
1418 }
1419 
1420 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1421 {
1422     uint32_t i;
1423     uint16_t crc = 0xFFFF;
1424     int odd;
1425 
1426     odd = count & 1;
1427     count &= ~1;
1428     for (i = 0; i != count; i++) {
1429         crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1430     }
1431     if (odd) {
1432         crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1433     }
1434 
1435     return crc;
1436 }
1437 
1438 #define CMDLINE_ADDR 0x017ff000
1439 
1440 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1441                           const char *arch,
1442                           uint32_t RAM_size, int boot_device,
1443                           uint32_t kernel_image, uint32_t kernel_size,
1444                           const char *cmdline,
1445                           uint32_t initrd_image, uint32_t initrd_size,
1446                           uint32_t NVRAM_image,
1447                           int width, int height, int depth)
1448 {
1449     uint16_t crc;
1450 
1451     /* Set parameters for Open Hack'Ware BIOS */
1452     NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1453     NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1454     NVRAM_set_word(nvram,   0x14, NVRAM_size);
1455     NVRAM_set_string(nvram, 0x20, arch, 16);
1456     NVRAM_set_lword(nvram,  0x30, RAM_size);
1457     NVRAM_set_byte(nvram,   0x34, boot_device);
1458     NVRAM_set_lword(nvram,  0x38, kernel_image);
1459     NVRAM_set_lword(nvram,  0x3C, kernel_size);
1460     if (cmdline) {
1461         /* XXX: put the cmdline in NVRAM too ? */
1462         pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1463         NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1464         NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1465     } else {
1466         NVRAM_set_lword(nvram,  0x40, 0);
1467         NVRAM_set_lword(nvram,  0x44, 0);
1468     }
1469     NVRAM_set_lword(nvram,  0x48, initrd_image);
1470     NVRAM_set_lword(nvram,  0x4C, initrd_size);
1471     NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1472 
1473     NVRAM_set_word(nvram,   0x54, width);
1474     NVRAM_set_word(nvram,   0x56, height);
1475     NVRAM_set_word(nvram,   0x58, depth);
1476     crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1477     NVRAM_set_word(nvram,   0xFC, crc);
1478 
1479     return 0;
1480 }
1481 
1482 /* CPU device-tree ID helpers */
1483 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1484 {
1485     return cpu->cpu_dt_id;
1486 }
1487 
1488 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1489 {
1490     CPUState *cs;
1491 
1492     CPU_FOREACH(cs) {
1493         PowerPCCPU *cpu = POWERPC_CPU(cs);
1494 
1495         if (cpu->cpu_dt_id == cpu_dt_id) {
1496             return cpu;
1497         }
1498     }
1499 
1500     return NULL;
1501 }
1502