xref: /openbmc/qemu/hw/ppc/ppc.c (revision 135b03cb)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "cpu.h"
27 #include "hw/irq.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40 
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43 
44 #ifdef PPC_DEBUG_IRQ
45 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 #  define LOG_IRQ(...) do { } while (0)
48 #endif
49 
50 
51 #ifdef PPC_DEBUG_TB
52 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 #  define LOG_TB(...) do { } while (0)
55 #endif
56 
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59 
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62     CPUState *cs = CPU(cpu);
63     CPUPPCState *env = &cpu->env;
64     unsigned int old_pending;
65     bool locked = false;
66 
67     /* We may already have the BQL if coming from the reset path */
68     if (!qemu_mutex_iothread_locked()) {
69         locked = true;
70         qemu_mutex_lock_iothread();
71     }
72 
73     old_pending = env->pending_interrupts;
74 
75     if (level) {
76         env->pending_interrupts |= 1 << n_IRQ;
77         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78     } else {
79         env->pending_interrupts &= ~(1 << n_IRQ);
80         if (env->pending_interrupts == 0) {
81             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82         }
83     }
84 
85     if (old_pending != env->pending_interrupts) {
86         kvmppc_set_interrupt(cpu, n_IRQ, level);
87     }
88 
89 
90     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91                 "req %08x\n", __func__, env, n_IRQ, level,
92                 env->pending_interrupts, CPU(cpu)->interrupt_request);
93 
94     if (locked) {
95         qemu_mutex_unlock_iothread();
96     }
97 }
98 
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
101 {
102     PowerPCCPU *cpu = opaque;
103     CPUPPCState *env = &cpu->env;
104     int cur_level;
105 
106     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107                 env, pin, level);
108     cur_level = (env->irq_input_state >> pin) & 1;
109     /* Don't generate spurious events */
110     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111         CPUState *cs = CPU(cpu);
112 
113         switch (pin) {
114         case PPC6xx_INPUT_TBEN:
115             /* Level sensitive - active high */
116             LOG_IRQ("%s: %s the time base\n",
117                         __func__, level ? "start" : "stop");
118             if (level) {
119                 cpu_ppc_tb_start(env);
120             } else {
121                 cpu_ppc_tb_stop(env);
122             }
123         case PPC6xx_INPUT_INT:
124             /* Level sensitive - active high */
125             LOG_IRQ("%s: set the external IRQ state to %d\n",
126                         __func__, level);
127             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128             break;
129         case PPC6xx_INPUT_SMI:
130             /* Level sensitive - active high */
131             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                         __func__, level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134             break;
135         case PPC6xx_INPUT_MCP:
136             /* Negative edge sensitive */
137             /* XXX: TODO: actual reaction may depends on HID0 status
138              *            603/604/740/750: check HID0[EMCP]
139              */
140             if (cur_level == 1 && level == 0) {
141                 LOG_IRQ("%s: raise machine check state\n",
142                             __func__);
143                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144             }
145             break;
146         case PPC6xx_INPUT_CKSTP_IN:
147             /* Level sensitive - active low */
148             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149             /* XXX: Note that the only way to restart the CPU is to reset it */
150             if (level) {
151                 LOG_IRQ("%s: stop the CPU\n", __func__);
152                 cs->halted = 1;
153             }
154             break;
155         case PPC6xx_INPUT_HRESET:
156             /* Level sensitive - active low */
157             if (level) {
158                 LOG_IRQ("%s: reset the CPU\n", __func__);
159                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160             }
161             break;
162         case PPC6xx_INPUT_SRESET:
163             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                         __func__, level);
165             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166             break;
167         default:
168             /* Unknown pin - do nothing */
169             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170             return;
171         }
172         if (level)
173             env->irq_input_state |= 1 << pin;
174         else
175             env->irq_input_state &= ~(1 << pin);
176     }
177 }
178 
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
180 {
181     CPUPPCState *env = &cpu->env;
182 
183     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184                                                   PPC6xx_INPUT_NB);
185 }
186 
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
190 {
191     PowerPCCPU *cpu = opaque;
192     CPUPPCState *env = &cpu->env;
193     int cur_level;
194 
195     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196                 env, pin, level);
197     cur_level = (env->irq_input_state >> pin) & 1;
198     /* Don't generate spurious events */
199     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200         CPUState *cs = CPU(cpu);
201 
202         switch (pin) {
203         case PPC970_INPUT_INT:
204             /* Level sensitive - active high */
205             LOG_IRQ("%s: set the external IRQ state to %d\n",
206                         __func__, level);
207             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208             break;
209         case PPC970_INPUT_THINT:
210             /* Level sensitive - active high */
211             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212                         level);
213             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214             break;
215         case PPC970_INPUT_MCP:
216             /* Negative edge sensitive */
217             /* XXX: TODO: actual reaction may depends on HID0 status
218              *            603/604/740/750: check HID0[EMCP]
219              */
220             if (cur_level == 1 && level == 0) {
221                 LOG_IRQ("%s: raise machine check state\n",
222                             __func__);
223                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224             }
225             break;
226         case PPC970_INPUT_CKSTP:
227             /* Level sensitive - active low */
228             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229             if (level) {
230                 LOG_IRQ("%s: stop the CPU\n", __func__);
231                 cs->halted = 1;
232             } else {
233                 LOG_IRQ("%s: restart the CPU\n", __func__);
234                 cs->halted = 0;
235                 qemu_cpu_kick(cs);
236             }
237             break;
238         case PPC970_INPUT_HRESET:
239             /* Level sensitive - active low */
240             if (level) {
241                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242             }
243             break;
244         case PPC970_INPUT_SRESET:
245             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246                         __func__, level);
247             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248             break;
249         case PPC970_INPUT_TBEN:
250             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251                         level);
252             /* XXX: TODO */
253             break;
254         default:
255             /* Unknown pin - do nothing */
256             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257             return;
258         }
259         if (level)
260             env->irq_input_state |= 1 << pin;
261         else
262             env->irq_input_state &= ~(1 << pin);
263     }
264 }
265 
266 void ppc970_irq_init(PowerPCCPU *cpu)
267 {
268     CPUPPCState *env = &cpu->env;
269 
270     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271                                                   PPC970_INPUT_NB);
272 }
273 
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
276 {
277     PowerPCCPU *cpu = opaque;
278     CPUPPCState *env = &cpu->env;
279 
280     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281                 env, pin, level);
282 
283     switch (pin) {
284     case POWER7_INPUT_INT:
285         /* Level sensitive - active high */
286         LOG_IRQ("%s: set the external IRQ state to %d\n",
287                 __func__, level);
288         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
289         break;
290     default:
291         /* Unknown pin - do nothing */
292         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293         return;
294     }
295     if (level) {
296         env->irq_input_state |= 1 << pin;
297     } else {
298         env->irq_input_state &= ~(1 << pin);
299     }
300 }
301 
302 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
303 {
304     CPUPPCState *env = &cpu->env;
305 
306     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
307                                                   POWER7_INPUT_NB);
308 }
309 
310 /* POWER9 internal IRQ controller */
311 static void power9_set_irq(void *opaque, int pin, int level)
312 {
313     PowerPCCPU *cpu = opaque;
314     CPUPPCState *env = &cpu->env;
315 
316     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
317                 env, pin, level);
318 
319     switch (pin) {
320     case POWER9_INPUT_INT:
321         /* Level sensitive - active high */
322         LOG_IRQ("%s: set the external IRQ state to %d\n",
323                 __func__, level);
324         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
325         break;
326     case POWER9_INPUT_HINT:
327         /* Level sensitive - active high */
328         LOG_IRQ("%s: set the external IRQ state to %d\n",
329                 __func__, level);
330         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
331         break;
332     default:
333         /* Unknown pin - do nothing */
334         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
335         return;
336     }
337     if (level) {
338         env->irq_input_state |= 1 << pin;
339     } else {
340         env->irq_input_state &= ~(1 << pin);
341     }
342 }
343 
344 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
345 {
346     CPUPPCState *env = &cpu->env;
347 
348     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
349                                                   POWER9_INPUT_NB);
350 }
351 #endif /* defined(TARGET_PPC64) */
352 
353 void ppc40x_core_reset(PowerPCCPU *cpu)
354 {
355     CPUPPCState *env = &cpu->env;
356     target_ulong dbsr;
357 
358     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
359     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
360     dbsr = env->spr[SPR_40x_DBSR];
361     dbsr &= ~0x00000300;
362     dbsr |= 0x00000100;
363     env->spr[SPR_40x_DBSR] = dbsr;
364 }
365 
366 void ppc40x_chip_reset(PowerPCCPU *cpu)
367 {
368     CPUPPCState *env = &cpu->env;
369     target_ulong dbsr;
370 
371     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
372     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
373     /* XXX: TODO reset all internal peripherals */
374     dbsr = env->spr[SPR_40x_DBSR];
375     dbsr &= ~0x00000300;
376     dbsr |= 0x00000200;
377     env->spr[SPR_40x_DBSR] = dbsr;
378 }
379 
380 void ppc40x_system_reset(PowerPCCPU *cpu)
381 {
382     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
383     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
384 }
385 
386 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
387 {
388     PowerPCCPU *cpu = env_archcpu(env);
389 
390     switch ((val >> 28) & 0x3) {
391     case 0x0:
392         /* No action */
393         break;
394     case 0x1:
395         /* Core reset */
396         ppc40x_core_reset(cpu);
397         break;
398     case 0x2:
399         /* Chip reset */
400         ppc40x_chip_reset(cpu);
401         break;
402     case 0x3:
403         /* System reset */
404         ppc40x_system_reset(cpu);
405         break;
406     }
407 }
408 
409 /* PowerPC 40x internal IRQ controller */
410 static void ppc40x_set_irq(void *opaque, int pin, int level)
411 {
412     PowerPCCPU *cpu = opaque;
413     CPUPPCState *env = &cpu->env;
414     int cur_level;
415 
416     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
417                 env, pin, level);
418     cur_level = (env->irq_input_state >> pin) & 1;
419     /* Don't generate spurious events */
420     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
421         CPUState *cs = CPU(cpu);
422 
423         switch (pin) {
424         case PPC40x_INPUT_RESET_SYS:
425             if (level) {
426                 LOG_IRQ("%s: reset the PowerPC system\n",
427                             __func__);
428                 ppc40x_system_reset(cpu);
429             }
430             break;
431         case PPC40x_INPUT_RESET_CHIP:
432             if (level) {
433                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
434                 ppc40x_chip_reset(cpu);
435             }
436             break;
437         case PPC40x_INPUT_RESET_CORE:
438             /* XXX: TODO: update DBSR[MRR] */
439             if (level) {
440                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
441                 ppc40x_core_reset(cpu);
442             }
443             break;
444         case PPC40x_INPUT_CINT:
445             /* Level sensitive - active high */
446             LOG_IRQ("%s: set the critical IRQ state to %d\n",
447                         __func__, level);
448             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
449             break;
450         case PPC40x_INPUT_INT:
451             /* Level sensitive - active high */
452             LOG_IRQ("%s: set the external IRQ state to %d\n",
453                         __func__, level);
454             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
455             break;
456         case PPC40x_INPUT_HALT:
457             /* Level sensitive - active low */
458             if (level) {
459                 LOG_IRQ("%s: stop the CPU\n", __func__);
460                 cs->halted = 1;
461             } else {
462                 LOG_IRQ("%s: restart the CPU\n", __func__);
463                 cs->halted = 0;
464                 qemu_cpu_kick(cs);
465             }
466             break;
467         case PPC40x_INPUT_DEBUG:
468             /* Level sensitive - active high */
469             LOG_IRQ("%s: set the debug pin state to %d\n",
470                         __func__, level);
471             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
472             break;
473         default:
474             /* Unknown pin - do nothing */
475             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
476             return;
477         }
478         if (level)
479             env->irq_input_state |= 1 << pin;
480         else
481             env->irq_input_state &= ~(1 << pin);
482     }
483 }
484 
485 void ppc40x_irq_init(PowerPCCPU *cpu)
486 {
487     CPUPPCState *env = &cpu->env;
488 
489     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
490                                                   cpu, PPC40x_INPUT_NB);
491 }
492 
493 /* PowerPC E500 internal IRQ controller */
494 static void ppce500_set_irq(void *opaque, int pin, int level)
495 {
496     PowerPCCPU *cpu = opaque;
497     CPUPPCState *env = &cpu->env;
498     int cur_level;
499 
500     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
501                 env, pin, level);
502     cur_level = (env->irq_input_state >> pin) & 1;
503     /* Don't generate spurious events */
504     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
505         switch (pin) {
506         case PPCE500_INPUT_MCK:
507             if (level) {
508                 LOG_IRQ("%s: reset the PowerPC system\n",
509                             __func__);
510                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
511             }
512             break;
513         case PPCE500_INPUT_RESET_CORE:
514             if (level) {
515                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
516                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
517             }
518             break;
519         case PPCE500_INPUT_CINT:
520             /* Level sensitive - active high */
521             LOG_IRQ("%s: set the critical IRQ state to %d\n",
522                         __func__, level);
523             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
524             break;
525         case PPCE500_INPUT_INT:
526             /* Level sensitive - active high */
527             LOG_IRQ("%s: set the core IRQ state to %d\n",
528                         __func__, level);
529             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
530             break;
531         case PPCE500_INPUT_DEBUG:
532             /* Level sensitive - active high */
533             LOG_IRQ("%s: set the debug pin state to %d\n",
534                         __func__, level);
535             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
536             break;
537         default:
538             /* Unknown pin - do nothing */
539             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
540             return;
541         }
542         if (level)
543             env->irq_input_state |= 1 << pin;
544         else
545             env->irq_input_state &= ~(1 << pin);
546     }
547 }
548 
549 void ppce500_irq_init(PowerPCCPU *cpu)
550 {
551     CPUPPCState *env = &cpu->env;
552 
553     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
554                                                   cpu, PPCE500_INPUT_NB);
555 }
556 
557 /* Enable or Disable the E500 EPR capability */
558 void ppce500_set_mpic_proxy(bool enabled)
559 {
560     CPUState *cs;
561 
562     CPU_FOREACH(cs) {
563         PowerPCCPU *cpu = POWERPC_CPU(cs);
564 
565         cpu->env.mpic_proxy = enabled;
566         if (kvm_enabled()) {
567             kvmppc_set_mpic_proxy(cpu, enabled);
568         }
569     }
570 }
571 
572 /*****************************************************************************/
573 /* PowerPC time base and decrementer emulation */
574 
575 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
576 {
577     /* TB time in tb periods */
578     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
579 }
580 
581 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
582 {
583     ppc_tb_t *tb_env = env->tb_env;
584     uint64_t tb;
585 
586     if (kvm_enabled()) {
587         return env->spr[SPR_TBL];
588     }
589 
590     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
591     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592 
593     return tb;
594 }
595 
596 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
597 {
598     ppc_tb_t *tb_env = env->tb_env;
599     uint64_t tb;
600 
601     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
602     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
603 
604     return tb >> 32;
605 }
606 
607 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
608 {
609     if (kvm_enabled()) {
610         return env->spr[SPR_TBU];
611     }
612 
613     return _cpu_ppc_load_tbu(env);
614 }
615 
616 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
617                                     int64_t *tb_offsetp, uint64_t value)
618 {
619     *tb_offsetp = value -
620         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
621 
622     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
623                 __func__, value, *tb_offsetp);
624 }
625 
626 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
627 {
628     ppc_tb_t *tb_env = env->tb_env;
629     uint64_t tb;
630 
631     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
632     tb &= 0xFFFFFFFF00000000ULL;
633     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634                      &tb_env->tb_offset, tb | (uint64_t)value);
635 }
636 
637 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
638 {
639     ppc_tb_t *tb_env = env->tb_env;
640     uint64_t tb;
641 
642     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
643     tb &= 0x00000000FFFFFFFFULL;
644     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
645                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
646 }
647 
648 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
649 {
650     _cpu_ppc_store_tbu(env, value);
651 }
652 
653 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
654 {
655     ppc_tb_t *tb_env = env->tb_env;
656     uint64_t tb;
657 
658     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
659     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660 
661     return tb;
662 }
663 
664 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
665 {
666     ppc_tb_t *tb_env = env->tb_env;
667     uint64_t tb;
668 
669     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
670     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
671 
672     return tb >> 32;
673 }
674 
675 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
676 {
677     ppc_tb_t *tb_env = env->tb_env;
678     uint64_t tb;
679 
680     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
681     tb &= 0xFFFFFFFF00000000ULL;
682     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
683                      &tb_env->atb_offset, tb | (uint64_t)value);
684 }
685 
686 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
687 {
688     ppc_tb_t *tb_env = env->tb_env;
689     uint64_t tb;
690 
691     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
692     tb &= 0x00000000FFFFFFFFULL;
693     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
694                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
695 }
696 
697 static void cpu_ppc_tb_stop (CPUPPCState *env)
698 {
699     ppc_tb_t *tb_env = env->tb_env;
700     uint64_t tb, atb, vmclk;
701 
702     /* If the time base is already frozen, do nothing */
703     if (tb_env->tb_freq != 0) {
704         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
705         /* Get the time base */
706         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
707         /* Get the alternate time base */
708         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
709         /* Store the time base value (ie compute the current offset) */
710         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711         /* Store the alternate time base value (compute the current offset) */
712         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713         /* Set the time base frequency to zero */
714         tb_env->tb_freq = 0;
715         /* Now, the time bases are frozen to tb_offset / atb_offset value */
716     }
717 }
718 
719 static void cpu_ppc_tb_start (CPUPPCState *env)
720 {
721     ppc_tb_t *tb_env = env->tb_env;
722     uint64_t tb, atb, vmclk;
723 
724     /* If the time base is not frozen, do nothing */
725     if (tb_env->tb_freq == 0) {
726         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
727         /* Get the time base from tb_offset */
728         tb = tb_env->tb_offset;
729         /* Get the alternate time base from atb_offset */
730         atb = tb_env->atb_offset;
731         /* Restore the tb frequency from the decrementer frequency */
732         tb_env->tb_freq = tb_env->decr_freq;
733         /* Store the time base value */
734         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
735         /* Store the alternate time base value */
736         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
737     }
738 }
739 
740 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
741 {
742     ppc_tb_t *tb_env = env->tb_env;
743     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
744     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
745 }
746 
747 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
748 {
749     ppc_tb_t *tb_env = env->tb_env;
750     int64_t decr, diff;
751 
752     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
753     if (diff >= 0) {
754         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
755     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
756         decr = 0;
757     }  else {
758         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
759     }
760     LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
761 
762     return decr;
763 }
764 
765 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
766 {
767     ppc_tb_t *tb_env = env->tb_env;
768     uint64_t decr;
769 
770     if (kvm_enabled()) {
771         return env->spr[SPR_DECR];
772     }
773 
774     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
775 
776     /*
777      * If large decrementer is enabled then the decrementer is signed extened
778      * to 64 bits, otherwise it is a 32 bit value.
779      */
780     if (env->spr[SPR_LPCR] & LPCR_LD) {
781         return decr;
782     }
783     return (uint32_t) decr;
784 }
785 
786 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
787 {
788     PowerPCCPU *cpu = env_archcpu(env);
789     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
790     ppc_tb_t *tb_env = env->tb_env;
791     uint64_t hdecr;
792 
793     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
794 
795     /*
796      * If we have a large decrementer (POWER9 or later) then hdecr is sign
797      * extended to 64 bits, otherwise it is 32 bits.
798      */
799     if (pcc->lrg_decr_bits > 32) {
800         return hdecr;
801     }
802     return (uint32_t) hdecr;
803 }
804 
805 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
806 {
807     ppc_tb_t *tb_env = env->tb_env;
808     uint64_t diff;
809 
810     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
811 
812     return tb_env->purr_load +
813         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
814 }
815 
816 /* When decrementer expires,
817  * all we need to do is generate or queue a CPU exception
818  */
819 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
820 {
821     /* Raise it */
822     LOG_TB("raise decrementer exception\n");
823     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
824 }
825 
826 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
827 {
828     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
829 }
830 
831 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
832 {
833     CPUPPCState *env = &cpu->env;
834 
835     /* Raise it */
836     LOG_TB("raise hv decrementer exception\n");
837 
838     /* The architecture specifies that we don't deliver HDEC
839      * interrupts in a PM state. Not only they don't cause a
840      * wakeup but they also get effectively discarded.
841      */
842     if (!env->resume_as_sreset) {
843         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
844     }
845 }
846 
847 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
848 {
849     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
850 }
851 
852 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
853                                  QEMUTimer *timer,
854                                  void (*raise_excp)(void *),
855                                  void (*lower_excp)(PowerPCCPU *),
856                                  target_ulong decr, target_ulong value,
857                                  int nr_bits)
858 {
859     CPUPPCState *env = &cpu->env;
860     ppc_tb_t *tb_env = env->tb_env;
861     uint64_t now, next;
862     bool negative;
863 
864     /* Truncate value to decr_width and sign extend for simplicity */
865     value &= ((1ULL << nr_bits) - 1);
866     negative = !!(value & (1ULL << (nr_bits - 1)));
867     if (negative) {
868         value |= (0xFFFFFFFFULL << nr_bits);
869     }
870 
871     LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
872                 decr, value);
873 
874     if (kvm_enabled()) {
875         /* KVM handles decrementer exceptions, we don't need our own timer */
876         return;
877     }
878 
879     /*
880      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
881      * interrupt.
882      *
883      * If we get a really small DEC value, we can assume that by the time we
884      * handled it we should inject an interrupt already.
885      *
886      * On MSB level based DEC implementations the MSB always means the interrupt
887      * is pending, so raise it on those.
888      *
889      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
890      * an edge interrupt, so raise it here too.
891      */
892     if ((value < 3) ||
893         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
894         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
895           && !(decr & (1ULL << (nr_bits - 1))))) {
896         (*raise_excp)(cpu);
897         return;
898     }
899 
900     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
901     if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
902         (*lower_excp)(cpu);
903     }
904 
905     /* Calculate the next timer event */
906     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
907     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
908     *nextp = next;
909 
910     /* Adjust timer */
911     timer_mod(timer, next);
912 }
913 
914 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
915                                        target_ulong value, int nr_bits)
916 {
917     ppc_tb_t *tb_env = cpu->env.tb_env;
918 
919     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
920                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
921                          value, nr_bits);
922 }
923 
924 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
925 {
926     PowerPCCPU *cpu = env_archcpu(env);
927     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
928     int nr_bits = 32;
929 
930     if (env->spr[SPR_LPCR] & LPCR_LD) {
931         nr_bits = pcc->lrg_decr_bits;
932     }
933 
934     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
935 }
936 
937 static void cpu_ppc_decr_cb(void *opaque)
938 {
939     PowerPCCPU *cpu = opaque;
940 
941     cpu_ppc_decr_excp(cpu);
942 }
943 
944 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
945                                         target_ulong value, int nr_bits)
946 {
947     ppc_tb_t *tb_env = cpu->env.tb_env;
948 
949     if (tb_env->hdecr_timer != NULL) {
950         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
951                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
952                              hdecr, value, nr_bits);
953     }
954 }
955 
956 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
957 {
958     PowerPCCPU *cpu = env_archcpu(env);
959     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
960 
961     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
962                          pcc->lrg_decr_bits);
963 }
964 
965 static void cpu_ppc_hdecr_cb(void *opaque)
966 {
967     PowerPCCPU *cpu = opaque;
968 
969     cpu_ppc_hdecr_excp(cpu);
970 }
971 
972 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
973 {
974     ppc_tb_t *tb_env = cpu->env.tb_env;
975 
976     tb_env->purr_load = value;
977     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
978 }
979 
980 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
981 {
982     CPUPPCState *env = opaque;
983     PowerPCCPU *cpu = env_archcpu(env);
984     ppc_tb_t *tb_env = env->tb_env;
985 
986     tb_env->tb_freq = freq;
987     tb_env->decr_freq = freq;
988     /* There is a bug in Linux 2.4 kernels:
989      * if a decrementer exception is pending when it enables msr_ee at startup,
990      * it's not ready to handle it...
991      */
992     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
993     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
994     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
995 }
996 
997 static void timebase_save(PPCTimebase *tb)
998 {
999     uint64_t ticks = cpu_get_host_ticks();
1000     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1001 
1002     if (!first_ppc_cpu->env.tb_env) {
1003         error_report("No timebase object");
1004         return;
1005     }
1006 
1007     /* not used anymore, we keep it for compatibility */
1008     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1009     /*
1010      * tb_offset is only expected to be changed by QEMU so
1011      * there is no need to update it from KVM here
1012      */
1013     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1014 }
1015 
1016 static void timebase_load(PPCTimebase *tb)
1017 {
1018     CPUState *cpu;
1019     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1020     int64_t tb_off_adj, tb_off;
1021     unsigned long freq;
1022 
1023     if (!first_ppc_cpu->env.tb_env) {
1024         error_report("No timebase object");
1025         return;
1026     }
1027 
1028     freq = first_ppc_cpu->env.tb_env->tb_freq;
1029 
1030     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1031 
1032     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1033     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1034                         (tb_off_adj - tb_off) / freq);
1035 
1036     /* Set new offset to all CPUs */
1037     CPU_FOREACH(cpu) {
1038         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1039         pcpu->env.tb_env->tb_offset = tb_off_adj;
1040         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1041     }
1042 }
1043 
1044 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1045                                    RunState state)
1046 {
1047     PPCTimebase *tb = opaque;
1048 
1049     if (running) {
1050         timebase_load(tb);
1051     } else {
1052         timebase_save(tb);
1053     }
1054 }
1055 
1056 /*
1057  * When migrating, read the clock just before migration,
1058  * so that the guest clock counts during the events
1059  * between:
1060  *
1061  *  * vm_stop()
1062  *  *
1063  *  * pre_save()
1064  *
1065  *  This reduces clock difference on migration from 5s
1066  *  to 0.1s (when max_downtime == 5s), because sending the
1067  *  final pages of memory (which happens between vm_stop()
1068  *  and pre_save()) takes max_downtime.
1069  */
1070 static int timebase_pre_save(void *opaque)
1071 {
1072     PPCTimebase *tb = opaque;
1073 
1074     timebase_save(tb);
1075 
1076     return 0;
1077 }
1078 
1079 const VMStateDescription vmstate_ppc_timebase = {
1080     .name = "timebase",
1081     .version_id = 1,
1082     .minimum_version_id = 1,
1083     .minimum_version_id_old = 1,
1084     .pre_save = timebase_pre_save,
1085     .fields      = (VMStateField []) {
1086         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1087         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1088         VMSTATE_END_OF_LIST()
1089     },
1090 };
1091 
1092 /* Set up (once) timebase frequency (in Hz) */
1093 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1094 {
1095     PowerPCCPU *cpu = env_archcpu(env);
1096     ppc_tb_t *tb_env;
1097 
1098     tb_env = g_malloc0(sizeof(ppc_tb_t));
1099     env->tb_env = tb_env;
1100     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1101     if (is_book3s_arch2x(env)) {
1102         /* All Book3S 64bit CPUs implement level based DEC logic */
1103         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1104     }
1105     /* Create new timer */
1106     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1107     if (env->has_hv_mode) {
1108         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1109                                                 cpu);
1110     } else {
1111         tb_env->hdecr_timer = NULL;
1112     }
1113     cpu_ppc_set_tb_clk(env, freq);
1114 
1115     return &cpu_ppc_set_tb_clk;
1116 }
1117 
1118 /* Specific helpers for POWER & PowerPC 601 RTC */
1119 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1120 {
1121     _cpu_ppc_store_tbu(env, value);
1122 }
1123 
1124 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1125 {
1126     return _cpu_ppc_load_tbu(env);
1127 }
1128 
1129 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1130 {
1131     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1132 }
1133 
1134 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1135 {
1136     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1137 }
1138 
1139 /*****************************************************************************/
1140 /* PowerPC 40x timers */
1141 
1142 /* PIT, FIT & WDT */
1143 typedef struct ppc40x_timer_t ppc40x_timer_t;
1144 struct ppc40x_timer_t {
1145     uint64_t pit_reload;  /* PIT auto-reload value        */
1146     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1147     QEMUTimer *fit_timer;
1148     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1149     QEMUTimer *wdt_timer;
1150 
1151     /* 405 have the PIT, 440 have a DECR.  */
1152     unsigned int decr_excp;
1153 };
1154 
1155 /* Fixed interval timer */
1156 static void cpu_4xx_fit_cb (void *opaque)
1157 {
1158     PowerPCCPU *cpu;
1159     CPUPPCState *env;
1160     ppc_tb_t *tb_env;
1161     ppc40x_timer_t *ppc40x_timer;
1162     uint64_t now, next;
1163 
1164     env = opaque;
1165     cpu = env_archcpu(env);
1166     tb_env = env->tb_env;
1167     ppc40x_timer = tb_env->opaque;
1168     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1169     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1170     case 0:
1171         next = 1 << 9;
1172         break;
1173     case 1:
1174         next = 1 << 13;
1175         break;
1176     case 2:
1177         next = 1 << 17;
1178         break;
1179     case 3:
1180         next = 1 << 21;
1181         break;
1182     default:
1183         /* Cannot occur, but makes gcc happy */
1184         return;
1185     }
1186     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1187     if (next == now)
1188         next++;
1189     timer_mod(ppc40x_timer->fit_timer, next);
1190     env->spr[SPR_40x_TSR] |= 1 << 26;
1191     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1192         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1193     }
1194     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1195            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1196            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1197 }
1198 
1199 /* Programmable interval timer */
1200 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1201 {
1202     ppc40x_timer_t *ppc40x_timer;
1203     uint64_t now, next;
1204 
1205     ppc40x_timer = tb_env->opaque;
1206     if (ppc40x_timer->pit_reload <= 1 ||
1207         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1208         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1209         /* Stop PIT */
1210         LOG_TB("%s: stop PIT\n", __func__);
1211         timer_del(tb_env->decr_timer);
1212     } else {
1213         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1214                     __func__, ppc40x_timer->pit_reload);
1215         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1216         next = now + muldiv64(ppc40x_timer->pit_reload,
1217                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1218         if (is_excp)
1219             next += tb_env->decr_next - now;
1220         if (next == now)
1221             next++;
1222         timer_mod(tb_env->decr_timer, next);
1223         tb_env->decr_next = next;
1224     }
1225 }
1226 
1227 static void cpu_4xx_pit_cb (void *opaque)
1228 {
1229     PowerPCCPU *cpu;
1230     CPUPPCState *env;
1231     ppc_tb_t *tb_env;
1232     ppc40x_timer_t *ppc40x_timer;
1233 
1234     env = opaque;
1235     cpu = env_archcpu(env);
1236     tb_env = env->tb_env;
1237     ppc40x_timer = tb_env->opaque;
1238     env->spr[SPR_40x_TSR] |= 1 << 27;
1239     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1240         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1241     }
1242     start_stop_pit(env, tb_env, 1);
1243     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1244            "%016" PRIx64 "\n", __func__,
1245            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1246            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1247            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1248            ppc40x_timer->pit_reload);
1249 }
1250 
1251 /* Watchdog timer */
1252 static void cpu_4xx_wdt_cb (void *opaque)
1253 {
1254     PowerPCCPU *cpu;
1255     CPUPPCState *env;
1256     ppc_tb_t *tb_env;
1257     ppc40x_timer_t *ppc40x_timer;
1258     uint64_t now, next;
1259 
1260     env = opaque;
1261     cpu = env_archcpu(env);
1262     tb_env = env->tb_env;
1263     ppc40x_timer = tb_env->opaque;
1264     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1265     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1266     case 0:
1267         next = 1 << 17;
1268         break;
1269     case 1:
1270         next = 1 << 21;
1271         break;
1272     case 2:
1273         next = 1 << 25;
1274         break;
1275     case 3:
1276         next = 1 << 29;
1277         break;
1278     default:
1279         /* Cannot occur, but makes gcc happy */
1280         return;
1281     }
1282     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1283     if (next == now)
1284         next++;
1285     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1286            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1287     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1288     case 0x0:
1289     case 0x1:
1290         timer_mod(ppc40x_timer->wdt_timer, next);
1291         ppc40x_timer->wdt_next = next;
1292         env->spr[SPR_40x_TSR] |= 1U << 31;
1293         break;
1294     case 0x2:
1295         timer_mod(ppc40x_timer->wdt_timer, next);
1296         ppc40x_timer->wdt_next = next;
1297         env->spr[SPR_40x_TSR] |= 1 << 30;
1298         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1299             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1300         }
1301         break;
1302     case 0x3:
1303         env->spr[SPR_40x_TSR] &= ~0x30000000;
1304         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1305         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1306         case 0x0:
1307             /* No reset */
1308             break;
1309         case 0x1: /* Core reset */
1310             ppc40x_core_reset(cpu);
1311             break;
1312         case 0x2: /* Chip reset */
1313             ppc40x_chip_reset(cpu);
1314             break;
1315         case 0x3: /* System reset */
1316             ppc40x_system_reset(cpu);
1317             break;
1318         }
1319     }
1320 }
1321 
1322 void store_40x_pit (CPUPPCState *env, target_ulong val)
1323 {
1324     ppc_tb_t *tb_env;
1325     ppc40x_timer_t *ppc40x_timer;
1326 
1327     tb_env = env->tb_env;
1328     ppc40x_timer = tb_env->opaque;
1329     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1330     ppc40x_timer->pit_reload = val;
1331     start_stop_pit(env, tb_env, 0);
1332 }
1333 
1334 target_ulong load_40x_pit (CPUPPCState *env)
1335 {
1336     return cpu_ppc_load_decr(env);
1337 }
1338 
1339 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1340 {
1341     CPUPPCState *env = opaque;
1342     ppc_tb_t *tb_env = env->tb_env;
1343 
1344     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1345                 freq);
1346     tb_env->tb_freq = freq;
1347     tb_env->decr_freq = freq;
1348     /* XXX: we should also update all timers */
1349 }
1350 
1351 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1352                                   unsigned int decr_excp)
1353 {
1354     ppc_tb_t *tb_env;
1355     ppc40x_timer_t *ppc40x_timer;
1356 
1357     tb_env = g_malloc0(sizeof(ppc_tb_t));
1358     env->tb_env = tb_env;
1359     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1360     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1361     tb_env->tb_freq = freq;
1362     tb_env->decr_freq = freq;
1363     tb_env->opaque = ppc40x_timer;
1364     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1365     if (ppc40x_timer != NULL) {
1366         /* We use decr timer for PIT */
1367         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1368         ppc40x_timer->fit_timer =
1369             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1370         ppc40x_timer->wdt_timer =
1371             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1372         ppc40x_timer->decr_excp = decr_excp;
1373     }
1374 
1375     return &ppc_40x_set_tb_clk;
1376 }
1377 
1378 /*****************************************************************************/
1379 /* Embedded PowerPC Device Control Registers */
1380 typedef struct ppc_dcrn_t ppc_dcrn_t;
1381 struct ppc_dcrn_t {
1382     dcr_read_cb dcr_read;
1383     dcr_write_cb dcr_write;
1384     void *opaque;
1385 };
1386 
1387 /* XXX: on 460, DCR addresses are 32 bits wide,
1388  *      using DCRIPR to get the 22 upper bits of the DCR address
1389  */
1390 #define DCRN_NB 1024
1391 struct ppc_dcr_t {
1392     ppc_dcrn_t dcrn[DCRN_NB];
1393     int (*read_error)(int dcrn);
1394     int (*write_error)(int dcrn);
1395 };
1396 
1397 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1398 {
1399     ppc_dcrn_t *dcr;
1400 
1401     if (dcrn < 0 || dcrn >= DCRN_NB)
1402         goto error;
1403     dcr = &dcr_env->dcrn[dcrn];
1404     if (dcr->dcr_read == NULL)
1405         goto error;
1406     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1407 
1408     return 0;
1409 
1410  error:
1411     if (dcr_env->read_error != NULL)
1412         return (*dcr_env->read_error)(dcrn);
1413 
1414     return -1;
1415 }
1416 
1417 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1418 {
1419     ppc_dcrn_t *dcr;
1420 
1421     if (dcrn < 0 || dcrn >= DCRN_NB)
1422         goto error;
1423     dcr = &dcr_env->dcrn[dcrn];
1424     if (dcr->dcr_write == NULL)
1425         goto error;
1426     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1427 
1428     return 0;
1429 
1430  error:
1431     if (dcr_env->write_error != NULL)
1432         return (*dcr_env->write_error)(dcrn);
1433 
1434     return -1;
1435 }
1436 
1437 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1438                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1439 {
1440     ppc_dcr_t *dcr_env;
1441     ppc_dcrn_t *dcr;
1442 
1443     dcr_env = env->dcr_env;
1444     if (dcr_env == NULL)
1445         return -1;
1446     if (dcrn < 0 || dcrn >= DCRN_NB)
1447         return -1;
1448     dcr = &dcr_env->dcrn[dcrn];
1449     if (dcr->opaque != NULL ||
1450         dcr->dcr_read != NULL ||
1451         dcr->dcr_write != NULL)
1452         return -1;
1453     dcr->opaque = opaque;
1454     dcr->dcr_read = dcr_read;
1455     dcr->dcr_write = dcr_write;
1456 
1457     return 0;
1458 }
1459 
1460 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1461                   int (*write_error)(int dcrn))
1462 {
1463     ppc_dcr_t *dcr_env;
1464 
1465     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1466     dcr_env->read_error = read_error;
1467     dcr_env->write_error = write_error;
1468     env->dcr_env = dcr_env;
1469 
1470     return 0;
1471 }
1472 
1473 /*****************************************************************************/
1474 /* Debug port */
1475 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1476 {
1477     addr &= 0xF;
1478     switch (addr) {
1479     case 0:
1480         printf("%c", val);
1481         break;
1482     case 1:
1483         printf("\n");
1484         fflush(stdout);
1485         break;
1486     case 2:
1487         printf("Set loglevel to %04" PRIx32 "\n", val);
1488         qemu_set_log(val | 0x100);
1489         break;
1490     }
1491 }
1492 
1493 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1494 {
1495     CPUState *cs;
1496 
1497     CPU_FOREACH(cs) {
1498         PowerPCCPU *cpu = POWERPC_CPU(cs);
1499         CPUPPCState *env = &cpu->env;
1500 
1501         if (env->spr_cb[SPR_PIR].default_value == pir) {
1502             return cpu;
1503         }
1504     }
1505 
1506     return NULL;
1507 }
1508