xref: /openbmc/qemu/hw/ppc/ppc.c (revision 10df8ff1)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "hw/loader.h"
37 #include "sysemu/kvm.h"
38 #include "kvm_ppc.h"
39 #include "trace.h"
40 
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
43 
44 #ifdef PPC_DEBUG_IRQ
45 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 #  define LOG_IRQ(...) do { } while (0)
48 #endif
49 
50 
51 #ifdef PPC_DEBUG_TB
52 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 #  define LOG_TB(...) do { } while (0)
55 #endif
56 
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
59 
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 {
62     CPUState *cs = CPU(cpu);
63     CPUPPCState *env = &cpu->env;
64     unsigned int old_pending;
65     bool locked = false;
66 
67     /* We may already have the BQL if coming from the reset path */
68     if (!qemu_mutex_iothread_locked()) {
69         locked = true;
70         qemu_mutex_lock_iothread();
71     }
72 
73     old_pending = env->pending_interrupts;
74 
75     if (level) {
76         env->pending_interrupts |= 1 << n_IRQ;
77         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
78     } else {
79         env->pending_interrupts &= ~(1 << n_IRQ);
80         if (env->pending_interrupts == 0) {
81             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82         }
83     }
84 
85     if (old_pending != env->pending_interrupts) {
86 #ifdef CONFIG_KVM
87         kvmppc_set_interrupt(cpu, n_IRQ, level);
88 #endif
89     }
90 
91 
92     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
93                 "req %08x\n", __func__, env, n_IRQ, level,
94                 env->pending_interrupts, CPU(cpu)->interrupt_request);
95 
96     if (locked) {
97         qemu_mutex_unlock_iothread();
98     }
99 }
100 
101 /* PowerPC 6xx / 7xx internal IRQ controller */
102 static void ppc6xx_set_irq(void *opaque, int pin, int level)
103 {
104     PowerPCCPU *cpu = opaque;
105     CPUPPCState *env = &cpu->env;
106     int cur_level;
107 
108     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
109                 env, pin, level);
110     cur_level = (env->irq_input_state >> pin) & 1;
111     /* Don't generate spurious events */
112     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
113         CPUState *cs = CPU(cpu);
114 
115         switch (pin) {
116         case PPC6xx_INPUT_TBEN:
117             /* Level sensitive - active high */
118             LOG_IRQ("%s: %s the time base\n",
119                         __func__, level ? "start" : "stop");
120             if (level) {
121                 cpu_ppc_tb_start(env);
122             } else {
123                 cpu_ppc_tb_stop(env);
124             }
125         case PPC6xx_INPUT_INT:
126             /* Level sensitive - active high */
127             LOG_IRQ("%s: set the external IRQ state to %d\n",
128                         __func__, level);
129             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
130             break;
131         case PPC6xx_INPUT_SMI:
132             /* Level sensitive - active high */
133             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
134                         __func__, level);
135             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
136             break;
137         case PPC6xx_INPUT_MCP:
138             /* Negative edge sensitive */
139             /* XXX: TODO: actual reaction may depends on HID0 status
140              *            603/604/740/750: check HID0[EMCP]
141              */
142             if (cur_level == 1 && level == 0) {
143                 LOG_IRQ("%s: raise machine check state\n",
144                             __func__);
145                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
146             }
147             break;
148         case PPC6xx_INPUT_CKSTP_IN:
149             /* Level sensitive - active low */
150             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
151             /* XXX: Note that the only way to restart the CPU is to reset it */
152             if (level) {
153                 LOG_IRQ("%s: stop the CPU\n", __func__);
154                 cs->halted = 1;
155             }
156             break;
157         case PPC6xx_INPUT_HRESET:
158             /* Level sensitive - active low */
159             if (level) {
160                 LOG_IRQ("%s: reset the CPU\n", __func__);
161                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
162             }
163             break;
164         case PPC6xx_INPUT_SRESET:
165             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
166                         __func__, level);
167             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
168             break;
169         default:
170             /* Unknown pin - do nothing */
171             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
172             return;
173         }
174         if (level)
175             env->irq_input_state |= 1 << pin;
176         else
177             env->irq_input_state &= ~(1 << pin);
178     }
179 }
180 
181 void ppc6xx_irq_init(PowerPCCPU *cpu)
182 {
183     CPUPPCState *env = &cpu->env;
184 
185     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
186                                                   PPC6xx_INPUT_NB);
187 }
188 
189 #if defined(TARGET_PPC64)
190 /* PowerPC 970 internal IRQ controller */
191 static void ppc970_set_irq(void *opaque, int pin, int level)
192 {
193     PowerPCCPU *cpu = opaque;
194     CPUPPCState *env = &cpu->env;
195     int cur_level;
196 
197     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
198                 env, pin, level);
199     cur_level = (env->irq_input_state >> pin) & 1;
200     /* Don't generate spurious events */
201     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
202         CPUState *cs = CPU(cpu);
203 
204         switch (pin) {
205         case PPC970_INPUT_INT:
206             /* Level sensitive - active high */
207             LOG_IRQ("%s: set the external IRQ state to %d\n",
208                         __func__, level);
209             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
210             break;
211         case PPC970_INPUT_THINT:
212             /* Level sensitive - active high */
213             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
214                         level);
215             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
216             break;
217         case PPC970_INPUT_MCP:
218             /* Negative edge sensitive */
219             /* XXX: TODO: actual reaction may depends on HID0 status
220              *            603/604/740/750: check HID0[EMCP]
221              */
222             if (cur_level == 1 && level == 0) {
223                 LOG_IRQ("%s: raise machine check state\n",
224                             __func__);
225                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
226             }
227             break;
228         case PPC970_INPUT_CKSTP:
229             /* Level sensitive - active low */
230             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
231             if (level) {
232                 LOG_IRQ("%s: stop the CPU\n", __func__);
233                 cs->halted = 1;
234             } else {
235                 LOG_IRQ("%s: restart the CPU\n", __func__);
236                 cs->halted = 0;
237                 qemu_cpu_kick(cs);
238             }
239             break;
240         case PPC970_INPUT_HRESET:
241             /* Level sensitive - active low */
242             if (level) {
243                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
244             }
245             break;
246         case PPC970_INPUT_SRESET:
247             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
248                         __func__, level);
249             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
250             break;
251         case PPC970_INPUT_TBEN:
252             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
253                         level);
254             /* XXX: TODO */
255             break;
256         default:
257             /* Unknown pin - do nothing */
258             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
259             return;
260         }
261         if (level)
262             env->irq_input_state |= 1 << pin;
263         else
264             env->irq_input_state &= ~(1 << pin);
265     }
266 }
267 
268 void ppc970_irq_init(PowerPCCPU *cpu)
269 {
270     CPUPPCState *env = &cpu->env;
271 
272     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
273                                                   PPC970_INPUT_NB);
274 }
275 
276 /* POWER7 internal IRQ controller */
277 static void power7_set_irq(void *opaque, int pin, int level)
278 {
279     PowerPCCPU *cpu = opaque;
280     CPUPPCState *env = &cpu->env;
281 
282     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
283                 env, pin, level);
284 
285     switch (pin) {
286     case POWER7_INPUT_INT:
287         /* Level sensitive - active high */
288         LOG_IRQ("%s: set the external IRQ state to %d\n",
289                 __func__, level);
290         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
291         break;
292     default:
293         /* Unknown pin - do nothing */
294         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
295         return;
296     }
297     if (level) {
298         env->irq_input_state |= 1 << pin;
299     } else {
300         env->irq_input_state &= ~(1 << pin);
301     }
302 }
303 
304 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
305 {
306     CPUPPCState *env = &cpu->env;
307 
308     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
309                                                   POWER7_INPUT_NB);
310 }
311 #endif /* defined(TARGET_PPC64) */
312 
313 /* PowerPC 40x internal IRQ controller */
314 static void ppc40x_set_irq(void *opaque, int pin, int level)
315 {
316     PowerPCCPU *cpu = opaque;
317     CPUPPCState *env = &cpu->env;
318     int cur_level;
319 
320     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
321                 env, pin, level);
322     cur_level = (env->irq_input_state >> pin) & 1;
323     /* Don't generate spurious events */
324     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
325         CPUState *cs = CPU(cpu);
326 
327         switch (pin) {
328         case PPC40x_INPUT_RESET_SYS:
329             if (level) {
330                 LOG_IRQ("%s: reset the PowerPC system\n",
331                             __func__);
332                 ppc40x_system_reset(cpu);
333             }
334             break;
335         case PPC40x_INPUT_RESET_CHIP:
336             if (level) {
337                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
338                 ppc40x_chip_reset(cpu);
339             }
340             break;
341         case PPC40x_INPUT_RESET_CORE:
342             /* XXX: TODO: update DBSR[MRR] */
343             if (level) {
344                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
345                 ppc40x_core_reset(cpu);
346             }
347             break;
348         case PPC40x_INPUT_CINT:
349             /* Level sensitive - active high */
350             LOG_IRQ("%s: set the critical IRQ state to %d\n",
351                         __func__, level);
352             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
353             break;
354         case PPC40x_INPUT_INT:
355             /* Level sensitive - active high */
356             LOG_IRQ("%s: set the external IRQ state to %d\n",
357                         __func__, level);
358             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
359             break;
360         case PPC40x_INPUT_HALT:
361             /* Level sensitive - active low */
362             if (level) {
363                 LOG_IRQ("%s: stop the CPU\n", __func__);
364                 cs->halted = 1;
365             } else {
366                 LOG_IRQ("%s: restart the CPU\n", __func__);
367                 cs->halted = 0;
368                 qemu_cpu_kick(cs);
369             }
370             break;
371         case PPC40x_INPUT_DEBUG:
372             /* Level sensitive - active high */
373             LOG_IRQ("%s: set the debug pin state to %d\n",
374                         __func__, level);
375             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
376             break;
377         default:
378             /* Unknown pin - do nothing */
379             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
380             return;
381         }
382         if (level)
383             env->irq_input_state |= 1 << pin;
384         else
385             env->irq_input_state &= ~(1 << pin);
386     }
387 }
388 
389 void ppc40x_irq_init(PowerPCCPU *cpu)
390 {
391     CPUPPCState *env = &cpu->env;
392 
393     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
394                                                   cpu, PPC40x_INPUT_NB);
395 }
396 
397 /* PowerPC E500 internal IRQ controller */
398 static void ppce500_set_irq(void *opaque, int pin, int level)
399 {
400     PowerPCCPU *cpu = opaque;
401     CPUPPCState *env = &cpu->env;
402     int cur_level;
403 
404     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
405                 env, pin, level);
406     cur_level = (env->irq_input_state >> pin) & 1;
407     /* Don't generate spurious events */
408     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
409         switch (pin) {
410         case PPCE500_INPUT_MCK:
411             if (level) {
412                 LOG_IRQ("%s: reset the PowerPC system\n",
413                             __func__);
414                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
415             }
416             break;
417         case PPCE500_INPUT_RESET_CORE:
418             if (level) {
419                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
420                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
421             }
422             break;
423         case PPCE500_INPUT_CINT:
424             /* Level sensitive - active high */
425             LOG_IRQ("%s: set the critical IRQ state to %d\n",
426                         __func__, level);
427             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
428             break;
429         case PPCE500_INPUT_INT:
430             /* Level sensitive - active high */
431             LOG_IRQ("%s: set the core IRQ state to %d\n",
432                         __func__, level);
433             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
434             break;
435         case PPCE500_INPUT_DEBUG:
436             /* Level sensitive - active high */
437             LOG_IRQ("%s: set the debug pin state to %d\n",
438                         __func__, level);
439             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
440             break;
441         default:
442             /* Unknown pin - do nothing */
443             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
444             return;
445         }
446         if (level)
447             env->irq_input_state |= 1 << pin;
448         else
449             env->irq_input_state &= ~(1 << pin);
450     }
451 }
452 
453 void ppce500_irq_init(PowerPCCPU *cpu)
454 {
455     CPUPPCState *env = &cpu->env;
456 
457     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
458                                                   cpu, PPCE500_INPUT_NB);
459 }
460 
461 /* Enable or Disable the E500 EPR capability */
462 void ppce500_set_mpic_proxy(bool enabled)
463 {
464     CPUState *cs;
465 
466     CPU_FOREACH(cs) {
467         PowerPCCPU *cpu = POWERPC_CPU(cs);
468 
469         cpu->env.mpic_proxy = enabled;
470         if (kvm_enabled()) {
471             kvmppc_set_mpic_proxy(cpu, enabled);
472         }
473     }
474 }
475 
476 /*****************************************************************************/
477 /* PowerPC time base and decrementer emulation */
478 
479 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
480 {
481     /* TB time in tb periods */
482     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
483 }
484 
485 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
486 {
487     ppc_tb_t *tb_env = env->tb_env;
488     uint64_t tb;
489 
490     if (kvm_enabled()) {
491         return env->spr[SPR_TBL];
492     }
493 
494     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
495     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
496 
497     return tb;
498 }
499 
500 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
501 {
502     ppc_tb_t *tb_env = env->tb_env;
503     uint64_t tb;
504 
505     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
506     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
507 
508     return tb >> 32;
509 }
510 
511 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
512 {
513     if (kvm_enabled()) {
514         return env->spr[SPR_TBU];
515     }
516 
517     return _cpu_ppc_load_tbu(env);
518 }
519 
520 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
521                                     int64_t *tb_offsetp, uint64_t value)
522 {
523     *tb_offsetp = value -
524         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
525 
526     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
527                 __func__, value, *tb_offsetp);
528 }
529 
530 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
531 {
532     ppc_tb_t *tb_env = env->tb_env;
533     uint64_t tb;
534 
535     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
536     tb &= 0xFFFFFFFF00000000ULL;
537     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
538                      &tb_env->tb_offset, tb | (uint64_t)value);
539 }
540 
541 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
542 {
543     ppc_tb_t *tb_env = env->tb_env;
544     uint64_t tb;
545 
546     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
547     tb &= 0x00000000FFFFFFFFULL;
548     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
549                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
550 }
551 
552 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
553 {
554     _cpu_ppc_store_tbu(env, value);
555 }
556 
557 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
558 {
559     ppc_tb_t *tb_env = env->tb_env;
560     uint64_t tb;
561 
562     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
563     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
564 
565     return tb;
566 }
567 
568 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
569 {
570     ppc_tb_t *tb_env = env->tb_env;
571     uint64_t tb;
572 
573     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
574     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
575 
576     return tb >> 32;
577 }
578 
579 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
580 {
581     ppc_tb_t *tb_env = env->tb_env;
582     uint64_t tb;
583 
584     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
585     tb &= 0xFFFFFFFF00000000ULL;
586     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
587                      &tb_env->atb_offset, tb | (uint64_t)value);
588 }
589 
590 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
591 {
592     ppc_tb_t *tb_env = env->tb_env;
593     uint64_t tb;
594 
595     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
596     tb &= 0x00000000FFFFFFFFULL;
597     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
598                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
599 }
600 
601 static void cpu_ppc_tb_stop (CPUPPCState *env)
602 {
603     ppc_tb_t *tb_env = env->tb_env;
604     uint64_t tb, atb, vmclk;
605 
606     /* If the time base is already frozen, do nothing */
607     if (tb_env->tb_freq != 0) {
608         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
609         /* Get the time base */
610         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
611         /* Get the alternate time base */
612         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
613         /* Store the time base value (ie compute the current offset) */
614         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
615         /* Store the alternate time base value (compute the current offset) */
616         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
617         /* Set the time base frequency to zero */
618         tb_env->tb_freq = 0;
619         /* Now, the time bases are frozen to tb_offset / atb_offset value */
620     }
621 }
622 
623 static void cpu_ppc_tb_start (CPUPPCState *env)
624 {
625     ppc_tb_t *tb_env = env->tb_env;
626     uint64_t tb, atb, vmclk;
627 
628     /* If the time base is not frozen, do nothing */
629     if (tb_env->tb_freq == 0) {
630         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
631         /* Get the time base from tb_offset */
632         tb = tb_env->tb_offset;
633         /* Get the alternate time base from atb_offset */
634         atb = tb_env->atb_offset;
635         /* Restore the tb frequency from the decrementer frequency */
636         tb_env->tb_freq = tb_env->decr_freq;
637         /* Store the time base value */
638         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
639         /* Store the alternate time base value */
640         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
641     }
642 }
643 
644 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
645 {
646     ppc_tb_t *tb_env = env->tb_env;
647     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
648     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
649 }
650 
651 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
652 {
653     ppc_tb_t *tb_env = env->tb_env;
654     uint32_t decr;
655     int64_t diff;
656 
657     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
658     if (diff >= 0) {
659         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
660     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
661         decr = 0;
662     }  else {
663         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
664     }
665     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
666 
667     return decr;
668 }
669 
670 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
671 {
672     ppc_tb_t *tb_env = env->tb_env;
673 
674     if (kvm_enabled()) {
675         return env->spr[SPR_DECR];
676     }
677 
678     return _cpu_ppc_load_decr(env, tb_env->decr_next);
679 }
680 
681 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
682 {
683     ppc_tb_t *tb_env = env->tb_env;
684 
685     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
686 }
687 
688 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
689 {
690     ppc_tb_t *tb_env = env->tb_env;
691     uint64_t diff;
692 
693     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
694 
695     return tb_env->purr_load +
696         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
697 }
698 
699 /* When decrementer expires,
700  * all we need to do is generate or queue a CPU exception
701  */
702 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
703 {
704     /* Raise it */
705     LOG_TB("raise decrementer exception\n");
706     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
707 }
708 
709 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
710 {
711     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
712 }
713 
714 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
715 {
716     CPUPPCState *env = &cpu->env;
717 
718     /* Raise it */
719     LOG_TB("raise hv decrementer exception\n");
720 
721     /* The architecture specifies that we don't deliver HDEC
722      * interrupts in a PM state. Not only they don't cause a
723      * wakeup but they also get effectively discarded.
724      */
725     if (!env->in_pm_state) {
726         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
727     }
728 }
729 
730 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
731 {
732     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
733 }
734 
735 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
736                                  QEMUTimer *timer,
737                                  void (*raise_excp)(void *),
738                                  void (*lower_excp)(PowerPCCPU *),
739                                  uint32_t decr, uint32_t value)
740 {
741     CPUPPCState *env = &cpu->env;
742     ppc_tb_t *tb_env = env->tb_env;
743     uint64_t now, next;
744 
745     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
746                 decr, value);
747 
748     if (kvm_enabled()) {
749         /* KVM handles decrementer exceptions, we don't need our own timer */
750         return;
751     }
752 
753     /*
754      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
755      * interrupt.
756      *
757      * If we get a really small DEC value, we can assume that by the time we
758      * handled it we should inject an interrupt already.
759      *
760      * On MSB level based DEC implementations the MSB always means the interrupt
761      * is pending, so raise it on those.
762      *
763      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
764      * an edge interrupt, so raise it here too.
765      */
766     if ((value < 3) ||
767         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
768         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
769           && !(decr & 0x80000000))) {
770         (*raise_excp)(cpu);
771         return;
772     }
773 
774     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
775     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
776         (*lower_excp)(cpu);
777     }
778 
779     /* Calculate the next timer event */
780     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
781     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
782     *nextp = next;
783 
784     /* Adjust timer */
785     timer_mod(timer, next);
786 }
787 
788 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
789                                        uint32_t value)
790 {
791     ppc_tb_t *tb_env = cpu->env.tb_env;
792 
793     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
794                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
795                          value);
796 }
797 
798 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
799 {
800     PowerPCCPU *cpu = ppc_env_get_cpu(env);
801 
802     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
803 }
804 
805 static void cpu_ppc_decr_cb(void *opaque)
806 {
807     PowerPCCPU *cpu = opaque;
808 
809     cpu_ppc_decr_excp(cpu);
810 }
811 
812 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
813                                         uint32_t value)
814 {
815     ppc_tb_t *tb_env = cpu->env.tb_env;
816 
817     if (tb_env->hdecr_timer != NULL) {
818         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
819                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
820                              hdecr, value);
821     }
822 }
823 
824 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
825 {
826     PowerPCCPU *cpu = ppc_env_get_cpu(env);
827 
828     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
829 }
830 
831 static void cpu_ppc_hdecr_cb(void *opaque)
832 {
833     PowerPCCPU *cpu = opaque;
834 
835     cpu_ppc_hdecr_excp(cpu);
836 }
837 
838 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
839 {
840     ppc_tb_t *tb_env = cpu->env.tb_env;
841 
842     tb_env->purr_load = value;
843     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
844 }
845 
846 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
847 {
848     CPUPPCState *env = opaque;
849     PowerPCCPU *cpu = ppc_env_get_cpu(env);
850     ppc_tb_t *tb_env = env->tb_env;
851 
852     tb_env->tb_freq = freq;
853     tb_env->decr_freq = freq;
854     /* There is a bug in Linux 2.4 kernels:
855      * if a decrementer exception is pending when it enables msr_ee at startup,
856      * it's not ready to handle it...
857      */
858     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
859     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
860     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
861 }
862 
863 static void timebase_save(PPCTimebase *tb)
864 {
865     uint64_t ticks = cpu_get_host_ticks();
866     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
867 
868     if (!first_ppc_cpu->env.tb_env) {
869         error_report("No timebase object");
870         return;
871     }
872 
873     /* not used anymore, we keep it for compatibility */
874     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
875     /*
876      * tb_offset is only expected to be changed by QEMU so
877      * there is no need to update it from KVM here
878      */
879     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
880 }
881 
882 static void timebase_load(PPCTimebase *tb)
883 {
884     CPUState *cpu;
885     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
886     int64_t tb_off_adj, tb_off;
887     unsigned long freq;
888 
889     if (!first_ppc_cpu->env.tb_env) {
890         error_report("No timebase object");
891         return;
892     }
893 
894     freq = first_ppc_cpu->env.tb_env->tb_freq;
895 
896     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
897 
898     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
899     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
900                         (tb_off_adj - tb_off) / freq);
901 
902     /* Set new offset to all CPUs */
903     CPU_FOREACH(cpu) {
904         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
905         pcpu->env.tb_env->tb_offset = tb_off_adj;
906 #if defined(CONFIG_KVM)
907         kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
908                         &pcpu->env.tb_env->tb_offset);
909 #endif
910     }
911 }
912 
913 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
914                                    RunState state)
915 {
916     PPCTimebase *tb = opaque;
917 
918     if (running) {
919         timebase_load(tb);
920     } else {
921         timebase_save(tb);
922     }
923 }
924 
925 /*
926  * When migrating, read the clock just before migration,
927  * so that the guest clock counts during the events
928  * between:
929  *
930  *  * vm_stop()
931  *  *
932  *  * pre_save()
933  *
934  *  This reduces clock difference on migration from 5s
935  *  to 0.1s (when max_downtime == 5s), because sending the
936  *  final pages of memory (which happens between vm_stop()
937  *  and pre_save()) takes max_downtime.
938  */
939 static int timebase_pre_save(void *opaque)
940 {
941     PPCTimebase *tb = opaque;
942 
943     timebase_save(tb);
944 
945     return 0;
946 }
947 
948 const VMStateDescription vmstate_ppc_timebase = {
949     .name = "timebase",
950     .version_id = 1,
951     .minimum_version_id = 1,
952     .minimum_version_id_old = 1,
953     .pre_save = timebase_pre_save,
954     .fields      = (VMStateField []) {
955         VMSTATE_UINT64(guest_timebase, PPCTimebase),
956         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
957         VMSTATE_END_OF_LIST()
958     },
959 };
960 
961 /* Set up (once) timebase frequency (in Hz) */
962 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
963 {
964     PowerPCCPU *cpu = ppc_env_get_cpu(env);
965     ppc_tb_t *tb_env;
966 
967     tb_env = g_malloc0(sizeof(ppc_tb_t));
968     env->tb_env = tb_env;
969     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
970     if (env->insns_flags & PPC_SEGMENT_64B) {
971         /* All Book3S 64bit CPUs implement level based DEC logic */
972         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
973     }
974     /* Create new timer */
975     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
976     if (env->has_hv_mode) {
977         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
978                                                 cpu);
979     } else {
980         tb_env->hdecr_timer = NULL;
981     }
982     cpu_ppc_set_tb_clk(env, freq);
983 
984     return &cpu_ppc_set_tb_clk;
985 }
986 
987 /* Specific helpers for POWER & PowerPC 601 RTC */
988 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
989 {
990     _cpu_ppc_store_tbu(env, value);
991 }
992 
993 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
994 {
995     return _cpu_ppc_load_tbu(env);
996 }
997 
998 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
999 {
1000     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1001 }
1002 
1003 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1004 {
1005     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1006 }
1007 
1008 /*****************************************************************************/
1009 /* PowerPC 40x timers */
1010 
1011 /* PIT, FIT & WDT */
1012 typedef struct ppc40x_timer_t ppc40x_timer_t;
1013 struct ppc40x_timer_t {
1014     uint64_t pit_reload;  /* PIT auto-reload value        */
1015     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1016     QEMUTimer *fit_timer;
1017     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1018     QEMUTimer *wdt_timer;
1019 
1020     /* 405 have the PIT, 440 have a DECR.  */
1021     unsigned int decr_excp;
1022 };
1023 
1024 /* Fixed interval timer */
1025 static void cpu_4xx_fit_cb (void *opaque)
1026 {
1027     PowerPCCPU *cpu;
1028     CPUPPCState *env;
1029     ppc_tb_t *tb_env;
1030     ppc40x_timer_t *ppc40x_timer;
1031     uint64_t now, next;
1032 
1033     env = opaque;
1034     cpu = ppc_env_get_cpu(env);
1035     tb_env = env->tb_env;
1036     ppc40x_timer = tb_env->opaque;
1037     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1038     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1039     case 0:
1040         next = 1 << 9;
1041         break;
1042     case 1:
1043         next = 1 << 13;
1044         break;
1045     case 2:
1046         next = 1 << 17;
1047         break;
1048     case 3:
1049         next = 1 << 21;
1050         break;
1051     default:
1052         /* Cannot occur, but makes gcc happy */
1053         return;
1054     }
1055     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1056     if (next == now)
1057         next++;
1058     timer_mod(ppc40x_timer->fit_timer, next);
1059     env->spr[SPR_40x_TSR] |= 1 << 26;
1060     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1061         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1062     }
1063     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1064            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1065            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1066 }
1067 
1068 /* Programmable interval timer */
1069 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1070 {
1071     ppc40x_timer_t *ppc40x_timer;
1072     uint64_t now, next;
1073 
1074     ppc40x_timer = tb_env->opaque;
1075     if (ppc40x_timer->pit_reload <= 1 ||
1076         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1077         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1078         /* Stop PIT */
1079         LOG_TB("%s: stop PIT\n", __func__);
1080         timer_del(tb_env->decr_timer);
1081     } else {
1082         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1083                     __func__, ppc40x_timer->pit_reload);
1084         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1085         next = now + muldiv64(ppc40x_timer->pit_reload,
1086                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1087         if (is_excp)
1088             next += tb_env->decr_next - now;
1089         if (next == now)
1090             next++;
1091         timer_mod(tb_env->decr_timer, next);
1092         tb_env->decr_next = next;
1093     }
1094 }
1095 
1096 static void cpu_4xx_pit_cb (void *opaque)
1097 {
1098     PowerPCCPU *cpu;
1099     CPUPPCState *env;
1100     ppc_tb_t *tb_env;
1101     ppc40x_timer_t *ppc40x_timer;
1102 
1103     env = opaque;
1104     cpu = ppc_env_get_cpu(env);
1105     tb_env = env->tb_env;
1106     ppc40x_timer = tb_env->opaque;
1107     env->spr[SPR_40x_TSR] |= 1 << 27;
1108     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1109         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1110     }
1111     start_stop_pit(env, tb_env, 1);
1112     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1113            "%016" PRIx64 "\n", __func__,
1114            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1115            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1116            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1117            ppc40x_timer->pit_reload);
1118 }
1119 
1120 /* Watchdog timer */
1121 static void cpu_4xx_wdt_cb (void *opaque)
1122 {
1123     PowerPCCPU *cpu;
1124     CPUPPCState *env;
1125     ppc_tb_t *tb_env;
1126     ppc40x_timer_t *ppc40x_timer;
1127     uint64_t now, next;
1128 
1129     env = opaque;
1130     cpu = ppc_env_get_cpu(env);
1131     tb_env = env->tb_env;
1132     ppc40x_timer = tb_env->opaque;
1133     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1134     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1135     case 0:
1136         next = 1 << 17;
1137         break;
1138     case 1:
1139         next = 1 << 21;
1140         break;
1141     case 2:
1142         next = 1 << 25;
1143         break;
1144     case 3:
1145         next = 1 << 29;
1146         break;
1147     default:
1148         /* Cannot occur, but makes gcc happy */
1149         return;
1150     }
1151     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1152     if (next == now)
1153         next++;
1154     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1155            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1156     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1157     case 0x0:
1158     case 0x1:
1159         timer_mod(ppc40x_timer->wdt_timer, next);
1160         ppc40x_timer->wdt_next = next;
1161         env->spr[SPR_40x_TSR] |= 1U << 31;
1162         break;
1163     case 0x2:
1164         timer_mod(ppc40x_timer->wdt_timer, next);
1165         ppc40x_timer->wdt_next = next;
1166         env->spr[SPR_40x_TSR] |= 1 << 30;
1167         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1168             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1169         }
1170         break;
1171     case 0x3:
1172         env->spr[SPR_40x_TSR] &= ~0x30000000;
1173         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1174         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1175         case 0x0:
1176             /* No reset */
1177             break;
1178         case 0x1: /* Core reset */
1179             ppc40x_core_reset(cpu);
1180             break;
1181         case 0x2: /* Chip reset */
1182             ppc40x_chip_reset(cpu);
1183             break;
1184         case 0x3: /* System reset */
1185             ppc40x_system_reset(cpu);
1186             break;
1187         }
1188     }
1189 }
1190 
1191 void store_40x_pit (CPUPPCState *env, target_ulong val)
1192 {
1193     ppc_tb_t *tb_env;
1194     ppc40x_timer_t *ppc40x_timer;
1195 
1196     tb_env = env->tb_env;
1197     ppc40x_timer = tb_env->opaque;
1198     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1199     ppc40x_timer->pit_reload = val;
1200     start_stop_pit(env, tb_env, 0);
1201 }
1202 
1203 target_ulong load_40x_pit (CPUPPCState *env)
1204 {
1205     return cpu_ppc_load_decr(env);
1206 }
1207 
1208 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1209 {
1210     CPUPPCState *env = opaque;
1211     ppc_tb_t *tb_env = env->tb_env;
1212 
1213     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1214                 freq);
1215     tb_env->tb_freq = freq;
1216     tb_env->decr_freq = freq;
1217     /* XXX: we should also update all timers */
1218 }
1219 
1220 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1221                                   unsigned int decr_excp)
1222 {
1223     ppc_tb_t *tb_env;
1224     ppc40x_timer_t *ppc40x_timer;
1225 
1226     tb_env = g_malloc0(sizeof(ppc_tb_t));
1227     env->tb_env = tb_env;
1228     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1229     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1230     tb_env->tb_freq = freq;
1231     tb_env->decr_freq = freq;
1232     tb_env->opaque = ppc40x_timer;
1233     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1234     if (ppc40x_timer != NULL) {
1235         /* We use decr timer for PIT */
1236         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1237         ppc40x_timer->fit_timer =
1238             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1239         ppc40x_timer->wdt_timer =
1240             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1241         ppc40x_timer->decr_excp = decr_excp;
1242     }
1243 
1244     return &ppc_40x_set_tb_clk;
1245 }
1246 
1247 /*****************************************************************************/
1248 /* Embedded PowerPC Device Control Registers */
1249 typedef struct ppc_dcrn_t ppc_dcrn_t;
1250 struct ppc_dcrn_t {
1251     dcr_read_cb dcr_read;
1252     dcr_write_cb dcr_write;
1253     void *opaque;
1254 };
1255 
1256 /* XXX: on 460, DCR addresses are 32 bits wide,
1257  *      using DCRIPR to get the 22 upper bits of the DCR address
1258  */
1259 #define DCRN_NB 1024
1260 struct ppc_dcr_t {
1261     ppc_dcrn_t dcrn[DCRN_NB];
1262     int (*read_error)(int dcrn);
1263     int (*write_error)(int dcrn);
1264 };
1265 
1266 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1267 {
1268     ppc_dcrn_t *dcr;
1269 
1270     if (dcrn < 0 || dcrn >= DCRN_NB)
1271         goto error;
1272     dcr = &dcr_env->dcrn[dcrn];
1273     if (dcr->dcr_read == NULL)
1274         goto error;
1275     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1276 
1277     return 0;
1278 
1279  error:
1280     if (dcr_env->read_error != NULL)
1281         return (*dcr_env->read_error)(dcrn);
1282 
1283     return -1;
1284 }
1285 
1286 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1287 {
1288     ppc_dcrn_t *dcr;
1289 
1290     if (dcrn < 0 || dcrn >= DCRN_NB)
1291         goto error;
1292     dcr = &dcr_env->dcrn[dcrn];
1293     if (dcr->dcr_write == NULL)
1294         goto error;
1295     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1296 
1297     return 0;
1298 
1299  error:
1300     if (dcr_env->write_error != NULL)
1301         return (*dcr_env->write_error)(dcrn);
1302 
1303     return -1;
1304 }
1305 
1306 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1307                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1308 {
1309     ppc_dcr_t *dcr_env;
1310     ppc_dcrn_t *dcr;
1311 
1312     dcr_env = env->dcr_env;
1313     if (dcr_env == NULL)
1314         return -1;
1315     if (dcrn < 0 || dcrn >= DCRN_NB)
1316         return -1;
1317     dcr = &dcr_env->dcrn[dcrn];
1318     if (dcr->opaque != NULL ||
1319         dcr->dcr_read != NULL ||
1320         dcr->dcr_write != NULL)
1321         return -1;
1322     dcr->opaque = opaque;
1323     dcr->dcr_read = dcr_read;
1324     dcr->dcr_write = dcr_write;
1325 
1326     return 0;
1327 }
1328 
1329 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1330                   int (*write_error)(int dcrn))
1331 {
1332     ppc_dcr_t *dcr_env;
1333 
1334     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1335     dcr_env->read_error = read_error;
1336     dcr_env->write_error = write_error;
1337     env->dcr_env = dcr_env;
1338 
1339     return 0;
1340 }
1341 
1342 /*****************************************************************************/
1343 /* Debug port */
1344 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1345 {
1346     addr &= 0xF;
1347     switch (addr) {
1348     case 0:
1349         printf("%c", val);
1350         break;
1351     case 1:
1352         printf("\n");
1353         fflush(stdout);
1354         break;
1355     case 2:
1356         printf("Set loglevel to %04" PRIx32 "\n", val);
1357         qemu_set_log(val | 0x100);
1358         break;
1359     }
1360 }
1361