xref: /openbmc/qemu/hw/ppc/ppc.c (revision 0399a381)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
31 #include "qemu/log.h"
32 #include "hw/loader.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 
36 //#define PPC_DEBUG_IRQ
37 //#define PPC_DEBUG_TB
38 
39 #ifdef PPC_DEBUG_IRQ
40 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
41 #else
42 #  define LOG_IRQ(...) do { } while (0)
43 #endif
44 
45 
46 #ifdef PPC_DEBUG_TB
47 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
48 #else
49 #  define LOG_TB(...) do { } while (0)
50 #endif
51 
52 static void cpu_ppc_tb_stop (CPUPPCState *env);
53 static void cpu_ppc_tb_start (CPUPPCState *env);
54 
55 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
56 {
57     CPUState *cs = CPU(cpu);
58     CPUPPCState *env = &cpu->env;
59     unsigned int old_pending = env->pending_interrupts;
60 
61     if (level) {
62         env->pending_interrupts |= 1 << n_IRQ;
63         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
64     } else {
65         env->pending_interrupts &= ~(1 << n_IRQ);
66         if (env->pending_interrupts == 0) {
67             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
68         }
69     }
70 
71     if (old_pending != env->pending_interrupts) {
72 #ifdef CONFIG_KVM
73         kvmppc_set_interrupt(cpu, n_IRQ, level);
74 #endif
75     }
76 
77     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
78                 "req %08x\n", __func__, env, n_IRQ, level,
79                 env->pending_interrupts, CPU(cpu)->interrupt_request);
80 }
81 
82 /* PowerPC 6xx / 7xx internal IRQ controller */
83 static void ppc6xx_set_irq(void *opaque, int pin, int level)
84 {
85     PowerPCCPU *cpu = opaque;
86     CPUPPCState *env = &cpu->env;
87     int cur_level;
88 
89     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
90                 env, pin, level);
91     cur_level = (env->irq_input_state >> pin) & 1;
92     /* Don't generate spurious events */
93     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
94         CPUState *cs = CPU(cpu);
95 
96         switch (pin) {
97         case PPC6xx_INPUT_TBEN:
98             /* Level sensitive - active high */
99             LOG_IRQ("%s: %s the time base\n",
100                         __func__, level ? "start" : "stop");
101             if (level) {
102                 cpu_ppc_tb_start(env);
103             } else {
104                 cpu_ppc_tb_stop(env);
105             }
106         case PPC6xx_INPUT_INT:
107             /* Level sensitive - active high */
108             LOG_IRQ("%s: set the external IRQ state to %d\n",
109                         __func__, level);
110             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
111             break;
112         case PPC6xx_INPUT_SMI:
113             /* Level sensitive - active high */
114             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
115                         __func__, level);
116             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
117             break;
118         case PPC6xx_INPUT_MCP:
119             /* Negative edge sensitive */
120             /* XXX: TODO: actual reaction may depends on HID0 status
121              *            603/604/740/750: check HID0[EMCP]
122              */
123             if (cur_level == 1 && level == 0) {
124                 LOG_IRQ("%s: raise machine check state\n",
125                             __func__);
126                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
127             }
128             break;
129         case PPC6xx_INPUT_CKSTP_IN:
130             /* Level sensitive - active low */
131             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
132             /* XXX: Note that the only way to restart the CPU is to reset it */
133             if (level) {
134                 LOG_IRQ("%s: stop the CPU\n", __func__);
135                 cs->halted = 1;
136             }
137             break;
138         case PPC6xx_INPUT_HRESET:
139             /* Level sensitive - active low */
140             if (level) {
141                 LOG_IRQ("%s: reset the CPU\n", __func__);
142                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
143             }
144             break;
145         case PPC6xx_INPUT_SRESET:
146             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
147                         __func__, level);
148             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
149             break;
150         default:
151             /* Unknown pin - do nothing */
152             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
153             return;
154         }
155         if (level)
156             env->irq_input_state |= 1 << pin;
157         else
158             env->irq_input_state &= ~(1 << pin);
159     }
160 }
161 
162 void ppc6xx_irq_init(CPUPPCState *env)
163 {
164     PowerPCCPU *cpu = ppc_env_get_cpu(env);
165 
166     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
167                                                   PPC6xx_INPUT_NB);
168 }
169 
170 #if defined(TARGET_PPC64)
171 /* PowerPC 970 internal IRQ controller */
172 static void ppc970_set_irq(void *opaque, int pin, int level)
173 {
174     PowerPCCPU *cpu = opaque;
175     CPUPPCState *env = &cpu->env;
176     int cur_level;
177 
178     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
179                 env, pin, level);
180     cur_level = (env->irq_input_state >> pin) & 1;
181     /* Don't generate spurious events */
182     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
183         CPUState *cs = CPU(cpu);
184 
185         switch (pin) {
186         case PPC970_INPUT_INT:
187             /* Level sensitive - active high */
188             LOG_IRQ("%s: set the external IRQ state to %d\n",
189                         __func__, level);
190             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
191             break;
192         case PPC970_INPUT_THINT:
193             /* Level sensitive - active high */
194             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
195                         level);
196             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
197             break;
198         case PPC970_INPUT_MCP:
199             /* Negative edge sensitive */
200             /* XXX: TODO: actual reaction may depends on HID0 status
201              *            603/604/740/750: check HID0[EMCP]
202              */
203             if (cur_level == 1 && level == 0) {
204                 LOG_IRQ("%s: raise machine check state\n",
205                             __func__);
206                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
207             }
208             break;
209         case PPC970_INPUT_CKSTP:
210             /* Level sensitive - active low */
211             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
212             if (level) {
213                 LOG_IRQ("%s: stop the CPU\n", __func__);
214                 cs->halted = 1;
215             } else {
216                 LOG_IRQ("%s: restart the CPU\n", __func__);
217                 cs->halted = 0;
218                 qemu_cpu_kick(cs);
219             }
220             break;
221         case PPC970_INPUT_HRESET:
222             /* Level sensitive - active low */
223             if (level) {
224                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
225             }
226             break;
227         case PPC970_INPUT_SRESET:
228             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
229                         __func__, level);
230             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
231             break;
232         case PPC970_INPUT_TBEN:
233             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
234                         level);
235             /* XXX: TODO */
236             break;
237         default:
238             /* Unknown pin - do nothing */
239             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
240             return;
241         }
242         if (level)
243             env->irq_input_state |= 1 << pin;
244         else
245             env->irq_input_state &= ~(1 << pin);
246     }
247 }
248 
249 void ppc970_irq_init(CPUPPCState *env)
250 {
251     PowerPCCPU *cpu = ppc_env_get_cpu(env);
252 
253     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
254                                                   PPC970_INPUT_NB);
255 }
256 
257 /* POWER7 internal IRQ controller */
258 static void power7_set_irq(void *opaque, int pin, int level)
259 {
260     PowerPCCPU *cpu = opaque;
261     CPUPPCState *env = &cpu->env;
262 
263     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
264                 env, pin, level);
265 
266     switch (pin) {
267     case POWER7_INPUT_INT:
268         /* Level sensitive - active high */
269         LOG_IRQ("%s: set the external IRQ state to %d\n",
270                 __func__, level);
271         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
272         break;
273     default:
274         /* Unknown pin - do nothing */
275         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
276         return;
277     }
278     if (level) {
279         env->irq_input_state |= 1 << pin;
280     } else {
281         env->irq_input_state &= ~(1 << pin);
282     }
283 }
284 
285 void ppcPOWER7_irq_init(CPUPPCState *env)
286 {
287     PowerPCCPU *cpu = ppc_env_get_cpu(env);
288 
289     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
290                                                   POWER7_INPUT_NB);
291 }
292 #endif /* defined(TARGET_PPC64) */
293 
294 /* PowerPC 40x internal IRQ controller */
295 static void ppc40x_set_irq(void *opaque, int pin, int level)
296 {
297     PowerPCCPU *cpu = opaque;
298     CPUPPCState *env = &cpu->env;
299     int cur_level;
300 
301     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
302                 env, pin, level);
303     cur_level = (env->irq_input_state >> pin) & 1;
304     /* Don't generate spurious events */
305     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
306         CPUState *cs = CPU(cpu);
307 
308         switch (pin) {
309         case PPC40x_INPUT_RESET_SYS:
310             if (level) {
311                 LOG_IRQ("%s: reset the PowerPC system\n",
312                             __func__);
313                 ppc40x_system_reset(cpu);
314             }
315             break;
316         case PPC40x_INPUT_RESET_CHIP:
317             if (level) {
318                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
319                 ppc40x_chip_reset(cpu);
320             }
321             break;
322         case PPC40x_INPUT_RESET_CORE:
323             /* XXX: TODO: update DBSR[MRR] */
324             if (level) {
325                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
326                 ppc40x_core_reset(cpu);
327             }
328             break;
329         case PPC40x_INPUT_CINT:
330             /* Level sensitive - active high */
331             LOG_IRQ("%s: set the critical IRQ state to %d\n",
332                         __func__, level);
333             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
334             break;
335         case PPC40x_INPUT_INT:
336             /* Level sensitive - active high */
337             LOG_IRQ("%s: set the external IRQ state to %d\n",
338                         __func__, level);
339             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
340             break;
341         case PPC40x_INPUT_HALT:
342             /* Level sensitive - active low */
343             if (level) {
344                 LOG_IRQ("%s: stop the CPU\n", __func__);
345                 cs->halted = 1;
346             } else {
347                 LOG_IRQ("%s: restart the CPU\n", __func__);
348                 cs->halted = 0;
349                 qemu_cpu_kick(cs);
350             }
351             break;
352         case PPC40x_INPUT_DEBUG:
353             /* Level sensitive - active high */
354             LOG_IRQ("%s: set the debug pin state to %d\n",
355                         __func__, level);
356             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
357             break;
358         default:
359             /* Unknown pin - do nothing */
360             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
361             return;
362         }
363         if (level)
364             env->irq_input_state |= 1 << pin;
365         else
366             env->irq_input_state &= ~(1 << pin);
367     }
368 }
369 
370 void ppc40x_irq_init(CPUPPCState *env)
371 {
372     PowerPCCPU *cpu = ppc_env_get_cpu(env);
373 
374     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
375                                                   cpu, PPC40x_INPUT_NB);
376 }
377 
378 /* PowerPC E500 internal IRQ controller */
379 static void ppce500_set_irq(void *opaque, int pin, int level)
380 {
381     PowerPCCPU *cpu = opaque;
382     CPUPPCState *env = &cpu->env;
383     int cur_level;
384 
385     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
386                 env, pin, level);
387     cur_level = (env->irq_input_state >> pin) & 1;
388     /* Don't generate spurious events */
389     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
390         switch (pin) {
391         case PPCE500_INPUT_MCK:
392             if (level) {
393                 LOG_IRQ("%s: reset the PowerPC system\n",
394                             __func__);
395                 qemu_system_reset_request();
396             }
397             break;
398         case PPCE500_INPUT_RESET_CORE:
399             if (level) {
400                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
401                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
402             }
403             break;
404         case PPCE500_INPUT_CINT:
405             /* Level sensitive - active high */
406             LOG_IRQ("%s: set the critical IRQ state to %d\n",
407                         __func__, level);
408             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
409             break;
410         case PPCE500_INPUT_INT:
411             /* Level sensitive - active high */
412             LOG_IRQ("%s: set the core IRQ state to %d\n",
413                         __func__, level);
414             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
415             break;
416         case PPCE500_INPUT_DEBUG:
417             /* Level sensitive - active high */
418             LOG_IRQ("%s: set the debug pin state to %d\n",
419                         __func__, level);
420             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
421             break;
422         default:
423             /* Unknown pin - do nothing */
424             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
425             return;
426         }
427         if (level)
428             env->irq_input_state |= 1 << pin;
429         else
430             env->irq_input_state &= ~(1 << pin);
431     }
432 }
433 
434 void ppce500_irq_init(CPUPPCState *env)
435 {
436     PowerPCCPU *cpu = ppc_env_get_cpu(env);
437 
438     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
439                                                   cpu, PPCE500_INPUT_NB);
440 }
441 
442 /* Enable or Disable the E500 EPR capability */
443 void ppce500_set_mpic_proxy(bool enabled)
444 {
445     CPUState *cs;
446 
447     CPU_FOREACH(cs) {
448         PowerPCCPU *cpu = POWERPC_CPU(cs);
449 
450         cpu->env.mpic_proxy = enabled;
451         if (kvm_enabled()) {
452             kvmppc_set_mpic_proxy(cpu, enabled);
453         }
454     }
455 }
456 
457 /*****************************************************************************/
458 /* PowerPC time base and decrementer emulation */
459 
460 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
461 {
462     /* TB time in tb periods */
463     return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
464 }
465 
466 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
467 {
468     ppc_tb_t *tb_env = env->tb_env;
469     uint64_t tb;
470 
471     if (kvm_enabled()) {
472         return env->spr[SPR_TBL];
473     }
474 
475     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
476     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
477 
478     return tb;
479 }
480 
481 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
482 {
483     ppc_tb_t *tb_env = env->tb_env;
484     uint64_t tb;
485 
486     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
487     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
488 
489     return tb >> 32;
490 }
491 
492 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
493 {
494     if (kvm_enabled()) {
495         return env->spr[SPR_TBU];
496     }
497 
498     return _cpu_ppc_load_tbu(env);
499 }
500 
501 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
502                                     int64_t *tb_offsetp, uint64_t value)
503 {
504     *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
505     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
506                 __func__, value, *tb_offsetp);
507 }
508 
509 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
510 {
511     ppc_tb_t *tb_env = env->tb_env;
512     uint64_t tb;
513 
514     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
515     tb &= 0xFFFFFFFF00000000ULL;
516     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
517                      &tb_env->tb_offset, tb | (uint64_t)value);
518 }
519 
520 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
521 {
522     ppc_tb_t *tb_env = env->tb_env;
523     uint64_t tb;
524 
525     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
526     tb &= 0x00000000FFFFFFFFULL;
527     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
528                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
529 }
530 
531 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
532 {
533     _cpu_ppc_store_tbu(env, value);
534 }
535 
536 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
537 {
538     ppc_tb_t *tb_env = env->tb_env;
539     uint64_t tb;
540 
541     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
542     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
543 
544     return tb;
545 }
546 
547 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
548 {
549     ppc_tb_t *tb_env = env->tb_env;
550     uint64_t tb;
551 
552     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
553     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
554 
555     return tb >> 32;
556 }
557 
558 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
559 {
560     ppc_tb_t *tb_env = env->tb_env;
561     uint64_t tb;
562 
563     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
564     tb &= 0xFFFFFFFF00000000ULL;
565     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
566                      &tb_env->atb_offset, tb | (uint64_t)value);
567 }
568 
569 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
570 {
571     ppc_tb_t *tb_env = env->tb_env;
572     uint64_t tb;
573 
574     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
575     tb &= 0x00000000FFFFFFFFULL;
576     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
577                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
578 }
579 
580 static void cpu_ppc_tb_stop (CPUPPCState *env)
581 {
582     ppc_tb_t *tb_env = env->tb_env;
583     uint64_t tb, atb, vmclk;
584 
585     /* If the time base is already frozen, do nothing */
586     if (tb_env->tb_freq != 0) {
587         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
588         /* Get the time base */
589         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
590         /* Get the alternate time base */
591         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
592         /* Store the time base value (ie compute the current offset) */
593         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
594         /* Store the alternate time base value (compute the current offset) */
595         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
596         /* Set the time base frequency to zero */
597         tb_env->tb_freq = 0;
598         /* Now, the time bases are frozen to tb_offset / atb_offset value */
599     }
600 }
601 
602 static void cpu_ppc_tb_start (CPUPPCState *env)
603 {
604     ppc_tb_t *tb_env = env->tb_env;
605     uint64_t tb, atb, vmclk;
606 
607     /* If the time base is not frozen, do nothing */
608     if (tb_env->tb_freq == 0) {
609         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
610         /* Get the time base from tb_offset */
611         tb = tb_env->tb_offset;
612         /* Get the alternate time base from atb_offset */
613         atb = tb_env->atb_offset;
614         /* Restore the tb frequency from the decrementer frequency */
615         tb_env->tb_freq = tb_env->decr_freq;
616         /* Store the time base value */
617         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
618         /* Store the alternate time base value */
619         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
620     }
621 }
622 
623 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
624 {
625     ppc_tb_t *tb_env = env->tb_env;
626     uint32_t decr;
627     int64_t diff;
628 
629     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
630     if (diff >= 0) {
631         decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
632     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
633         decr = 0;
634     }  else {
635         decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
636     }
637     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
638 
639     return decr;
640 }
641 
642 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
643 {
644     ppc_tb_t *tb_env = env->tb_env;
645 
646     if (kvm_enabled()) {
647         return env->spr[SPR_DECR];
648     }
649 
650     return _cpu_ppc_load_decr(env, tb_env->decr_next);
651 }
652 
653 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
654 {
655     ppc_tb_t *tb_env = env->tb_env;
656 
657     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
658 }
659 
660 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
661 {
662     ppc_tb_t *tb_env = env->tb_env;
663     uint64_t diff;
664 
665     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
666 
667     return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
668 }
669 
670 /* When decrementer expires,
671  * all we need to do is generate or queue a CPU exception
672  */
673 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
674 {
675     /* Raise it */
676     LOG_TB("raise decrementer exception\n");
677     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
678 }
679 
680 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
681 {
682     /* Raise it */
683     LOG_TB("raise decrementer exception\n");
684     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
685 }
686 
687 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
688                                  QEMUTimer *timer,
689                                  void (*raise_excp)(PowerPCCPU *),
690                                  uint32_t decr, uint32_t value,
691                                  int is_excp)
692 {
693     CPUPPCState *env = &cpu->env;
694     ppc_tb_t *tb_env = env->tb_env;
695     uint64_t now, next;
696 
697     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
698                 decr, value);
699 
700     if (kvm_enabled()) {
701         /* KVM handles decrementer exceptions, we don't need our own timer */
702         return;
703     }
704 
705     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
706     next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
707     if (is_excp) {
708         next += *nextp - now;
709     }
710     if (next == now) {
711         next++;
712     }
713     *nextp = next;
714     /* Adjust timer */
715     timer_mod(timer, next);
716 
717     /* If we set a negative value and the decrementer was positive, raise an
718      * exception.
719      */
720     if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
721         && (value & 0x80000000)
722         && !(decr & 0x80000000)) {
723         (*raise_excp)(cpu);
724     }
725 }
726 
727 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
728                                        uint32_t value, int is_excp)
729 {
730     ppc_tb_t *tb_env = cpu->env.tb_env;
731 
732     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
733                          &cpu_ppc_decr_excp, decr, value, is_excp);
734 }
735 
736 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
737 {
738     PowerPCCPU *cpu = ppc_env_get_cpu(env);
739 
740     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
741 }
742 
743 static void cpu_ppc_decr_cb(void *opaque)
744 {
745     PowerPCCPU *cpu = opaque;
746 
747     _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
748 }
749 
750 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
751                                         uint32_t value, int is_excp)
752 {
753     ppc_tb_t *tb_env = cpu->env.tb_env;
754 
755     if (tb_env->hdecr_timer != NULL) {
756         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
757                              &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
758     }
759 }
760 
761 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
762 {
763     PowerPCCPU *cpu = ppc_env_get_cpu(env);
764 
765     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
766 }
767 
768 static void cpu_ppc_hdecr_cb(void *opaque)
769 {
770     PowerPCCPU *cpu = opaque;
771 
772     _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
773 }
774 
775 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
776 {
777     ppc_tb_t *tb_env = cpu->env.tb_env;
778 
779     tb_env->purr_load = value;
780     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
781 }
782 
783 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
784 {
785     CPUPPCState *env = opaque;
786     PowerPCCPU *cpu = ppc_env_get_cpu(env);
787     ppc_tb_t *tb_env = env->tb_env;
788 
789     tb_env->tb_freq = freq;
790     tb_env->decr_freq = freq;
791     /* There is a bug in Linux 2.4 kernels:
792      * if a decrementer exception is pending when it enables msr_ee at startup,
793      * it's not ready to handle it...
794      */
795     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
796     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
797     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
798 }
799 
800 /* Set up (once) timebase frequency (in Hz) */
801 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
802 {
803     PowerPCCPU *cpu = ppc_env_get_cpu(env);
804     ppc_tb_t *tb_env;
805 
806     tb_env = g_malloc0(sizeof(ppc_tb_t));
807     env->tb_env = tb_env;
808     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
809     /* Create new timer */
810     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
811     if (0) {
812         /* XXX: find a suitable condition to enable the hypervisor decrementer
813          */
814         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
815                                                 cpu);
816     } else {
817         tb_env->hdecr_timer = NULL;
818     }
819     cpu_ppc_set_tb_clk(env, freq);
820 
821     return &cpu_ppc_set_tb_clk;
822 }
823 
824 /* Specific helpers for POWER & PowerPC 601 RTC */
825 #if 0
826 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
827 {
828     return cpu_ppc_tb_init(env, 7812500);
829 }
830 #endif
831 
832 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
833 {
834     _cpu_ppc_store_tbu(env, value);
835 }
836 
837 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
838 {
839     return _cpu_ppc_load_tbu(env);
840 }
841 
842 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
843 {
844     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
845 }
846 
847 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
848 {
849     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
850 }
851 
852 /*****************************************************************************/
853 /* PowerPC 40x timers */
854 
855 /* PIT, FIT & WDT */
856 typedef struct ppc40x_timer_t ppc40x_timer_t;
857 struct ppc40x_timer_t {
858     uint64_t pit_reload;  /* PIT auto-reload value        */
859     uint64_t fit_next;    /* Tick for next FIT interrupt  */
860     QEMUTimer *fit_timer;
861     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
862     QEMUTimer *wdt_timer;
863 
864     /* 405 have the PIT, 440 have a DECR.  */
865     unsigned int decr_excp;
866 };
867 
868 /* Fixed interval timer */
869 static void cpu_4xx_fit_cb (void *opaque)
870 {
871     PowerPCCPU *cpu;
872     CPUPPCState *env;
873     ppc_tb_t *tb_env;
874     ppc40x_timer_t *ppc40x_timer;
875     uint64_t now, next;
876 
877     env = opaque;
878     cpu = ppc_env_get_cpu(env);
879     tb_env = env->tb_env;
880     ppc40x_timer = tb_env->opaque;
881     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
882     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
883     case 0:
884         next = 1 << 9;
885         break;
886     case 1:
887         next = 1 << 13;
888         break;
889     case 2:
890         next = 1 << 17;
891         break;
892     case 3:
893         next = 1 << 21;
894         break;
895     default:
896         /* Cannot occur, but makes gcc happy */
897         return;
898     }
899     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
900     if (next == now)
901         next++;
902     timer_mod(ppc40x_timer->fit_timer, next);
903     env->spr[SPR_40x_TSR] |= 1 << 26;
904     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
905         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
906     }
907     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
908            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
909            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
910 }
911 
912 /* Programmable interval timer */
913 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
914 {
915     ppc40x_timer_t *ppc40x_timer;
916     uint64_t now, next;
917 
918     ppc40x_timer = tb_env->opaque;
919     if (ppc40x_timer->pit_reload <= 1 ||
920         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
921         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
922         /* Stop PIT */
923         LOG_TB("%s: stop PIT\n", __func__);
924         timer_del(tb_env->decr_timer);
925     } else {
926         LOG_TB("%s: start PIT %016" PRIx64 "\n",
927                     __func__, ppc40x_timer->pit_reload);
928         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
929         next = now + muldiv64(ppc40x_timer->pit_reload,
930                               get_ticks_per_sec(), tb_env->decr_freq);
931         if (is_excp)
932             next += tb_env->decr_next - now;
933         if (next == now)
934             next++;
935         timer_mod(tb_env->decr_timer, next);
936         tb_env->decr_next = next;
937     }
938 }
939 
940 static void cpu_4xx_pit_cb (void *opaque)
941 {
942     PowerPCCPU *cpu;
943     CPUPPCState *env;
944     ppc_tb_t *tb_env;
945     ppc40x_timer_t *ppc40x_timer;
946 
947     env = opaque;
948     cpu = ppc_env_get_cpu(env);
949     tb_env = env->tb_env;
950     ppc40x_timer = tb_env->opaque;
951     env->spr[SPR_40x_TSR] |= 1 << 27;
952     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
953         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
954     }
955     start_stop_pit(env, tb_env, 1);
956     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
957            "%016" PRIx64 "\n", __func__,
958            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
959            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
960            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
961            ppc40x_timer->pit_reload);
962 }
963 
964 /* Watchdog timer */
965 static void cpu_4xx_wdt_cb (void *opaque)
966 {
967     PowerPCCPU *cpu;
968     CPUPPCState *env;
969     ppc_tb_t *tb_env;
970     ppc40x_timer_t *ppc40x_timer;
971     uint64_t now, next;
972 
973     env = opaque;
974     cpu = ppc_env_get_cpu(env);
975     tb_env = env->tb_env;
976     ppc40x_timer = tb_env->opaque;
977     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
978     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
979     case 0:
980         next = 1 << 17;
981         break;
982     case 1:
983         next = 1 << 21;
984         break;
985     case 2:
986         next = 1 << 25;
987         break;
988     case 3:
989         next = 1 << 29;
990         break;
991     default:
992         /* Cannot occur, but makes gcc happy */
993         return;
994     }
995     next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
996     if (next == now)
997         next++;
998     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
999            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1000     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1001     case 0x0:
1002     case 0x1:
1003         timer_mod(ppc40x_timer->wdt_timer, next);
1004         ppc40x_timer->wdt_next = next;
1005         env->spr[SPR_40x_TSR] |= 1 << 31;
1006         break;
1007     case 0x2:
1008         timer_mod(ppc40x_timer->wdt_timer, next);
1009         ppc40x_timer->wdt_next = next;
1010         env->spr[SPR_40x_TSR] |= 1 << 30;
1011         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1012             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1013         }
1014         break;
1015     case 0x3:
1016         env->spr[SPR_40x_TSR] &= ~0x30000000;
1017         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1018         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1019         case 0x0:
1020             /* No reset */
1021             break;
1022         case 0x1: /* Core reset */
1023             ppc40x_core_reset(cpu);
1024             break;
1025         case 0x2: /* Chip reset */
1026             ppc40x_chip_reset(cpu);
1027             break;
1028         case 0x3: /* System reset */
1029             ppc40x_system_reset(cpu);
1030             break;
1031         }
1032     }
1033 }
1034 
1035 void store_40x_pit (CPUPPCState *env, target_ulong val)
1036 {
1037     ppc_tb_t *tb_env;
1038     ppc40x_timer_t *ppc40x_timer;
1039 
1040     tb_env = env->tb_env;
1041     ppc40x_timer = tb_env->opaque;
1042     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1043     ppc40x_timer->pit_reload = val;
1044     start_stop_pit(env, tb_env, 0);
1045 }
1046 
1047 target_ulong load_40x_pit (CPUPPCState *env)
1048 {
1049     return cpu_ppc_load_decr(env);
1050 }
1051 
1052 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1053 {
1054     CPUPPCState *env = opaque;
1055     ppc_tb_t *tb_env = env->tb_env;
1056 
1057     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1058                 freq);
1059     tb_env->tb_freq = freq;
1060     tb_env->decr_freq = freq;
1061     /* XXX: we should also update all timers */
1062 }
1063 
1064 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1065                                   unsigned int decr_excp)
1066 {
1067     ppc_tb_t *tb_env;
1068     ppc40x_timer_t *ppc40x_timer;
1069 
1070     tb_env = g_malloc0(sizeof(ppc_tb_t));
1071     env->tb_env = tb_env;
1072     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1073     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1074     tb_env->tb_freq = freq;
1075     tb_env->decr_freq = freq;
1076     tb_env->opaque = ppc40x_timer;
1077     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1078     if (ppc40x_timer != NULL) {
1079         /* We use decr timer for PIT */
1080         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1081         ppc40x_timer->fit_timer =
1082             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1083         ppc40x_timer->wdt_timer =
1084             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1085         ppc40x_timer->decr_excp = decr_excp;
1086     }
1087 
1088     return &ppc_40x_set_tb_clk;
1089 }
1090 
1091 /*****************************************************************************/
1092 /* Embedded PowerPC Device Control Registers */
1093 typedef struct ppc_dcrn_t ppc_dcrn_t;
1094 struct ppc_dcrn_t {
1095     dcr_read_cb dcr_read;
1096     dcr_write_cb dcr_write;
1097     void *opaque;
1098 };
1099 
1100 /* XXX: on 460, DCR addresses are 32 bits wide,
1101  *      using DCRIPR to get the 22 upper bits of the DCR address
1102  */
1103 #define DCRN_NB 1024
1104 struct ppc_dcr_t {
1105     ppc_dcrn_t dcrn[DCRN_NB];
1106     int (*read_error)(int dcrn);
1107     int (*write_error)(int dcrn);
1108 };
1109 
1110 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1111 {
1112     ppc_dcrn_t *dcr;
1113 
1114     if (dcrn < 0 || dcrn >= DCRN_NB)
1115         goto error;
1116     dcr = &dcr_env->dcrn[dcrn];
1117     if (dcr->dcr_read == NULL)
1118         goto error;
1119     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1120 
1121     return 0;
1122 
1123  error:
1124     if (dcr_env->read_error != NULL)
1125         return (*dcr_env->read_error)(dcrn);
1126 
1127     return -1;
1128 }
1129 
1130 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1131 {
1132     ppc_dcrn_t *dcr;
1133 
1134     if (dcrn < 0 || dcrn >= DCRN_NB)
1135         goto error;
1136     dcr = &dcr_env->dcrn[dcrn];
1137     if (dcr->dcr_write == NULL)
1138         goto error;
1139     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1140 
1141     return 0;
1142 
1143  error:
1144     if (dcr_env->write_error != NULL)
1145         return (*dcr_env->write_error)(dcrn);
1146 
1147     return -1;
1148 }
1149 
1150 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1151                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1152 {
1153     ppc_dcr_t *dcr_env;
1154     ppc_dcrn_t *dcr;
1155 
1156     dcr_env = env->dcr_env;
1157     if (dcr_env == NULL)
1158         return -1;
1159     if (dcrn < 0 || dcrn >= DCRN_NB)
1160         return -1;
1161     dcr = &dcr_env->dcrn[dcrn];
1162     if (dcr->opaque != NULL ||
1163         dcr->dcr_read != NULL ||
1164         dcr->dcr_write != NULL)
1165         return -1;
1166     dcr->opaque = opaque;
1167     dcr->dcr_read = dcr_read;
1168     dcr->dcr_write = dcr_write;
1169 
1170     return 0;
1171 }
1172 
1173 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1174                   int (*write_error)(int dcrn))
1175 {
1176     ppc_dcr_t *dcr_env;
1177 
1178     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1179     dcr_env->read_error = read_error;
1180     dcr_env->write_error = write_error;
1181     env->dcr_env = dcr_env;
1182 
1183     return 0;
1184 }
1185 
1186 /*****************************************************************************/
1187 /* Debug port */
1188 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1189 {
1190     addr &= 0xF;
1191     switch (addr) {
1192     case 0:
1193         printf("%c", val);
1194         break;
1195     case 1:
1196         printf("\n");
1197         fflush(stdout);
1198         break;
1199     case 2:
1200         printf("Set loglevel to %04" PRIx32 "\n", val);
1201         qemu_set_log(val | 0x100);
1202         break;
1203     }
1204 }
1205 
1206 /*****************************************************************************/
1207 /* NVRAM helpers */
1208 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1209 {
1210     return (*nvram->read_fn)(nvram->opaque, addr);
1211 }
1212 
1213 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1214 {
1215     (*nvram->write_fn)(nvram->opaque, addr, val);
1216 }
1217 
1218 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1219 {
1220     nvram_write(nvram, addr, value);
1221 }
1222 
1223 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1224 {
1225     return nvram_read(nvram, addr);
1226 }
1227 
1228 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1229 {
1230     nvram_write(nvram, addr, value >> 8);
1231     nvram_write(nvram, addr + 1, value & 0xFF);
1232 }
1233 
1234 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1235 {
1236     uint16_t tmp;
1237 
1238     tmp = nvram_read(nvram, addr) << 8;
1239     tmp |= nvram_read(nvram, addr + 1);
1240 
1241     return tmp;
1242 }
1243 
1244 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1245 {
1246     nvram_write(nvram, addr, value >> 24);
1247     nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1248     nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1249     nvram_write(nvram, addr + 3, value & 0xFF);
1250 }
1251 
1252 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1253 {
1254     uint32_t tmp;
1255 
1256     tmp = nvram_read(nvram, addr) << 24;
1257     tmp |= nvram_read(nvram, addr + 1) << 16;
1258     tmp |= nvram_read(nvram, addr + 2) << 8;
1259     tmp |= nvram_read(nvram, addr + 3);
1260 
1261     return tmp;
1262 }
1263 
1264 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1265                              uint32_t max)
1266 {
1267     int i;
1268 
1269     for (i = 0; i < max && str[i] != '\0'; i++) {
1270         nvram_write(nvram, addr + i, str[i]);
1271     }
1272     nvram_write(nvram, addr + i, str[i]);
1273     nvram_write(nvram, addr + max - 1, '\0');
1274 }
1275 
1276 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1277 {
1278     int i;
1279 
1280     memset(dst, 0, max);
1281     for (i = 0; i < max; i++) {
1282         dst[i] = NVRAM_get_byte(nvram, addr + i);
1283         if (dst[i] == '\0')
1284             break;
1285     }
1286 
1287     return i;
1288 }
1289 
1290 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1291 {
1292     uint16_t tmp;
1293     uint16_t pd, pd1, pd2;
1294 
1295     tmp = prev >> 8;
1296     pd = prev ^ value;
1297     pd1 = pd & 0x000F;
1298     pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1299     tmp ^= (pd1 << 3) | (pd1 << 8);
1300     tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1301 
1302     return tmp;
1303 }
1304 
1305 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1306 {
1307     uint32_t i;
1308     uint16_t crc = 0xFFFF;
1309     int odd;
1310 
1311     odd = count & 1;
1312     count &= ~1;
1313     for (i = 0; i != count; i++) {
1314         crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1315     }
1316     if (odd) {
1317         crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1318     }
1319 
1320     return crc;
1321 }
1322 
1323 #define CMDLINE_ADDR 0x017ff000
1324 
1325 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1326                           const char *arch,
1327                           uint32_t RAM_size, int boot_device,
1328                           uint32_t kernel_image, uint32_t kernel_size,
1329                           const char *cmdline,
1330                           uint32_t initrd_image, uint32_t initrd_size,
1331                           uint32_t NVRAM_image,
1332                           int width, int height, int depth)
1333 {
1334     uint16_t crc;
1335 
1336     /* Set parameters for Open Hack'Ware BIOS */
1337     NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1338     NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1339     NVRAM_set_word(nvram,   0x14, NVRAM_size);
1340     NVRAM_set_string(nvram, 0x20, arch, 16);
1341     NVRAM_set_lword(nvram,  0x30, RAM_size);
1342     NVRAM_set_byte(nvram,   0x34, boot_device);
1343     NVRAM_set_lword(nvram,  0x38, kernel_image);
1344     NVRAM_set_lword(nvram,  0x3C, kernel_size);
1345     if (cmdline) {
1346         /* XXX: put the cmdline in NVRAM too ? */
1347         pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1348         NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1349         NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1350     } else {
1351         NVRAM_set_lword(nvram,  0x40, 0);
1352         NVRAM_set_lword(nvram,  0x44, 0);
1353     }
1354     NVRAM_set_lword(nvram,  0x48, initrd_image);
1355     NVRAM_set_lword(nvram,  0x4C, initrd_size);
1356     NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1357 
1358     NVRAM_set_word(nvram,   0x54, width);
1359     NVRAM_set_word(nvram,   0x56, height);
1360     NVRAM_set_word(nvram,   0x58, depth);
1361     crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1362     NVRAM_set_word(nvram,   0xFC, crc);
1363 
1364     return 0;
1365 }
1366 
1367 /* CPU device-tree ID helpers */
1368 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1369 {
1370     return cpu->cpu_dt_id;
1371 }
1372 
1373 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1374 {
1375     CPUState *cs;
1376 
1377     CPU_FOREACH(cs) {
1378         PowerPCCPU *cpu = POWERPC_CPU(cs);
1379 
1380         if (cpu->cpu_dt_id == cpu_dt_id) {
1381             return cpu;
1382         }
1383     }
1384 
1385     return NULL;
1386 }
1387