1 /* 2 * QEMU PowerPC PowerNV LPC controller 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "target/ppc/cpu.h" 22 #include "qapi/error.h" 23 #include "qemu/log.h" 24 #include "qemu/module.h" 25 #include "hw/irq.h" 26 #include "hw/isa/isa.h" 27 #include "hw/qdev-properties.h" 28 #include "hw/ppc/pnv.h" 29 #include "hw/ppc/pnv_lpc.h" 30 #include "hw/ppc/pnv_xscom.h" 31 #include "hw/ppc/fdt.h" 32 33 #include <libfdt.h> 34 35 enum { 36 ECCB_CTL = 0, 37 ECCB_RESET = 1, 38 ECCB_STAT = 2, 39 ECCB_DATA = 3, 40 }; 41 42 /* OPB Master LS registers */ 43 #define OPB_MASTER_LS_ROUTE0 0x8 44 #define OPB_MASTER_LS_ROUTE1 0xC 45 #define OPB_MASTER_LS_IRQ_STAT 0x50 46 #define OPB_MASTER_IRQ_LPC 0x00000800 47 #define OPB_MASTER_LS_IRQ_MASK 0x54 48 #define OPB_MASTER_LS_IRQ_POL 0x58 49 #define OPB_MASTER_LS_IRQ_INPUT 0x5c 50 51 /* LPC HC registers */ 52 #define LPC_HC_FW_SEG_IDSEL 0x24 53 #define LPC_HC_FW_RD_ACC_SIZE 0x28 54 #define LPC_HC_FW_RD_1B 0x00000000 55 #define LPC_HC_FW_RD_2B 0x01000000 56 #define LPC_HC_FW_RD_4B 0x02000000 57 #define LPC_HC_FW_RD_16B 0x04000000 58 #define LPC_HC_FW_RD_128B 0x07000000 59 #define LPC_HC_IRQSER_CTRL 0x30 60 #define LPC_HC_IRQSER_EN 0x80000000 61 #define LPC_HC_IRQSER_QMODE 0x40000000 62 #define LPC_HC_IRQSER_START_MASK 0x03000000 63 #define LPC_HC_IRQSER_START_4CLK 0x00000000 64 #define LPC_HC_IRQSER_START_6CLK 0x01000000 65 #define LPC_HC_IRQSER_START_8CLK 0x02000000 66 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */ 67 #define LPC_HC_IRQSTAT 0x38 68 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */ 69 #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */ 70 #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000 71 #define LPC_HC_IRQ_LRESET 0x00000400 72 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080 73 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040 74 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020 75 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010 76 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008 77 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004 78 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002 79 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001 80 #define LPC_HC_ERROR_ADDRESS 0x40 81 82 #define LPC_OPB_SIZE 0x100000000ull 83 84 #define ISA_IO_SIZE 0x00010000 85 #define ISA_MEM_SIZE 0x10000000 86 #define ISA_FW_SIZE 0x10000000 87 #define LPC_IO_OPB_ADDR 0xd0010000 88 #define LPC_IO_OPB_SIZE 0x00010000 89 #define LPC_MEM_OPB_ADDR 0xe0000000 90 #define LPC_MEM_OPB_SIZE 0x10000000 91 #define LPC_FW_OPB_ADDR 0xf0000000 92 #define LPC_FW_OPB_SIZE 0x10000000 93 94 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000 95 #define LPC_OPB_REGS_OPB_SIZE 0x00000060 96 #define LPC_OPB_REGS_OPBA_ADDR 0xc0011000 97 #define LPC_OPB_REGS_OPBA_SIZE 0x00000008 98 #define LPC_HC_REGS_OPB_ADDR 0xc0012000 99 #define LPC_HC_REGS_OPB_SIZE 0x00000100 100 101 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset) 102 { 103 const char compat[] = "ibm,power8-lpc\0ibm,lpc"; 104 char *name; 105 int offset; 106 uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE; 107 uint32_t reg[] = { 108 cpu_to_be32(lpc_pcba), 109 cpu_to_be32(PNV_XSCOM_LPC_SIZE) 110 }; 111 112 name = g_strdup_printf("isa@%x", lpc_pcba); 113 offset = fdt_add_subnode(fdt, xscom_offset, name); 114 _FDT(offset); 115 g_free(name); 116 117 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 118 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); 119 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); 120 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 121 return 0; 122 } 123 124 /* POWER9 only */ 125 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr, 126 uint64_t lpcm_size) 127 { 128 const char compat[] = "ibm,power9-lpcm-opb\0simple-bus"; 129 const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc"; 130 char *name; 131 int offset, lpcm_offset; 132 uint32_t opb_ranges[8] = { 0, 133 cpu_to_be32(lpcm_addr >> 32), 134 cpu_to_be32((uint32_t)lpcm_addr), 135 cpu_to_be32(lpcm_size / 2), 136 cpu_to_be32(lpcm_size / 2), 137 cpu_to_be32(lpcm_addr >> 32), 138 cpu_to_be32(lpcm_size / 2), 139 cpu_to_be32(lpcm_size / 2), 140 }; 141 uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32), 142 cpu_to_be32((uint32_t)lpcm_addr), 143 cpu_to_be32(lpcm_size >> 32), 144 cpu_to_be32((uint32_t)lpcm_size), 145 }; 146 uint32_t lpc_ranges[12] = { 0, 0, 147 cpu_to_be32(LPC_MEM_OPB_ADDR), 148 cpu_to_be32(LPC_MEM_OPB_SIZE), 149 cpu_to_be32(1), 0, 150 cpu_to_be32(LPC_IO_OPB_ADDR), 151 cpu_to_be32(LPC_IO_OPB_SIZE), 152 cpu_to_be32(3), 0, 153 cpu_to_be32(LPC_FW_OPB_ADDR), 154 cpu_to_be32(LPC_FW_OPB_SIZE), 155 }; 156 uint32_t reg[2]; 157 158 /* 159 * OPB bus 160 */ 161 name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr); 162 lpcm_offset = fdt_add_subnode(fdt, root_offset, name); 163 _FDT(lpcm_offset); 164 g_free(name); 165 166 _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg)))); 167 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1))); 168 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1))); 169 _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat)))); 170 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id))); 171 _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges, 172 sizeof(opb_ranges)))); 173 174 /* 175 * OPB Master registers 176 */ 177 name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR); 178 offset = fdt_add_subnode(fdt, lpcm_offset, name); 179 _FDT(offset); 180 g_free(name); 181 182 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR); 183 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE); 184 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 185 _FDT((fdt_setprop_string(fdt, offset, "compatible", 186 "ibm,power9-lpcm-opb-master"))); 187 188 /* 189 * OPB arbitrer registers 190 */ 191 name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR); 192 offset = fdt_add_subnode(fdt, lpcm_offset, name); 193 _FDT(offset); 194 g_free(name); 195 196 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR); 197 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE); 198 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 199 _FDT((fdt_setprop_string(fdt, offset, "compatible", 200 "ibm,power9-lpcm-opb-arbiter"))); 201 202 /* 203 * LPC Host Controller registers 204 */ 205 name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR); 206 offset = fdt_add_subnode(fdt, lpcm_offset, name); 207 _FDT(offset); 208 g_free(name); 209 210 reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR); 211 reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE); 212 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 213 _FDT((fdt_setprop_string(fdt, offset, "compatible", 214 "ibm,power9-lpc-controller"))); 215 216 name = g_strdup_printf("lpc@0"); 217 offset = fdt_add_subnode(fdt, lpcm_offset, name); 218 _FDT(offset); 219 g_free(name); 220 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); 221 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); 222 _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat, 223 sizeof(lpc_compat)))); 224 _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges, 225 sizeof(lpc_ranges)))); 226 227 return 0; 228 } 229 230 /* 231 * These read/write handlers of the OPB address space should be common 232 * with the P9 LPC Controller which uses direct MMIOs. 233 * 234 * TODO: rework to use address_space_stq() and address_space_ldq() 235 * instead. 236 */ 237 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data, 238 int sz) 239 { 240 /* XXX Handle access size limits and FW read caching here */ 241 return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, 242 data, sz); 243 } 244 245 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data, 246 int sz) 247 { 248 /* XXX Handle access size limits here */ 249 return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, 250 data, sz); 251 } 252 253 #define ECCB_CTL_READ PPC_BIT(15) 254 #define ECCB_CTL_SZ_LSH (63 - 7) 255 #define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7) 256 #define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63) 257 258 #define ECCB_STAT_OP_DONE PPC_BIT(52) 259 #define ECCB_STAT_OP_ERR PPC_BIT(52) 260 #define ECCB_STAT_RD_DATA_LSH (63 - 37) 261 #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH) 262 263 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd) 264 { 265 /* XXX Check for magic bits at the top, addr size etc... */ 266 unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH; 267 uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK; 268 uint8_t data[8]; 269 bool success; 270 271 if (sz > sizeof(data)) { 272 qemu_log_mask(LOG_GUEST_ERROR, 273 "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz); 274 return; 275 } 276 277 if (cmd & ECCB_CTL_READ) { 278 success = opb_read(lpc, opb_addr, data, sz); 279 if (success) { 280 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | 281 (((uint64_t)data[0]) << 24 | 282 ((uint64_t)data[1]) << 16 | 283 ((uint64_t)data[2]) << 8 | 284 ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH; 285 } else { 286 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | 287 (0xffffffffull << ECCB_STAT_RD_DATA_LSH); 288 } 289 } else { 290 data[0] = lpc->eccb_data_reg >> 24; 291 data[1] = lpc->eccb_data_reg >> 16; 292 data[2] = lpc->eccb_data_reg >> 8; 293 data[3] = lpc->eccb_data_reg; 294 295 success = opb_write(lpc, opb_addr, data, sz); 296 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE; 297 } 298 /* XXX Which error bit (if any) to signal OPB error ? */ 299 } 300 301 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size) 302 { 303 PnvLpcController *lpc = PNV_LPC(opaque); 304 uint32_t offset = addr >> 3; 305 uint64_t val = 0; 306 307 switch (offset & 3) { 308 case ECCB_CTL: 309 case ECCB_RESET: 310 val = 0; 311 break; 312 case ECCB_STAT: 313 val = lpc->eccb_stat_reg; 314 lpc->eccb_stat_reg = 0; 315 break; 316 case ECCB_DATA: 317 val = ((uint64_t)lpc->eccb_data_reg) << 32; 318 break; 319 } 320 return val; 321 } 322 323 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr, 324 uint64_t val, unsigned size) 325 { 326 PnvLpcController *lpc = PNV_LPC(opaque); 327 uint32_t offset = addr >> 3; 328 329 switch (offset & 3) { 330 case ECCB_CTL: 331 pnv_lpc_do_eccb(lpc, val); 332 break; 333 case ECCB_RESET: 334 /* XXXX */ 335 break; 336 case ECCB_STAT: 337 break; 338 case ECCB_DATA: 339 lpc->eccb_data_reg = val >> 32; 340 break; 341 } 342 } 343 344 static const MemoryRegionOps pnv_lpc_xscom_ops = { 345 .read = pnv_lpc_xscom_read, 346 .write = pnv_lpc_xscom_write, 347 .valid.min_access_size = 8, 348 .valid.max_access_size = 8, 349 .impl.min_access_size = 8, 350 .impl.max_access_size = 8, 351 .endianness = DEVICE_BIG_ENDIAN, 352 }; 353 354 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size) 355 { 356 PnvLpcController *lpc = PNV_LPC(opaque); 357 uint64_t val = 0; 358 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK; 359 MemTxResult result; 360 361 switch (size) { 362 case 4: 363 val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED, 364 &result); 365 break; 366 case 1: 367 val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED, 368 &result); 369 break; 370 default: 371 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%" 372 HWADDR_PRIx " invalid size %d\n", addr, size); 373 return 0; 374 } 375 376 if (result != MEMTX_OK) { 377 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%" 378 HWADDR_PRIx "\n", addr); 379 } 380 381 return val; 382 } 383 384 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr, 385 uint64_t val, unsigned size) 386 { 387 PnvLpcController *lpc = PNV_LPC(opaque); 388 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK; 389 MemTxResult result; 390 391 switch (size) { 392 case 4: 393 address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED, 394 &result); 395 break; 396 case 1: 397 address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED, 398 &result); 399 break; 400 default: 401 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%" 402 HWADDR_PRIx " invalid size %d\n", addr, size); 403 return; 404 } 405 406 if (result != MEMTX_OK) { 407 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%" 408 HWADDR_PRIx "\n", addr); 409 } 410 } 411 412 static const MemoryRegionOps pnv_lpc_mmio_ops = { 413 .read = pnv_lpc_mmio_read, 414 .write = pnv_lpc_mmio_write, 415 .impl = { 416 .min_access_size = 1, 417 .max_access_size = 4, 418 }, 419 .endianness = DEVICE_BIG_ENDIAN, 420 }; 421 422 static void pnv_lpc_eval_irqs(PnvLpcController *lpc) 423 { 424 bool lpc_to_opb_irq = false; 425 PnvLpcClass *plc = PNV_LPC_GET_CLASS(lpc); 426 427 /* Update LPC controller to OPB line */ 428 if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) { 429 uint32_t irqs; 430 431 irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask; 432 lpc_to_opb_irq = (irqs != 0); 433 } 434 435 /* We don't honor the polarity register, it's pointless and unused 436 * anyway 437 */ 438 if (lpc_to_opb_irq) { 439 lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC; 440 } else { 441 lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC; 442 } 443 444 /* Update OPB internal latch */ 445 lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask; 446 447 /* Reflect the interrupt */ 448 pnv_psi_irq_set(lpc->psi, plc->psi_irq, lpc->opb_irq_stat != 0); 449 } 450 451 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size) 452 { 453 PnvLpcController *lpc = opaque; 454 uint64_t val = 0xfffffffffffffffful; 455 456 switch (addr) { 457 case LPC_HC_FW_SEG_IDSEL: 458 val = lpc->lpc_hc_fw_seg_idsel; 459 break; 460 case LPC_HC_FW_RD_ACC_SIZE: 461 val = lpc->lpc_hc_fw_rd_acc_size; 462 break; 463 case LPC_HC_IRQSER_CTRL: 464 val = lpc->lpc_hc_irqser_ctrl; 465 break; 466 case LPC_HC_IRQMASK: 467 val = lpc->lpc_hc_irqmask; 468 break; 469 case LPC_HC_IRQSTAT: 470 val = lpc->lpc_hc_irqstat; 471 break; 472 case LPC_HC_ERROR_ADDRESS: 473 val = lpc->lpc_hc_error_addr; 474 break; 475 default: 476 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%" 477 HWADDR_PRIx "\n", addr); 478 } 479 return val; 480 } 481 482 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val, 483 unsigned size) 484 { 485 PnvLpcController *lpc = opaque; 486 487 /* XXX Filter out reserved bits */ 488 489 switch (addr) { 490 case LPC_HC_FW_SEG_IDSEL: 491 /* XXX Actually figure out how that works as this impact 492 * memory regions/aliases 493 */ 494 lpc->lpc_hc_fw_seg_idsel = val; 495 break; 496 case LPC_HC_FW_RD_ACC_SIZE: 497 lpc->lpc_hc_fw_rd_acc_size = val; 498 break; 499 case LPC_HC_IRQSER_CTRL: 500 lpc->lpc_hc_irqser_ctrl = val; 501 pnv_lpc_eval_irqs(lpc); 502 break; 503 case LPC_HC_IRQMASK: 504 lpc->lpc_hc_irqmask = val; 505 pnv_lpc_eval_irqs(lpc); 506 break; 507 case LPC_HC_IRQSTAT: 508 lpc->lpc_hc_irqstat &= ~val; 509 pnv_lpc_eval_irqs(lpc); 510 break; 511 case LPC_HC_ERROR_ADDRESS: 512 break; 513 default: 514 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%" 515 HWADDR_PRIx "\n", addr); 516 } 517 } 518 519 static const MemoryRegionOps lpc_hc_ops = { 520 .read = lpc_hc_read, 521 .write = lpc_hc_write, 522 .endianness = DEVICE_BIG_ENDIAN, 523 .valid = { 524 .min_access_size = 4, 525 .max_access_size = 4, 526 }, 527 .impl = { 528 .min_access_size = 4, 529 .max_access_size = 4, 530 }, 531 }; 532 533 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size) 534 { 535 PnvLpcController *lpc = opaque; 536 uint64_t val = 0xfffffffffffffffful; 537 538 switch (addr) { 539 case OPB_MASTER_LS_ROUTE0: /* TODO */ 540 val = lpc->opb_irq_route0; 541 break; 542 case OPB_MASTER_LS_ROUTE1: /* TODO */ 543 val = lpc->opb_irq_route1; 544 break; 545 case OPB_MASTER_LS_IRQ_STAT: 546 val = lpc->opb_irq_stat; 547 break; 548 case OPB_MASTER_LS_IRQ_MASK: 549 val = lpc->opb_irq_mask; 550 break; 551 case OPB_MASTER_LS_IRQ_POL: 552 val = lpc->opb_irq_pol; 553 break; 554 case OPB_MASTER_LS_IRQ_INPUT: 555 val = lpc->opb_irq_input; 556 break; 557 default: 558 qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%" 559 HWADDR_PRIx "\n", addr); 560 } 561 562 return val; 563 } 564 565 static void opb_master_write(void *opaque, hwaddr addr, 566 uint64_t val, unsigned size) 567 { 568 PnvLpcController *lpc = opaque; 569 570 switch (addr) { 571 case OPB_MASTER_LS_ROUTE0: /* TODO */ 572 lpc->opb_irq_route0 = val; 573 break; 574 case OPB_MASTER_LS_ROUTE1: /* TODO */ 575 lpc->opb_irq_route1 = val; 576 break; 577 case OPB_MASTER_LS_IRQ_STAT: 578 lpc->opb_irq_stat &= ~val; 579 pnv_lpc_eval_irqs(lpc); 580 break; 581 case OPB_MASTER_LS_IRQ_MASK: 582 lpc->opb_irq_mask = val; 583 pnv_lpc_eval_irqs(lpc); 584 break; 585 case OPB_MASTER_LS_IRQ_POL: 586 lpc->opb_irq_pol = val; 587 pnv_lpc_eval_irqs(lpc); 588 break; 589 case OPB_MASTER_LS_IRQ_INPUT: 590 /* Read only */ 591 break; 592 default: 593 qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%" 594 HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val); 595 } 596 } 597 598 static const MemoryRegionOps opb_master_ops = { 599 .read = opb_master_read, 600 .write = opb_master_write, 601 .endianness = DEVICE_BIG_ENDIAN, 602 .valid = { 603 .min_access_size = 4, 604 .max_access_size = 4, 605 }, 606 .impl = { 607 .min_access_size = 4, 608 .max_access_size = 4, 609 }, 610 }; 611 612 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp) 613 { 614 PnvLpcController *lpc = PNV_LPC(dev); 615 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev); 616 Error *local_err = NULL; 617 618 plc->parent_realize(dev, &local_err); 619 if (local_err) { 620 error_propagate(errp, local_err); 621 return; 622 } 623 624 /* P8 uses a XSCOM region for LPC registers */ 625 pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc), 626 &pnv_lpc_xscom_ops, lpc, "xscom-lpc", 627 PNV_XSCOM_LPC_SIZE); 628 } 629 630 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data) 631 { 632 DeviceClass *dc = DEVICE_CLASS(klass); 633 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); 634 PnvLpcClass *plc = PNV_LPC_CLASS(klass); 635 636 dc->desc = "PowerNV LPC Controller POWER8"; 637 638 xdc->dt_xscom = pnv_lpc_dt_xscom; 639 640 plc->psi_irq = PSIHB_IRQ_LPC_I2C; 641 642 device_class_set_parent_realize(dc, pnv_lpc_power8_realize, 643 &plc->parent_realize); 644 } 645 646 static const TypeInfo pnv_lpc_power8_info = { 647 .name = TYPE_PNV8_LPC, 648 .parent = TYPE_PNV_LPC, 649 .class_init = pnv_lpc_power8_class_init, 650 .interfaces = (InterfaceInfo[]) { 651 { TYPE_PNV_XSCOM_INTERFACE }, 652 { } 653 } 654 }; 655 656 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp) 657 { 658 PnvLpcController *lpc = PNV_LPC(dev); 659 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev); 660 Error *local_err = NULL; 661 662 plc->parent_realize(dev, &local_err); 663 if (local_err) { 664 error_propagate(errp, local_err); 665 return; 666 } 667 668 /* P9 uses a MMIO region */ 669 memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops, 670 lpc, "lpcm", PNV9_LPCM_SIZE); 671 } 672 673 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data) 674 { 675 DeviceClass *dc = DEVICE_CLASS(klass); 676 PnvLpcClass *plc = PNV_LPC_CLASS(klass); 677 678 dc->desc = "PowerNV LPC Controller POWER9"; 679 680 plc->psi_irq = PSIHB9_IRQ_LPCHC; 681 682 device_class_set_parent_realize(dc, pnv_lpc_power9_realize, 683 &plc->parent_realize); 684 } 685 686 static const TypeInfo pnv_lpc_power9_info = { 687 .name = TYPE_PNV9_LPC, 688 .parent = TYPE_PNV_LPC, 689 .class_init = pnv_lpc_power9_class_init, 690 }; 691 692 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data) 693 { 694 DeviceClass *dc = DEVICE_CLASS(klass); 695 696 dc->desc = "PowerNV LPC Controller POWER10"; 697 } 698 699 static const TypeInfo pnv_lpc_power10_info = { 700 .name = TYPE_PNV10_LPC, 701 .parent = TYPE_PNV9_LPC, 702 .class_init = pnv_lpc_power10_class_init, 703 }; 704 705 static void pnv_lpc_realize(DeviceState *dev, Error **errp) 706 { 707 PnvLpcController *lpc = PNV_LPC(dev); 708 709 assert(lpc->psi); 710 711 /* Reg inits */ 712 lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B; 713 714 /* Create address space and backing MR for the OPB bus */ 715 memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull); 716 address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb"); 717 718 /* Create ISA IO and Mem space regions which are the root of 719 * the ISA bus (ie, ISA address spaces). We don't create a 720 * separate one for FW which we alias to memory. 721 */ 722 memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE); 723 memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE); 724 memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE); 725 726 /* Create windows from the OPB space to the ISA space */ 727 memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io", 728 &lpc->isa_io, 0, LPC_IO_OPB_SIZE); 729 memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR, 730 &lpc->opb_isa_io); 731 memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem", 732 &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE); 733 memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR, 734 &lpc->opb_isa_mem); 735 memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw", 736 &lpc->isa_fw, 0, LPC_FW_OPB_SIZE); 737 memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR, 738 &lpc->opb_isa_fw); 739 740 /* Create MMIO regions for LPC HC and OPB registers */ 741 memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops, 742 lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE); 743 memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR, 744 &lpc->opb_master_regs); 745 memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc, 746 "lpc-hc", LPC_HC_REGS_OPB_SIZE); 747 memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR, 748 &lpc->lpc_hc_regs); 749 } 750 751 static Property pnv_lpc_properties[] = { 752 DEFINE_PROP_LINK("psi", PnvLpcController, psi, TYPE_PNV_PSI, PnvPsi *), 753 DEFINE_PROP_END_OF_LIST(), 754 }; 755 756 static void pnv_lpc_class_init(ObjectClass *klass, void *data) 757 { 758 DeviceClass *dc = DEVICE_CLASS(klass); 759 760 dc->realize = pnv_lpc_realize; 761 dc->desc = "PowerNV LPC Controller"; 762 device_class_set_props(dc, pnv_lpc_properties); 763 dc->user_creatable = false; 764 } 765 766 static const TypeInfo pnv_lpc_info = { 767 .name = TYPE_PNV_LPC, 768 .parent = TYPE_DEVICE, 769 .instance_size = sizeof(PnvLpcController), 770 .class_init = pnv_lpc_class_init, 771 .class_size = sizeof(PnvLpcClass), 772 .abstract = true, 773 }; 774 775 static void pnv_lpc_register_types(void) 776 { 777 type_register_static(&pnv_lpc_info); 778 type_register_static(&pnv_lpc_power8_info); 779 type_register_static(&pnv_lpc_power9_info); 780 type_register_static(&pnv_lpc_power10_info); 781 } 782 783 type_init(pnv_lpc_register_types) 784 785 /* If we don't use the built-in LPC interrupt deserializer, we need 786 * to provide a set of qirqs for the ISA bus or things will go bad. 787 * 788 * Most machines using pre-Naples chips (without said deserializer) 789 * have a CPLD that will collect the SerIRQ and shoot them as a 790 * single level interrupt to the P8 chip. So let's setup a hook 791 * for doing just that. 792 */ 793 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level) 794 { 795 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 796 uint32_t old_state = pnv->cpld_irqstate; 797 PnvLpcController *lpc = PNV_LPC(opaque); 798 799 if (level) { 800 pnv->cpld_irqstate |= 1u << n; 801 } else { 802 pnv->cpld_irqstate &= ~(1u << n); 803 } 804 805 if (pnv->cpld_irqstate != old_state) { 806 pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_EXTERNAL, pnv->cpld_irqstate != 0); 807 } 808 } 809 810 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level) 811 { 812 PnvLpcController *lpc = PNV_LPC(opaque); 813 814 /* The Naples HW latches the 1 levels, clearing is done by SW */ 815 if (level) { 816 lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n; 817 pnv_lpc_eval_irqs(lpc); 818 } 819 } 820 821 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp) 822 { 823 Error *local_err = NULL; 824 ISABus *isa_bus; 825 qemu_irq *irqs; 826 qemu_irq_handler handler; 827 828 /* let isa_bus_new() create its own bridge on SysBus otherwise 829 * devices specified on the command line won't find the bus and 830 * will fail to create. 831 */ 832 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err); 833 if (local_err) { 834 error_propagate(errp, local_err); 835 return NULL; 836 } 837 838 /* Not all variants have a working serial irq decoder. If not, 839 * handling of LPC interrupts becomes a platform issue (some 840 * platforms have a CPLD to do it). 841 */ 842 if (use_cpld) { 843 handler = pnv_lpc_isa_irq_handler_cpld; 844 } else { 845 handler = pnv_lpc_isa_irq_handler; 846 } 847 848 irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS); 849 850 isa_bus_irqs(isa_bus, irqs); 851 852 return isa_bus; 853 } 854