1 /* 2 * QEMU PowerPC PowerNV LPC controller 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "target/ppc/cpu.h" 22 #include "qapi/error.h" 23 #include "qemu/log.h" 24 #include "qemu/module.h" 25 #include "hw/irq.h" 26 #include "hw/isa/isa.h" 27 #include "hw/qdev-properties.h" 28 #include "hw/ppc/pnv.h" 29 #include "hw/ppc/pnv_lpc.h" 30 #include "hw/ppc/pnv_xscom.h" 31 #include "hw/ppc/fdt.h" 32 33 #include <libfdt.h> 34 35 enum { 36 ECCB_CTL = 0, 37 ECCB_RESET = 1, 38 ECCB_STAT = 2, 39 ECCB_DATA = 3, 40 }; 41 42 /* OPB Master LS registers */ 43 #define OPB_MASTER_LS_ROUTE0 0x8 44 #define OPB_MASTER_LS_ROUTE1 0xC 45 #define OPB_MASTER_LS_IRQ_STAT 0x50 46 #define OPB_MASTER_IRQ_LPC 0x00000800 47 #define OPB_MASTER_LS_IRQ_MASK 0x54 48 #define OPB_MASTER_LS_IRQ_POL 0x58 49 #define OPB_MASTER_LS_IRQ_INPUT 0x5c 50 51 /* LPC HC registers */ 52 #define LPC_HC_FW_SEG_IDSEL 0x24 53 #define LPC_HC_FW_RD_ACC_SIZE 0x28 54 #define LPC_HC_FW_RD_1B 0x00000000 55 #define LPC_HC_FW_RD_2B 0x01000000 56 #define LPC_HC_FW_RD_4B 0x02000000 57 #define LPC_HC_FW_RD_16B 0x04000000 58 #define LPC_HC_FW_RD_128B 0x07000000 59 #define LPC_HC_IRQSER_CTRL 0x30 60 #define LPC_HC_IRQSER_EN 0x80000000 61 #define LPC_HC_IRQSER_QMODE 0x40000000 62 #define LPC_HC_IRQSER_START_MASK 0x03000000 63 #define LPC_HC_IRQSER_START_4CLK 0x00000000 64 #define LPC_HC_IRQSER_START_6CLK 0x01000000 65 #define LPC_HC_IRQSER_START_8CLK 0x02000000 66 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */ 67 #define LPC_HC_IRQSTAT 0x38 68 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */ 69 #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */ 70 #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000 71 #define LPC_HC_IRQ_LRESET 0x00000400 72 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080 73 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040 74 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020 75 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010 76 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008 77 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004 78 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002 79 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001 80 #define LPC_HC_ERROR_ADDRESS 0x40 81 82 #define LPC_OPB_SIZE 0x100000000ull 83 84 #define ISA_IO_SIZE 0x00010000 85 #define ISA_MEM_SIZE 0x10000000 86 #define ISA_FW_SIZE 0x10000000 87 #define LPC_IO_OPB_ADDR 0xd0010000 88 #define LPC_IO_OPB_SIZE 0x00010000 89 #define LPC_MEM_OPB_ADDR 0xe0000000 90 #define LPC_MEM_OPB_SIZE 0x10000000 91 #define LPC_FW_OPB_ADDR 0xf0000000 92 #define LPC_FW_OPB_SIZE 0x10000000 93 94 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000 95 #define LPC_OPB_REGS_OPB_SIZE 0x00000060 96 #define LPC_OPB_REGS_OPBA_ADDR 0xc0011000 97 #define LPC_OPB_REGS_OPBA_SIZE 0x00000008 98 #define LPC_HC_REGS_OPB_ADDR 0xc0012000 99 #define LPC_HC_REGS_OPB_SIZE 0x00000100 100 101 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset) 102 { 103 const char compat[] = "ibm,power8-lpc\0ibm,lpc"; 104 char *name; 105 int offset; 106 uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE; 107 uint32_t reg[] = { 108 cpu_to_be32(lpc_pcba), 109 cpu_to_be32(PNV_XSCOM_LPC_SIZE) 110 }; 111 112 name = g_strdup_printf("isa@%x", lpc_pcba); 113 offset = fdt_add_subnode(fdt, xscom_offset, name); 114 _FDT(offset); 115 g_free(name); 116 117 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 118 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); 119 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); 120 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 121 return 0; 122 } 123 124 /* POWER9 only */ 125 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr, 126 uint64_t lpcm_size) 127 { 128 const char compat[] = "ibm,power9-lpcm-opb\0simple-bus"; 129 const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc"; 130 char *name; 131 int offset, lpcm_offset; 132 uint32_t opb_ranges[8] = { 0, 133 cpu_to_be32(lpcm_addr >> 32), 134 cpu_to_be32((uint32_t)lpcm_addr), 135 cpu_to_be32(lpcm_size / 2), 136 cpu_to_be32(lpcm_size / 2), 137 cpu_to_be32(lpcm_addr >> 32), 138 cpu_to_be32(lpcm_size / 2), 139 cpu_to_be32(lpcm_size / 2), 140 }; 141 uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32), 142 cpu_to_be32((uint32_t)lpcm_addr), 143 cpu_to_be32(lpcm_size >> 32), 144 cpu_to_be32((uint32_t)lpcm_size), 145 }; 146 uint32_t lpc_ranges[12] = { 0, 0, 147 cpu_to_be32(LPC_MEM_OPB_ADDR), 148 cpu_to_be32(LPC_MEM_OPB_SIZE), 149 cpu_to_be32(1), 0, 150 cpu_to_be32(LPC_IO_OPB_ADDR), 151 cpu_to_be32(LPC_IO_OPB_SIZE), 152 cpu_to_be32(3), 0, 153 cpu_to_be32(LPC_FW_OPB_ADDR), 154 cpu_to_be32(LPC_FW_OPB_SIZE), 155 }; 156 uint32_t reg[2]; 157 158 /* 159 * OPB bus 160 */ 161 name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr); 162 lpcm_offset = fdt_add_subnode(fdt, root_offset, name); 163 _FDT(lpcm_offset); 164 g_free(name); 165 166 _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg)))); 167 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1))); 168 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1))); 169 _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat)))); 170 _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id))); 171 _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges, 172 sizeof(opb_ranges)))); 173 174 /* 175 * OPB Master registers 176 */ 177 name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR); 178 offset = fdt_add_subnode(fdt, lpcm_offset, name); 179 _FDT(offset); 180 g_free(name); 181 182 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR); 183 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE); 184 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 185 _FDT((fdt_setprop_string(fdt, offset, "compatible", 186 "ibm,power9-lpcm-opb-master"))); 187 188 /* 189 * OPB arbitrer registers 190 */ 191 name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR); 192 offset = fdt_add_subnode(fdt, lpcm_offset, name); 193 _FDT(offset); 194 g_free(name); 195 196 reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR); 197 reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE); 198 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 199 _FDT((fdt_setprop_string(fdt, offset, "compatible", 200 "ibm,power9-lpcm-opb-arbiter"))); 201 202 /* 203 * LPC Host Controller registers 204 */ 205 name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR); 206 offset = fdt_add_subnode(fdt, lpcm_offset, name); 207 _FDT(offset); 208 g_free(name); 209 210 reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR); 211 reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE); 212 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 213 _FDT((fdt_setprop_string(fdt, offset, "compatible", 214 "ibm,power9-lpc-controller"))); 215 216 name = g_strdup_printf("lpc@0"); 217 offset = fdt_add_subnode(fdt, lpcm_offset, name); 218 _FDT(offset); 219 g_free(name); 220 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); 221 _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); 222 _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat, 223 sizeof(lpc_compat)))); 224 _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges, 225 sizeof(lpc_ranges)))); 226 227 return 0; 228 } 229 230 /* 231 * These read/write handlers of the OPB address space should be common 232 * with the P9 LPC Controller which uses direct MMIOs. 233 * 234 * TODO: rework to use address_space_stq() and address_space_ldq() 235 * instead. 236 */ 237 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data, 238 int sz) 239 { 240 /* XXX Handle access size limits and FW read caching here */ 241 return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, 242 data, sz); 243 } 244 245 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data, 246 int sz) 247 { 248 /* XXX Handle access size limits here */ 249 return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, 250 data, sz); 251 } 252 253 #define ECCB_CTL_READ PPC_BIT(15) 254 #define ECCB_CTL_SZ_LSH (63 - 7) 255 #define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7) 256 #define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63) 257 258 #define ECCB_STAT_OP_DONE PPC_BIT(52) 259 #define ECCB_STAT_OP_ERR PPC_BIT(52) 260 #define ECCB_STAT_RD_DATA_LSH (63 - 37) 261 #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH) 262 263 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd) 264 { 265 /* XXX Check for magic bits at the top, addr size etc... */ 266 unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH; 267 uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK; 268 uint8_t data[8]; 269 bool success; 270 271 if (sz > sizeof(data)) { 272 qemu_log_mask(LOG_GUEST_ERROR, 273 "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz); 274 return; 275 } 276 277 if (cmd & ECCB_CTL_READ) { 278 success = opb_read(lpc, opb_addr, data, sz); 279 if (success) { 280 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | 281 (((uint64_t)data[0]) << 24 | 282 ((uint64_t)data[1]) << 16 | 283 ((uint64_t)data[2]) << 8 | 284 ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH; 285 } else { 286 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | 287 (0xffffffffull << ECCB_STAT_RD_DATA_LSH); 288 } 289 } else { 290 data[0] = lpc->eccb_data_reg >> 24; 291 data[1] = lpc->eccb_data_reg >> 16; 292 data[2] = lpc->eccb_data_reg >> 8; 293 data[3] = lpc->eccb_data_reg; 294 295 success = opb_write(lpc, opb_addr, data, sz); 296 lpc->eccb_stat_reg = ECCB_STAT_OP_DONE; 297 } 298 /* XXX Which error bit (if any) to signal OPB error ? */ 299 } 300 301 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size) 302 { 303 PnvLpcController *lpc = PNV_LPC(opaque); 304 uint32_t offset = addr >> 3; 305 uint64_t val = 0; 306 307 switch (offset & 3) { 308 case ECCB_CTL: 309 case ECCB_RESET: 310 val = 0; 311 break; 312 case ECCB_STAT: 313 val = lpc->eccb_stat_reg; 314 lpc->eccb_stat_reg = 0; 315 break; 316 case ECCB_DATA: 317 val = ((uint64_t)lpc->eccb_data_reg) << 32; 318 break; 319 } 320 return val; 321 } 322 323 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr, 324 uint64_t val, unsigned size) 325 { 326 PnvLpcController *lpc = PNV_LPC(opaque); 327 uint32_t offset = addr >> 3; 328 329 switch (offset & 3) { 330 case ECCB_CTL: 331 pnv_lpc_do_eccb(lpc, val); 332 break; 333 case ECCB_RESET: 334 /* XXXX */ 335 break; 336 case ECCB_STAT: 337 break; 338 case ECCB_DATA: 339 lpc->eccb_data_reg = val >> 32; 340 break; 341 } 342 } 343 344 static const MemoryRegionOps pnv_lpc_xscom_ops = { 345 .read = pnv_lpc_xscom_read, 346 .write = pnv_lpc_xscom_write, 347 .valid.min_access_size = 8, 348 .valid.max_access_size = 8, 349 .impl.min_access_size = 8, 350 .impl.max_access_size = 8, 351 .endianness = DEVICE_BIG_ENDIAN, 352 }; 353 354 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size) 355 { 356 PnvLpcController *lpc = PNV_LPC(opaque); 357 uint64_t val = 0; 358 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK; 359 MemTxResult result; 360 361 switch (size) { 362 case 4: 363 val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED, 364 &result); 365 break; 366 case 1: 367 val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED, 368 &result); 369 break; 370 default: 371 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%" 372 HWADDR_PRIx " invalid size %d\n", addr, size); 373 return 0; 374 } 375 376 if (result != MEMTX_OK) { 377 qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%" 378 HWADDR_PRIx "\n", addr); 379 } 380 381 return val; 382 } 383 384 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr, 385 uint64_t val, unsigned size) 386 { 387 PnvLpcController *lpc = PNV_LPC(opaque); 388 uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK; 389 MemTxResult result; 390 391 switch (size) { 392 case 4: 393 address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED, 394 &result); 395 break; 396 case 1: 397 address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED, 398 &result); 399 break; 400 default: 401 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%" 402 HWADDR_PRIx " invalid size %d\n", addr, size); 403 return; 404 } 405 406 if (result != MEMTX_OK) { 407 qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%" 408 HWADDR_PRIx "\n", addr); 409 } 410 } 411 412 static const MemoryRegionOps pnv_lpc_mmio_ops = { 413 .read = pnv_lpc_mmio_read, 414 .write = pnv_lpc_mmio_write, 415 .impl = { 416 .min_access_size = 1, 417 .max_access_size = 4, 418 }, 419 .endianness = DEVICE_BIG_ENDIAN, 420 }; 421 422 static void pnv_lpc_eval_irqs(PnvLpcController *lpc) 423 { 424 bool lpc_to_opb_irq = false; 425 426 /* Update LPC controller to OPB line */ 427 if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) { 428 uint32_t irqs; 429 430 irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask; 431 lpc_to_opb_irq = (irqs != 0); 432 } 433 434 /* We don't honor the polarity register, it's pointless and unused 435 * anyway 436 */ 437 if (lpc_to_opb_irq) { 438 lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC; 439 } else { 440 lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC; 441 } 442 443 /* Update OPB internal latch */ 444 lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask; 445 446 /* Reflect the interrupt */ 447 qemu_set_irq(lpc->psi_irq, lpc->opb_irq_stat != 0); 448 } 449 450 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size) 451 { 452 PnvLpcController *lpc = opaque; 453 uint64_t val = 0xfffffffffffffffful; 454 455 switch (addr) { 456 case LPC_HC_FW_SEG_IDSEL: 457 val = lpc->lpc_hc_fw_seg_idsel; 458 break; 459 case LPC_HC_FW_RD_ACC_SIZE: 460 val = lpc->lpc_hc_fw_rd_acc_size; 461 break; 462 case LPC_HC_IRQSER_CTRL: 463 val = lpc->lpc_hc_irqser_ctrl; 464 break; 465 case LPC_HC_IRQMASK: 466 val = lpc->lpc_hc_irqmask; 467 break; 468 case LPC_HC_IRQSTAT: 469 val = lpc->lpc_hc_irqstat; 470 break; 471 case LPC_HC_ERROR_ADDRESS: 472 val = lpc->lpc_hc_error_addr; 473 break; 474 default: 475 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%" 476 HWADDR_PRIx "\n", addr); 477 } 478 return val; 479 } 480 481 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val, 482 unsigned size) 483 { 484 PnvLpcController *lpc = opaque; 485 486 /* XXX Filter out reserved bits */ 487 488 switch (addr) { 489 case LPC_HC_FW_SEG_IDSEL: 490 /* XXX Actually figure out how that works as this impact 491 * memory regions/aliases 492 */ 493 lpc->lpc_hc_fw_seg_idsel = val; 494 break; 495 case LPC_HC_FW_RD_ACC_SIZE: 496 lpc->lpc_hc_fw_rd_acc_size = val; 497 break; 498 case LPC_HC_IRQSER_CTRL: 499 lpc->lpc_hc_irqser_ctrl = val; 500 pnv_lpc_eval_irqs(lpc); 501 break; 502 case LPC_HC_IRQMASK: 503 lpc->lpc_hc_irqmask = val; 504 pnv_lpc_eval_irqs(lpc); 505 break; 506 case LPC_HC_IRQSTAT: 507 lpc->lpc_hc_irqstat &= ~val; 508 pnv_lpc_eval_irqs(lpc); 509 break; 510 case LPC_HC_ERROR_ADDRESS: 511 break; 512 default: 513 qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%" 514 HWADDR_PRIx "\n", addr); 515 } 516 } 517 518 static const MemoryRegionOps lpc_hc_ops = { 519 .read = lpc_hc_read, 520 .write = lpc_hc_write, 521 .endianness = DEVICE_BIG_ENDIAN, 522 .valid = { 523 .min_access_size = 4, 524 .max_access_size = 4, 525 }, 526 .impl = { 527 .min_access_size = 4, 528 .max_access_size = 4, 529 }, 530 }; 531 532 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size) 533 { 534 PnvLpcController *lpc = opaque; 535 uint64_t val = 0xfffffffffffffffful; 536 537 switch (addr) { 538 case OPB_MASTER_LS_ROUTE0: /* TODO */ 539 val = lpc->opb_irq_route0; 540 break; 541 case OPB_MASTER_LS_ROUTE1: /* TODO */ 542 val = lpc->opb_irq_route1; 543 break; 544 case OPB_MASTER_LS_IRQ_STAT: 545 val = lpc->opb_irq_stat; 546 break; 547 case OPB_MASTER_LS_IRQ_MASK: 548 val = lpc->opb_irq_mask; 549 break; 550 case OPB_MASTER_LS_IRQ_POL: 551 val = lpc->opb_irq_pol; 552 break; 553 case OPB_MASTER_LS_IRQ_INPUT: 554 val = lpc->opb_irq_input; 555 break; 556 default: 557 qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%" 558 HWADDR_PRIx "\n", addr); 559 } 560 561 return val; 562 } 563 564 static void opb_master_write(void *opaque, hwaddr addr, 565 uint64_t val, unsigned size) 566 { 567 PnvLpcController *lpc = opaque; 568 569 switch (addr) { 570 case OPB_MASTER_LS_ROUTE0: /* TODO */ 571 lpc->opb_irq_route0 = val; 572 break; 573 case OPB_MASTER_LS_ROUTE1: /* TODO */ 574 lpc->opb_irq_route1 = val; 575 break; 576 case OPB_MASTER_LS_IRQ_STAT: 577 lpc->opb_irq_stat &= ~val; 578 pnv_lpc_eval_irqs(lpc); 579 break; 580 case OPB_MASTER_LS_IRQ_MASK: 581 lpc->opb_irq_mask = val; 582 pnv_lpc_eval_irqs(lpc); 583 break; 584 case OPB_MASTER_LS_IRQ_POL: 585 lpc->opb_irq_pol = val; 586 pnv_lpc_eval_irqs(lpc); 587 break; 588 case OPB_MASTER_LS_IRQ_INPUT: 589 /* Read only */ 590 break; 591 default: 592 qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%" 593 HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val); 594 } 595 } 596 597 static const MemoryRegionOps opb_master_ops = { 598 .read = opb_master_read, 599 .write = opb_master_write, 600 .endianness = DEVICE_BIG_ENDIAN, 601 .valid = { 602 .min_access_size = 4, 603 .max_access_size = 4, 604 }, 605 .impl = { 606 .min_access_size = 4, 607 .max_access_size = 4, 608 }, 609 }; 610 611 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp) 612 { 613 PnvLpcController *lpc = PNV_LPC(dev); 614 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev); 615 Error *local_err = NULL; 616 617 plc->parent_realize(dev, &local_err); 618 if (local_err) { 619 error_propagate(errp, local_err); 620 return; 621 } 622 623 /* P8 uses a XSCOM region for LPC registers */ 624 pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc), 625 &pnv_lpc_xscom_ops, lpc, "xscom-lpc", 626 PNV_XSCOM_LPC_SIZE); 627 } 628 629 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data) 630 { 631 DeviceClass *dc = DEVICE_CLASS(klass); 632 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); 633 PnvLpcClass *plc = PNV_LPC_CLASS(klass); 634 635 dc->desc = "PowerNV LPC Controller POWER8"; 636 637 xdc->dt_xscom = pnv_lpc_dt_xscom; 638 639 device_class_set_parent_realize(dc, pnv_lpc_power8_realize, 640 &plc->parent_realize); 641 } 642 643 static const TypeInfo pnv_lpc_power8_info = { 644 .name = TYPE_PNV8_LPC, 645 .parent = TYPE_PNV_LPC, 646 .class_init = pnv_lpc_power8_class_init, 647 .interfaces = (InterfaceInfo[]) { 648 { TYPE_PNV_XSCOM_INTERFACE }, 649 { } 650 } 651 }; 652 653 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp) 654 { 655 PnvLpcController *lpc = PNV_LPC(dev); 656 PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev); 657 Error *local_err = NULL; 658 659 plc->parent_realize(dev, &local_err); 660 if (local_err) { 661 error_propagate(errp, local_err); 662 return; 663 } 664 665 /* P9 uses a MMIO region */ 666 memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops, 667 lpc, "lpcm", PNV9_LPCM_SIZE); 668 } 669 670 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data) 671 { 672 DeviceClass *dc = DEVICE_CLASS(klass); 673 PnvLpcClass *plc = PNV_LPC_CLASS(klass); 674 675 dc->desc = "PowerNV LPC Controller POWER9"; 676 677 device_class_set_parent_realize(dc, pnv_lpc_power9_realize, 678 &plc->parent_realize); 679 } 680 681 static const TypeInfo pnv_lpc_power9_info = { 682 .name = TYPE_PNV9_LPC, 683 .parent = TYPE_PNV_LPC, 684 .class_init = pnv_lpc_power9_class_init, 685 }; 686 687 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data) 688 { 689 DeviceClass *dc = DEVICE_CLASS(klass); 690 691 dc->desc = "PowerNV LPC Controller POWER10"; 692 } 693 694 static const TypeInfo pnv_lpc_power10_info = { 695 .name = TYPE_PNV10_LPC, 696 .parent = TYPE_PNV9_LPC, 697 .class_init = pnv_lpc_power10_class_init, 698 }; 699 700 static void pnv_lpc_realize(DeviceState *dev, Error **errp) 701 { 702 PnvLpcController *lpc = PNV_LPC(dev); 703 704 /* Reg inits */ 705 lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B; 706 707 /* Create address space and backing MR for the OPB bus */ 708 memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull); 709 address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb"); 710 711 /* Create ISA IO and Mem space regions which are the root of 712 * the ISA bus (ie, ISA address spaces). We don't create a 713 * separate one for FW which we alias to memory. 714 */ 715 memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE); 716 memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE); 717 memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE); 718 719 /* Create windows from the OPB space to the ISA space */ 720 memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io", 721 &lpc->isa_io, 0, LPC_IO_OPB_SIZE); 722 memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR, 723 &lpc->opb_isa_io); 724 memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem", 725 &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE); 726 memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR, 727 &lpc->opb_isa_mem); 728 memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw", 729 &lpc->isa_fw, 0, LPC_FW_OPB_SIZE); 730 memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR, 731 &lpc->opb_isa_fw); 732 733 /* Create MMIO regions for LPC HC and OPB registers */ 734 memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops, 735 lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE); 736 memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR, 737 &lpc->opb_master_regs); 738 memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc, 739 "lpc-hc", LPC_HC_REGS_OPB_SIZE); 740 memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR, 741 &lpc->lpc_hc_regs); 742 743 qdev_init_gpio_out(DEVICE(dev), &lpc->psi_irq, 1); 744 } 745 746 static void pnv_lpc_class_init(ObjectClass *klass, void *data) 747 { 748 DeviceClass *dc = DEVICE_CLASS(klass); 749 750 dc->realize = pnv_lpc_realize; 751 dc->desc = "PowerNV LPC Controller"; 752 dc->user_creatable = false; 753 } 754 755 static const TypeInfo pnv_lpc_info = { 756 .name = TYPE_PNV_LPC, 757 .parent = TYPE_DEVICE, 758 .instance_size = sizeof(PnvLpcController), 759 .class_init = pnv_lpc_class_init, 760 .class_size = sizeof(PnvLpcClass), 761 .abstract = true, 762 }; 763 764 static void pnv_lpc_register_types(void) 765 { 766 type_register_static(&pnv_lpc_info); 767 type_register_static(&pnv_lpc_power8_info); 768 type_register_static(&pnv_lpc_power9_info); 769 type_register_static(&pnv_lpc_power10_info); 770 } 771 772 type_init(pnv_lpc_register_types) 773 774 /* If we don't use the built-in LPC interrupt deserializer, we need 775 * to provide a set of qirqs for the ISA bus or things will go bad. 776 * 777 * Most machines using pre-Naples chips (without said deserializer) 778 * have a CPLD that will collect the SerIRQ and shoot them as a 779 * single level interrupt to the P8 chip. So let's setup a hook 780 * for doing just that. 781 */ 782 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level) 783 { 784 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 785 uint32_t old_state = pnv->cpld_irqstate; 786 PnvLpcController *lpc = PNV_LPC(opaque); 787 788 if (level) { 789 pnv->cpld_irqstate |= 1u << n; 790 } else { 791 pnv->cpld_irqstate &= ~(1u << n); 792 } 793 794 if (pnv->cpld_irqstate != old_state) { 795 qemu_set_irq(lpc->psi_irq, pnv->cpld_irqstate != 0); 796 } 797 } 798 799 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level) 800 { 801 PnvLpcController *lpc = PNV_LPC(opaque); 802 803 /* The Naples HW latches the 1 levels, clearing is done by SW */ 804 if (level) { 805 lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n; 806 pnv_lpc_eval_irqs(lpc); 807 } 808 } 809 810 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp) 811 { 812 Error *local_err = NULL; 813 ISABus *isa_bus; 814 qemu_irq *irqs; 815 qemu_irq_handler handler; 816 817 /* let isa_bus_new() create its own bridge on SysBus otherwise 818 * devices specified on the command line won't find the bus and 819 * will fail to create. 820 */ 821 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err); 822 if (local_err) { 823 error_propagate(errp, local_err); 824 return NULL; 825 } 826 827 /* Not all variants have a working serial irq decoder. If not, 828 * handling of LPC interrupts becomes a platform issue (some 829 * platforms have a CPLD to do it). 830 */ 831 if (use_cpld) { 832 handler = pnv_lpc_isa_irq_handler_cpld; 833 } else { 834 handler = pnv_lpc_isa_irq_handler; 835 } 836 837 irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS); 838 839 isa_bus_irqs(isa_bus, irqs); 840 841 return isa_bus; 842 } 843