xref: /openbmc/qemu/hw/ppc/pnv_lpc.c (revision 5aa62804)
1 /*
2  * QEMU PowerPC PowerNV LPC controller
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "target/ppc/cpu.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "hw/irq.h"
26 #include "hw/isa/isa.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ppc/pnv.h"
29 #include "hw/ppc/pnv_lpc.h"
30 #include "hw/ppc/pnv_xscom.h"
31 #include "hw/ppc/fdt.h"
32 
33 #include <libfdt.h>
34 
35 enum {
36     ECCB_CTL    = 0,
37     ECCB_RESET  = 1,
38     ECCB_STAT   = 2,
39     ECCB_DATA   = 3,
40 };
41 
42 /* OPB Master LS registers */
43 #define OPB_MASTER_LS_ROUTE0    0x8
44 #define OPB_MASTER_LS_ROUTE1    0xC
45 #define OPB_MASTER_LS_IRQ_STAT  0x50
46 #define   OPB_MASTER_IRQ_LPC            0x00000800
47 #define OPB_MASTER_LS_IRQ_MASK  0x54
48 #define OPB_MASTER_LS_IRQ_POL   0x58
49 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
50 
51 /* LPC HC registers */
52 #define LPC_HC_FW_SEG_IDSEL     0x24
53 #define LPC_HC_FW_RD_ACC_SIZE   0x28
54 #define   LPC_HC_FW_RD_1B               0x00000000
55 #define   LPC_HC_FW_RD_2B               0x01000000
56 #define   LPC_HC_FW_RD_4B               0x02000000
57 #define   LPC_HC_FW_RD_16B              0x04000000
58 #define   LPC_HC_FW_RD_128B             0x07000000
59 #define LPC_HC_IRQSER_CTRL      0x30
60 #define   LPC_HC_IRQSER_EN              0x80000000
61 #define   LPC_HC_IRQSER_QMODE           0x40000000
62 #define   LPC_HC_IRQSER_START_MASK      0x03000000
63 #define   LPC_HC_IRQSER_START_4CLK      0x00000000
64 #define   LPC_HC_IRQSER_START_6CLK      0x01000000
65 #define   LPC_HC_IRQSER_START_8CLK      0x02000000
66 #define LPC_HC_IRQMASK          0x34    /* same bit defs as LPC_HC_IRQSTAT */
67 #define LPC_HC_IRQSTAT          0x38
68 #define   LPC_HC_IRQ_SERIRQ0            0x80000000 /* all bits down to ... */
69 #define   LPC_HC_IRQ_SERIRQ16           0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
70 #define   LPC_HC_IRQ_SERIRQ_ALL         0xffff8000
71 #define   LPC_HC_IRQ_LRESET             0x00000400
72 #define   LPC_HC_IRQ_SYNC_ABNORM_ERR    0x00000080
73 #define   LPC_HC_IRQ_SYNC_NORESP_ERR    0x00000040
74 #define   LPC_HC_IRQ_SYNC_NORM_ERR      0x00000020
75 #define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR   0x00000010
76 #define   LPC_HC_IRQ_SYNC_TARG_TAR_ERR  0x00000008
77 #define   LPC_HC_IRQ_SYNC_BM_TAR_ERR    0x00000004
78 #define   LPC_HC_IRQ_SYNC_BM0_REQ       0x00000002
79 #define   LPC_HC_IRQ_SYNC_BM1_REQ       0x00000001
80 #define LPC_HC_ERROR_ADDRESS    0x40
81 
82 #define LPC_OPB_SIZE            0x100000000ull
83 
84 #define ISA_IO_SIZE             0x00010000
85 #define ISA_MEM_SIZE            0x10000000
86 #define ISA_FW_SIZE             0x10000000
87 #define LPC_IO_OPB_ADDR         0xd0010000
88 #define LPC_IO_OPB_SIZE         0x00010000
89 #define LPC_MEM_OPB_ADDR        0xe0000000
90 #define LPC_MEM_OPB_SIZE        0x10000000
91 #define LPC_FW_OPB_ADDR         0xf0000000
92 #define LPC_FW_OPB_SIZE         0x10000000
93 
94 #define LPC_OPB_REGS_OPB_ADDR   0xc0010000
95 #define LPC_OPB_REGS_OPB_SIZE   0x00000060
96 #define LPC_OPB_REGS_OPBA_ADDR  0xc0011000
97 #define LPC_OPB_REGS_OPBA_SIZE  0x00000008
98 #define LPC_HC_REGS_OPB_ADDR    0xc0012000
99 #define LPC_HC_REGS_OPB_SIZE    0x00000100
100 
101 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
102 {
103     const char compat[] = "ibm,power8-lpc\0ibm,lpc";
104     char *name;
105     int offset;
106     uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
107     uint32_t reg[] = {
108         cpu_to_be32(lpc_pcba),
109         cpu_to_be32(PNV_XSCOM_LPC_SIZE)
110     };
111 
112     name = g_strdup_printf("isa@%x", lpc_pcba);
113     offset = fdt_add_subnode(fdt, xscom_offset, name);
114     _FDT(offset);
115     g_free(name);
116 
117     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
118     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
119     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
120     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
121     return 0;
122 }
123 
124 /* POWER9 only */
125 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
126                uint64_t lpcm_size)
127 {
128     const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
129     const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
130     char *name;
131     int offset, lpcm_offset;
132     uint32_t opb_ranges[8] = { 0,
133                                cpu_to_be32(lpcm_addr >> 32),
134                                cpu_to_be32((uint32_t)lpcm_addr),
135                                cpu_to_be32(lpcm_size / 2),
136                                cpu_to_be32(lpcm_size / 2),
137                                cpu_to_be32(lpcm_addr >> 32),
138                                cpu_to_be32(lpcm_size / 2),
139                                cpu_to_be32(lpcm_size / 2),
140     };
141     uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
142                             cpu_to_be32((uint32_t)lpcm_addr),
143                             cpu_to_be32(lpcm_size >> 32),
144                             cpu_to_be32((uint32_t)lpcm_size),
145     };
146     uint32_t lpc_ranges[12] = { 0, 0,
147                                 cpu_to_be32(LPC_MEM_OPB_ADDR),
148                                 cpu_to_be32(LPC_MEM_OPB_SIZE),
149                                 cpu_to_be32(1), 0,
150                                 cpu_to_be32(LPC_IO_OPB_ADDR),
151                                 cpu_to_be32(LPC_IO_OPB_SIZE),
152                                 cpu_to_be32(3), 0,
153                                 cpu_to_be32(LPC_FW_OPB_ADDR),
154                                 cpu_to_be32(LPC_FW_OPB_SIZE),
155     };
156     uint32_t reg[2];
157 
158     /*
159      * OPB bus
160      */
161     name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
162     lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
163     _FDT(lpcm_offset);
164     g_free(name);
165 
166     _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
167     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
168     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
169     _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
170     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
171     _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
172                       sizeof(opb_ranges))));
173 
174     /*
175      * OPB Master registers
176      */
177     name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
178     offset = fdt_add_subnode(fdt, lpcm_offset, name);
179     _FDT(offset);
180     g_free(name);
181 
182     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
183     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
184     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
185     _FDT((fdt_setprop_string(fdt, offset, "compatible",
186                              "ibm,power9-lpcm-opb-master")));
187 
188     /*
189      * OPB arbitrer registers
190      */
191     name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
192     offset = fdt_add_subnode(fdt, lpcm_offset, name);
193     _FDT(offset);
194     g_free(name);
195 
196     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
197     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
198     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
199     _FDT((fdt_setprop_string(fdt, offset, "compatible",
200                              "ibm,power9-lpcm-opb-arbiter")));
201 
202     /*
203      * LPC Host Controller registers
204      */
205     name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
206     offset = fdt_add_subnode(fdt, lpcm_offset, name);
207     _FDT(offset);
208     g_free(name);
209 
210     reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
211     reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
212     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
213     _FDT((fdt_setprop_string(fdt, offset, "compatible",
214                              "ibm,power9-lpc-controller")));
215 
216     name = g_strdup_printf("lpc@0");
217     offset = fdt_add_subnode(fdt, lpcm_offset, name);
218     _FDT(offset);
219     g_free(name);
220     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
221     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
222     _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
223                       sizeof(lpc_compat))));
224     _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
225                       sizeof(lpc_ranges))));
226 
227     return 0;
228 }
229 
230 /*
231  * These read/write handlers of the OPB address space should be common
232  * with the P9 LPC Controller which uses direct MMIOs.
233  *
234  * TODO: rework to use address_space_stq() and address_space_ldq()
235  * instead.
236  */
237 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
238                      int sz)
239 {
240     /* XXX Handle access size limits and FW read caching here */
241     return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
242                                data, sz);
243 }
244 
245 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
246                       int sz)
247 {
248     /* XXX Handle access size limits here */
249     return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
250                                 data, sz);
251 }
252 
253 #define ECCB_CTL_READ           PPC_BIT(15)
254 #define ECCB_CTL_SZ_LSH         (63 - 7)
255 #define ECCB_CTL_SZ_MASK        PPC_BITMASK(4, 7)
256 #define ECCB_CTL_ADDR_MASK      PPC_BITMASK(32, 63)
257 
258 #define ECCB_STAT_OP_DONE       PPC_BIT(52)
259 #define ECCB_STAT_OP_ERR        PPC_BIT(52)
260 #define ECCB_STAT_RD_DATA_LSH   (63 - 37)
261 #define ECCB_STAT_RD_DATA_MASK  (0xffffffff << ECCB_STAT_RD_DATA_LSH)
262 
263 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
264 {
265     /* XXX Check for magic bits at the top, addr size etc... */
266     unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
267     uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
268     uint8_t data[8];
269     bool success;
270 
271     if (sz > sizeof(data)) {
272         qemu_log_mask(LOG_GUEST_ERROR,
273             "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
274         return;
275     }
276 
277     if (cmd & ECCB_CTL_READ) {
278         success = opb_read(lpc, opb_addr, data, sz);
279         if (success) {
280             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
281                     (((uint64_t)data[0]) << 24 |
282                      ((uint64_t)data[1]) << 16 |
283                      ((uint64_t)data[2]) <<  8 |
284                      ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
285         } else {
286             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
287                     (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
288         }
289     } else {
290         data[0] = lpc->eccb_data_reg >> 24;
291         data[1] = lpc->eccb_data_reg >> 16;
292         data[2] = lpc->eccb_data_reg >>  8;
293         data[3] = lpc->eccb_data_reg;
294 
295         success = opb_write(lpc, opb_addr, data, sz);
296         lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
297     }
298     /* XXX Which error bit (if any) to signal OPB error ? */
299 }
300 
301 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
302 {
303     PnvLpcController *lpc = PNV_LPC(opaque);
304     uint32_t offset = addr >> 3;
305     uint64_t val = 0;
306 
307     switch (offset & 3) {
308     case ECCB_CTL:
309     case ECCB_RESET:
310         val = 0;
311         break;
312     case ECCB_STAT:
313         val = lpc->eccb_stat_reg;
314         lpc->eccb_stat_reg = 0;
315         break;
316     case ECCB_DATA:
317         val = ((uint64_t)lpc->eccb_data_reg) << 32;
318         break;
319     }
320     return val;
321 }
322 
323 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
324                                 uint64_t val, unsigned size)
325 {
326     PnvLpcController *lpc = PNV_LPC(opaque);
327     uint32_t offset = addr >> 3;
328 
329     switch (offset & 3) {
330     case ECCB_CTL:
331         pnv_lpc_do_eccb(lpc, val);
332         break;
333     case ECCB_RESET:
334         /*  XXXX  */
335         break;
336     case ECCB_STAT:
337         break;
338     case ECCB_DATA:
339         lpc->eccb_data_reg = val >> 32;
340         break;
341     }
342 }
343 
344 static const MemoryRegionOps pnv_lpc_xscom_ops = {
345     .read = pnv_lpc_xscom_read,
346     .write = pnv_lpc_xscom_write,
347     .valid.min_access_size = 8,
348     .valid.max_access_size = 8,
349     .impl.min_access_size = 8,
350     .impl.max_access_size = 8,
351     .endianness = DEVICE_BIG_ENDIAN,
352 };
353 
354 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
355 {
356     PnvLpcController *lpc = PNV_LPC(opaque);
357     uint64_t val = 0;
358     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
359     MemTxResult result;
360 
361     switch (size) {
362     case 4:
363         val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
364                                 &result);
365         break;
366     case 1:
367         val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
368                                  &result);
369         break;
370     default:
371         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
372                       HWADDR_PRIx " invalid size %d\n", addr, size);
373         return 0;
374     }
375 
376     if (result != MEMTX_OK) {
377         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
378                       HWADDR_PRIx "\n", addr);
379     }
380 
381     return val;
382 }
383 
384 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
385                                 uint64_t val, unsigned size)
386 {
387     PnvLpcController *lpc = PNV_LPC(opaque);
388     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
389     MemTxResult result;
390 
391     switch (size) {
392     case 4:
393         address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
394                           &result);
395          break;
396     case 1:
397         address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
398                           &result);
399         break;
400     default:
401         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
402                       HWADDR_PRIx " invalid size %d\n", addr, size);
403         return;
404     }
405 
406     if (result != MEMTX_OK) {
407         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
408                       HWADDR_PRIx "\n", addr);
409     }
410 }
411 
412 static const MemoryRegionOps pnv_lpc_mmio_ops = {
413     .read = pnv_lpc_mmio_read,
414     .write = pnv_lpc_mmio_write,
415     .impl = {
416         .min_access_size = 1,
417         .max_access_size = 4,
418     },
419     .endianness = DEVICE_BIG_ENDIAN,
420 };
421 
422 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
423 {
424     bool lpc_to_opb_irq = false;
425     PnvLpcClass *plc = PNV_LPC_GET_CLASS(lpc);
426 
427     /* Update LPC controller to OPB line */
428     if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
429         uint32_t irqs;
430 
431         irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
432         lpc_to_opb_irq = (irqs != 0);
433     }
434 
435     /* We don't honor the polarity register, it's pointless and unused
436      * anyway
437      */
438     if (lpc_to_opb_irq) {
439         lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
440     } else {
441         lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
442     }
443 
444     /* Update OPB internal latch */
445     lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
446 
447     /* Reflect the interrupt */
448     pnv_psi_irq_set(lpc->psi, plc->psi_irq, lpc->opb_irq_stat != 0);
449 }
450 
451 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
452 {
453     PnvLpcController *lpc = opaque;
454     uint64_t val = 0xfffffffffffffffful;
455 
456     switch (addr) {
457     case LPC_HC_FW_SEG_IDSEL:
458         val =  lpc->lpc_hc_fw_seg_idsel;
459         break;
460     case LPC_HC_FW_RD_ACC_SIZE:
461         val =  lpc->lpc_hc_fw_rd_acc_size;
462         break;
463     case LPC_HC_IRQSER_CTRL:
464         val =  lpc->lpc_hc_irqser_ctrl;
465         break;
466     case LPC_HC_IRQMASK:
467         val =  lpc->lpc_hc_irqmask;
468         break;
469     case LPC_HC_IRQSTAT:
470         val =  lpc->lpc_hc_irqstat;
471         break;
472     case LPC_HC_ERROR_ADDRESS:
473         val =  lpc->lpc_hc_error_addr;
474         break;
475     default:
476         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
477                       HWADDR_PRIx "\n", addr);
478     }
479     return val;
480 }
481 
482 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
483                          unsigned size)
484 {
485     PnvLpcController *lpc = opaque;
486 
487     /* XXX Filter out reserved bits */
488 
489     switch (addr) {
490     case LPC_HC_FW_SEG_IDSEL:
491         /* XXX Actually figure out how that works as this impact
492          * memory regions/aliases
493          */
494         lpc->lpc_hc_fw_seg_idsel = val;
495         break;
496     case LPC_HC_FW_RD_ACC_SIZE:
497         lpc->lpc_hc_fw_rd_acc_size = val;
498         break;
499     case LPC_HC_IRQSER_CTRL:
500         lpc->lpc_hc_irqser_ctrl = val;
501         pnv_lpc_eval_irqs(lpc);
502         break;
503     case LPC_HC_IRQMASK:
504         lpc->lpc_hc_irqmask = val;
505         pnv_lpc_eval_irqs(lpc);
506         break;
507     case LPC_HC_IRQSTAT:
508         lpc->lpc_hc_irqstat &= ~val;
509         pnv_lpc_eval_irqs(lpc);
510         break;
511     case LPC_HC_ERROR_ADDRESS:
512         break;
513     default:
514         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
515                       HWADDR_PRIx "\n", addr);
516     }
517 }
518 
519 static const MemoryRegionOps lpc_hc_ops = {
520     .read = lpc_hc_read,
521     .write = lpc_hc_write,
522     .endianness = DEVICE_BIG_ENDIAN,
523     .valid = {
524         .min_access_size = 4,
525         .max_access_size = 4,
526     },
527     .impl = {
528         .min_access_size = 4,
529         .max_access_size = 4,
530     },
531 };
532 
533 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
534 {
535     PnvLpcController *lpc = opaque;
536     uint64_t val = 0xfffffffffffffffful;
537 
538     switch (addr) {
539     case OPB_MASTER_LS_ROUTE0: /* TODO */
540         val = lpc->opb_irq_route0;
541         break;
542     case OPB_MASTER_LS_ROUTE1: /* TODO */
543         val = lpc->opb_irq_route1;
544         break;
545     case OPB_MASTER_LS_IRQ_STAT:
546         val = lpc->opb_irq_stat;
547         break;
548     case OPB_MASTER_LS_IRQ_MASK:
549         val = lpc->opb_irq_mask;
550         break;
551     case OPB_MASTER_LS_IRQ_POL:
552         val = lpc->opb_irq_pol;
553         break;
554     case OPB_MASTER_LS_IRQ_INPUT:
555         val = lpc->opb_irq_input;
556         break;
557     default:
558         qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
559                       HWADDR_PRIx "\n", addr);
560     }
561 
562     return val;
563 }
564 
565 static void opb_master_write(void *opaque, hwaddr addr,
566                              uint64_t val, unsigned size)
567 {
568     PnvLpcController *lpc = opaque;
569 
570     switch (addr) {
571     case OPB_MASTER_LS_ROUTE0: /* TODO */
572         lpc->opb_irq_route0 = val;
573         break;
574     case OPB_MASTER_LS_ROUTE1: /* TODO */
575         lpc->opb_irq_route1 = val;
576         break;
577     case OPB_MASTER_LS_IRQ_STAT:
578         lpc->opb_irq_stat &= ~val;
579         pnv_lpc_eval_irqs(lpc);
580         break;
581     case OPB_MASTER_LS_IRQ_MASK:
582         lpc->opb_irq_mask = val;
583         pnv_lpc_eval_irqs(lpc);
584         break;
585     case OPB_MASTER_LS_IRQ_POL:
586         lpc->opb_irq_pol = val;
587         pnv_lpc_eval_irqs(lpc);
588         break;
589     case OPB_MASTER_LS_IRQ_INPUT:
590         /* Read only */
591         break;
592     default:
593         qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
594                       HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
595     }
596 }
597 
598 static const MemoryRegionOps opb_master_ops = {
599     .read = opb_master_read,
600     .write = opb_master_write,
601     .endianness = DEVICE_BIG_ENDIAN,
602     .valid = {
603         .min_access_size = 4,
604         .max_access_size = 4,
605     },
606     .impl = {
607         .min_access_size = 4,
608         .max_access_size = 4,
609     },
610 };
611 
612 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
613 {
614     PnvLpcController *lpc = PNV_LPC(dev);
615     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
616     Error *local_err = NULL;
617 
618     plc->parent_realize(dev, &local_err);
619     if (local_err) {
620         error_propagate(errp, local_err);
621         return;
622     }
623 
624     /* P8 uses a XSCOM region for LPC registers */
625     pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
626                           &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
627                           PNV_XSCOM_LPC_SIZE);
628 }
629 
630 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
631 {
632     DeviceClass *dc = DEVICE_CLASS(klass);
633     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
634     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
635 
636     dc->desc = "PowerNV LPC Controller POWER8";
637 
638     xdc->dt_xscom = pnv_lpc_dt_xscom;
639 
640     plc->psi_irq = PSIHB_IRQ_LPC_I2C;
641 
642     device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
643                                     &plc->parent_realize);
644 }
645 
646 static const TypeInfo pnv_lpc_power8_info = {
647     .name          = TYPE_PNV8_LPC,
648     .parent        = TYPE_PNV_LPC,
649     .instance_size = sizeof(PnvLpcController),
650     .class_init    = pnv_lpc_power8_class_init,
651     .interfaces = (InterfaceInfo[]) {
652         { TYPE_PNV_XSCOM_INTERFACE },
653         { }
654     }
655 };
656 
657 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
658 {
659     PnvLpcController *lpc = PNV_LPC(dev);
660     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
661     Error *local_err = NULL;
662 
663     plc->parent_realize(dev, &local_err);
664     if (local_err) {
665         error_propagate(errp, local_err);
666         return;
667     }
668 
669     /* P9 uses a MMIO region */
670     memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
671                           lpc, "lpcm", PNV9_LPCM_SIZE);
672 }
673 
674 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
675 {
676     DeviceClass *dc = DEVICE_CLASS(klass);
677     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
678 
679     dc->desc = "PowerNV LPC Controller POWER9";
680 
681     plc->psi_irq = PSIHB9_IRQ_LPCHC;
682 
683     device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
684                                     &plc->parent_realize);
685 }
686 
687 static const TypeInfo pnv_lpc_power9_info = {
688     .name          = TYPE_PNV9_LPC,
689     .parent        = TYPE_PNV_LPC,
690     .instance_size = sizeof(PnvLpcController),
691     .class_init    = pnv_lpc_power9_class_init,
692 };
693 
694 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
695 {
696     DeviceClass *dc = DEVICE_CLASS(klass);
697 
698     dc->desc = "PowerNV LPC Controller POWER10";
699 }
700 
701 static const TypeInfo pnv_lpc_power10_info = {
702     .name          = TYPE_PNV10_LPC,
703     .parent        = TYPE_PNV9_LPC,
704     .class_init    = pnv_lpc_power10_class_init,
705 };
706 
707 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
708 {
709     PnvLpcController *lpc = PNV_LPC(dev);
710 
711     assert(lpc->psi);
712 
713     /* Reg inits */
714     lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
715 
716     /* Create address space and backing MR for the OPB bus */
717     memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
718     address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
719 
720     /* Create ISA IO and Mem space regions which are the root of
721      * the ISA bus (ie, ISA address spaces). We don't create a
722      * separate one for FW which we alias to memory.
723      */
724     memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
725     memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
726     memory_region_init(&lpc->isa_fw, OBJECT(dev),  "isa-fw", ISA_FW_SIZE);
727 
728     /* Create windows from the OPB space to the ISA space */
729     memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
730                              &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
731     memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
732                                 &lpc->opb_isa_io);
733     memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
734                              &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
735     memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
736                                 &lpc->opb_isa_mem);
737     memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
738                              &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
739     memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
740                                 &lpc->opb_isa_fw);
741 
742     /* Create MMIO regions for LPC HC and OPB registers */
743     memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
744                           lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
745     memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
746                                 &lpc->opb_master_regs);
747     memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
748                           "lpc-hc", LPC_HC_REGS_OPB_SIZE);
749     memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
750                                 &lpc->lpc_hc_regs);
751 }
752 
753 static Property pnv_lpc_properties[] = {
754     DEFINE_PROP_LINK("psi", PnvLpcController, psi, TYPE_PNV_PSI, PnvPsi *),
755     DEFINE_PROP_END_OF_LIST(),
756 };
757 
758 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
759 {
760     DeviceClass *dc = DEVICE_CLASS(klass);
761 
762     dc->realize = pnv_lpc_realize;
763     dc->desc = "PowerNV LPC Controller";
764     device_class_set_props(dc, pnv_lpc_properties);
765     dc->user_creatable = false;
766 }
767 
768 static const TypeInfo pnv_lpc_info = {
769     .name          = TYPE_PNV_LPC,
770     .parent        = TYPE_DEVICE,
771     .class_init    = pnv_lpc_class_init,
772     .class_size    = sizeof(PnvLpcClass),
773     .abstract      = true,
774 };
775 
776 static void pnv_lpc_register_types(void)
777 {
778     type_register_static(&pnv_lpc_info);
779     type_register_static(&pnv_lpc_power8_info);
780     type_register_static(&pnv_lpc_power9_info);
781     type_register_static(&pnv_lpc_power10_info);
782 }
783 
784 type_init(pnv_lpc_register_types)
785 
786 /* If we don't use the built-in LPC interrupt deserializer, we need
787  * to provide a set of qirqs for the ISA bus or things will go bad.
788  *
789  * Most machines using pre-Naples chips (without said deserializer)
790  * have a CPLD that will collect the SerIRQ and shoot them as a
791  * single level interrupt to the P8 chip. So let's setup a hook
792  * for doing just that.
793  */
794 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
795 {
796     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
797     uint32_t old_state = pnv->cpld_irqstate;
798     PnvLpcController *lpc = PNV_LPC(opaque);
799 
800     if (level) {
801         pnv->cpld_irqstate |= 1u << n;
802     } else {
803         pnv->cpld_irqstate &= ~(1u << n);
804     }
805 
806     if (pnv->cpld_irqstate != old_state) {
807         pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_EXTERNAL, pnv->cpld_irqstate != 0);
808     }
809 }
810 
811 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
812 {
813     PnvLpcController *lpc = PNV_LPC(opaque);
814 
815     /* The Naples HW latches the 1 levels, clearing is done by SW */
816     if (level) {
817         lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
818         pnv_lpc_eval_irqs(lpc);
819     }
820 }
821 
822 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
823 {
824     Error *local_err = NULL;
825     ISABus *isa_bus;
826     qemu_irq *irqs;
827     qemu_irq_handler handler;
828     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
829     bool hostboot_mode = !!pnv->fw_load_addr;
830 
831     /* let isa_bus_new() create its own bridge on SysBus otherwise
832      * devices specified on the command line won't find the bus and
833      * will fail to create.
834      */
835     isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
836     if (local_err) {
837         error_propagate(errp, local_err);
838         return NULL;
839     }
840 
841     /* Not all variants have a working serial irq decoder. If not,
842      * handling of LPC interrupts becomes a platform issue (some
843      * platforms have a CPLD to do it).
844      */
845     if (use_cpld) {
846         handler = pnv_lpc_isa_irq_handler_cpld;
847     } else {
848         handler = pnv_lpc_isa_irq_handler;
849     }
850 
851     irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
852 
853     isa_bus_irqs(isa_bus, irqs);
854 
855     /*
856      * TODO: Map PNOR on the LPC FW address space on demand ?
857      */
858     memory_region_add_subregion(&lpc->isa_fw, PNOR_SPI_OFFSET,
859                                 &pnv->pnor->mmio);
860     /*
861      * Start disabled. The HIOMAP protocol will activate the mapping
862      * with HIOMAP_C_CREATE_WRITE_WINDOW
863      */
864     if (!hostboot_mode) {
865         memory_region_set_enabled(&pnv->pnor->mmio, false);
866     }
867 
868     return isa_bus;
869 }
870