xref: /openbmc/qemu/hw/ppc/pnv_lpc.c (revision 05caa062)
1 /*
2  * QEMU PowerPC PowerNV LPC controller
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "target/ppc/cpu.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "hw/irq.h"
26 #include "hw/isa/isa.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ppc/pnv.h"
29 #include "hw/ppc/pnv_chip.h"
30 #include "hw/ppc/pnv_lpc.h"
31 #include "hw/ppc/pnv_xscom.h"
32 #include "hw/ppc/fdt.h"
33 
34 #include <libfdt.h>
35 
36 enum {
37     ECCB_CTL    = 0,
38     ECCB_RESET  = 1,
39     ECCB_STAT   = 2,
40     ECCB_DATA   = 3,
41 };
42 
43 /* OPB Master LS registers */
44 #define OPB_MASTER_LS_ROUTE0    0x8
45 #define OPB_MASTER_LS_ROUTE1    0xC
46 #define OPB_MASTER_LS_IRQ_STAT  0x50
47 #define   OPB_MASTER_IRQ_LPC            0x00000800
48 #define OPB_MASTER_LS_IRQ_MASK  0x54
49 #define OPB_MASTER_LS_IRQ_POL   0x58
50 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
51 
52 /* LPC HC registers */
53 #define LPC_HC_FW_SEG_IDSEL     0x24
54 #define LPC_HC_FW_RD_ACC_SIZE   0x28
55 #define   LPC_HC_FW_RD_1B               0x00000000
56 #define   LPC_HC_FW_RD_2B               0x01000000
57 #define   LPC_HC_FW_RD_4B               0x02000000
58 #define   LPC_HC_FW_RD_16B              0x04000000
59 #define   LPC_HC_FW_RD_128B             0x07000000
60 #define LPC_HC_IRQSER_CTRL      0x30
61 #define   LPC_HC_IRQSER_EN              0x80000000
62 #define   LPC_HC_IRQSER_QMODE           0x40000000
63 #define   LPC_HC_IRQSER_START_MASK      0x03000000
64 #define   LPC_HC_IRQSER_START_4CLK      0x00000000
65 #define   LPC_HC_IRQSER_START_6CLK      0x01000000
66 #define   LPC_HC_IRQSER_START_8CLK      0x02000000
67 #define   LPC_HC_IRQSER_AUTO_CLEAR      0x00800000
68 #define LPC_HC_IRQMASK          0x34    /* same bit defs as LPC_HC_IRQSTAT */
69 #define LPC_HC_IRQSTAT          0x38
70 #define   LPC_HC_IRQ_SERIRQ0            0x80000000 /* all bits down to ... */
71 #define   LPC_HC_IRQ_SERIRQ16           0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
72 #define   LPC_HC_IRQ_SERIRQ_ALL         0xffff8000
73 #define   LPC_HC_IRQ_LRESET             0x00000400
74 #define   LPC_HC_IRQ_SYNC_ABNORM_ERR    0x00000080
75 #define   LPC_HC_IRQ_SYNC_NORESP_ERR    0x00000040
76 #define   LPC_HC_IRQ_SYNC_NORM_ERR      0x00000020
77 #define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR   0x00000010
78 #define   LPC_HC_IRQ_SYNC_TARG_TAR_ERR  0x00000008
79 #define   LPC_HC_IRQ_SYNC_BM_TAR_ERR    0x00000004
80 #define   LPC_HC_IRQ_SYNC_BM0_REQ       0x00000002
81 #define   LPC_HC_IRQ_SYNC_BM1_REQ       0x00000001
82 #define LPC_HC_ERROR_ADDRESS    0x40
83 
84 #define LPC_OPB_SIZE            0x100000000ull
85 
86 #define ISA_IO_SIZE             0x00010000
87 #define ISA_MEM_SIZE            0x10000000
88 #define ISA_FW_SIZE             0x10000000
89 #define LPC_IO_OPB_ADDR         0xd0010000
90 #define LPC_IO_OPB_SIZE         0x00010000
91 #define LPC_MEM_OPB_ADDR        0xe0000000
92 #define LPC_MEM_OPB_SIZE        0x10000000
93 #define LPC_FW_OPB_ADDR         0xf0000000
94 #define LPC_FW_OPB_SIZE         0x10000000
95 
96 #define LPC_OPB_REGS_OPB_ADDR   0xc0010000
97 #define LPC_OPB_REGS_OPB_SIZE   0x00000060
98 #define LPC_OPB_REGS_OPBA_ADDR  0xc0011000
99 #define LPC_OPB_REGS_OPBA_SIZE  0x00000008
100 #define LPC_HC_REGS_OPB_ADDR    0xc0012000
101 #define LPC_HC_REGS_OPB_SIZE    0x00000100
102 
103 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
104 {
105     const char compat[] = "ibm,power8-lpc\0ibm,lpc";
106     char *name;
107     int offset;
108     uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
109     uint32_t reg[] = {
110         cpu_to_be32(lpc_pcba),
111         cpu_to_be32(PNV_XSCOM_LPC_SIZE)
112     };
113 
114     name = g_strdup_printf("isa@%x", lpc_pcba);
115     offset = fdt_add_subnode(fdt, xscom_offset, name);
116     _FDT(offset);
117     g_free(name);
118 
119     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
120     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
121     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
122     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
123     return 0;
124 }
125 
126 /* POWER9 only */
127 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
128                uint64_t lpcm_size)
129 {
130     const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
131     const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
132     char *name;
133     int offset, lpcm_offset;
134     uint32_t opb_ranges[8] = { 0,
135                                cpu_to_be32(lpcm_addr >> 32),
136                                cpu_to_be32((uint32_t)lpcm_addr),
137                                cpu_to_be32(lpcm_size / 2),
138                                cpu_to_be32(lpcm_size / 2),
139                                cpu_to_be32(lpcm_addr >> 32),
140                                cpu_to_be32(lpcm_size / 2),
141                                cpu_to_be32(lpcm_size / 2),
142     };
143     uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
144                             cpu_to_be32((uint32_t)lpcm_addr),
145                             cpu_to_be32(lpcm_size >> 32),
146                             cpu_to_be32((uint32_t)lpcm_size),
147     };
148     uint32_t lpc_ranges[12] = { 0, 0,
149                                 cpu_to_be32(LPC_MEM_OPB_ADDR),
150                                 cpu_to_be32(LPC_MEM_OPB_SIZE),
151                                 cpu_to_be32(1), 0,
152                                 cpu_to_be32(LPC_IO_OPB_ADDR),
153                                 cpu_to_be32(LPC_IO_OPB_SIZE),
154                                 cpu_to_be32(3), 0,
155                                 cpu_to_be32(LPC_FW_OPB_ADDR),
156                                 cpu_to_be32(LPC_FW_OPB_SIZE),
157     };
158     uint32_t reg[2];
159 
160     /*
161      * OPB bus
162      */
163     name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
164     lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
165     _FDT(lpcm_offset);
166     g_free(name);
167 
168     _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
169     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
170     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
171     _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
172     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
173     _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
174                       sizeof(opb_ranges))));
175 
176     /*
177      * OPB Master registers
178      */
179     name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
180     offset = fdt_add_subnode(fdt, lpcm_offset, name);
181     _FDT(offset);
182     g_free(name);
183 
184     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
185     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
186     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
187     _FDT((fdt_setprop_string(fdt, offset, "compatible",
188                              "ibm,power9-lpcm-opb-master")));
189 
190     /*
191      * OPB arbitrer registers
192      */
193     name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
194     offset = fdt_add_subnode(fdt, lpcm_offset, name);
195     _FDT(offset);
196     g_free(name);
197 
198     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
199     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
200     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
201     _FDT((fdt_setprop_string(fdt, offset, "compatible",
202                              "ibm,power9-lpcm-opb-arbiter")));
203 
204     /*
205      * LPC Host Controller registers
206      */
207     name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
208     offset = fdt_add_subnode(fdt, lpcm_offset, name);
209     _FDT(offset);
210     g_free(name);
211 
212     reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
213     reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
214     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
215     _FDT((fdt_setprop_string(fdt, offset, "compatible",
216                              "ibm,power9-lpc-controller")));
217 
218     name = g_strdup_printf("lpc@0");
219     offset = fdt_add_subnode(fdt, lpcm_offset, name);
220     _FDT(offset);
221     g_free(name);
222     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
223     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
224     _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
225                       sizeof(lpc_compat))));
226     _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
227                       sizeof(lpc_ranges))));
228 
229     return 0;
230 }
231 
232 /*
233  * These read/write handlers of the OPB address space should be common
234  * with the P9 LPC Controller which uses direct MMIOs.
235  *
236  * TODO: rework to use address_space_stq() and address_space_ldq()
237  * instead.
238  */
239 bool pnv_lpc_opb_read(PnvLpcController *lpc, uint32_t addr,
240                       uint8_t *data, int sz)
241 {
242     /* XXX Handle access size limits and FW read caching here */
243     return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
244                                data, sz);
245 }
246 
247 bool pnv_lpc_opb_write(PnvLpcController *lpc, uint32_t addr,
248                        uint8_t *data, int sz)
249 {
250     /* XXX Handle access size limits here */
251     return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
252                                 data, sz);
253 }
254 
255 #define ECCB_CTL_READ           PPC_BIT(15)
256 #define ECCB_CTL_SZ_LSH         (63 - 7)
257 #define ECCB_CTL_SZ_MASK        PPC_BITMASK(4, 7)
258 #define ECCB_CTL_ADDR_MASK      PPC_BITMASK(32, 63)
259 
260 #define ECCB_STAT_OP_DONE       PPC_BIT(52)
261 #define ECCB_STAT_OP_ERR        PPC_BIT(52)
262 #define ECCB_STAT_RD_DATA_LSH   (63 - 37)
263 #define ECCB_STAT_RD_DATA_MASK  (0xffffffff << ECCB_STAT_RD_DATA_LSH)
264 
265 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
266 {
267     /* XXX Check for magic bits at the top, addr size etc... */
268     unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
269     uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
270     uint8_t data[8];
271     bool success;
272 
273     if (sz > sizeof(data)) {
274         qemu_log_mask(LOG_GUEST_ERROR,
275             "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
276         return;
277     }
278 
279     if (cmd & ECCB_CTL_READ) {
280         success = pnv_lpc_opb_read(lpc, opb_addr, data, sz);
281         if (success) {
282             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
283                     (((uint64_t)data[0]) << 24 |
284                      ((uint64_t)data[1]) << 16 |
285                      ((uint64_t)data[2]) <<  8 |
286                      ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
287         } else {
288             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
289                     (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
290         }
291     } else {
292         data[0] = lpc->eccb_data_reg >> 24;
293         data[1] = lpc->eccb_data_reg >> 16;
294         data[2] = lpc->eccb_data_reg >>  8;
295         data[3] = lpc->eccb_data_reg;
296 
297         success = pnv_lpc_opb_write(lpc, opb_addr, data, sz);
298         lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
299     }
300     /* XXX Which error bit (if any) to signal OPB error ? */
301 }
302 
303 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
304 {
305     PnvLpcController *lpc = PNV_LPC(opaque);
306     uint32_t offset = addr >> 3;
307     uint64_t val = 0;
308 
309     switch (offset & 3) {
310     case ECCB_CTL:
311     case ECCB_RESET:
312         val = 0;
313         break;
314     case ECCB_STAT:
315         val = lpc->eccb_stat_reg;
316         lpc->eccb_stat_reg = 0;
317         break;
318     case ECCB_DATA:
319         val = ((uint64_t)lpc->eccb_data_reg) << 32;
320         break;
321     }
322     return val;
323 }
324 
325 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
326                                 uint64_t val, unsigned size)
327 {
328     PnvLpcController *lpc = PNV_LPC(opaque);
329     uint32_t offset = addr >> 3;
330 
331     switch (offset & 3) {
332     case ECCB_CTL:
333         pnv_lpc_do_eccb(lpc, val);
334         break;
335     case ECCB_RESET:
336         /*  XXXX  */
337         break;
338     case ECCB_STAT:
339         break;
340     case ECCB_DATA:
341         lpc->eccb_data_reg = val >> 32;
342         break;
343     }
344 }
345 
346 static const MemoryRegionOps pnv_lpc_xscom_ops = {
347     .read = pnv_lpc_xscom_read,
348     .write = pnv_lpc_xscom_write,
349     .valid.min_access_size = 8,
350     .valid.max_access_size = 8,
351     .impl.min_access_size = 8,
352     .impl.max_access_size = 8,
353     .endianness = DEVICE_BIG_ENDIAN,
354 };
355 
356 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
357 {
358     PnvLpcController *lpc = PNV_LPC(opaque);
359     uint64_t val = 0;
360     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
361     MemTxResult result;
362 
363     switch (size) {
364     case 4:
365         val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
366                                 &result);
367         break;
368     case 1:
369         val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
370                                  &result);
371         break;
372     default:
373         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
374                       HWADDR_PRIx " invalid size %d\n", addr, size);
375         return 0;
376     }
377 
378     if (result != MEMTX_OK) {
379         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
380                       HWADDR_PRIx "\n", addr);
381     }
382 
383     return val;
384 }
385 
386 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
387                                 uint64_t val, unsigned size)
388 {
389     PnvLpcController *lpc = PNV_LPC(opaque);
390     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
391     MemTxResult result;
392 
393     switch (size) {
394     case 4:
395         address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
396                           &result);
397          break;
398     case 1:
399         address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
400                           &result);
401         break;
402     default:
403         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
404                       HWADDR_PRIx " invalid size %d\n", addr, size);
405         return;
406     }
407 
408     if (result != MEMTX_OK) {
409         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
410                       HWADDR_PRIx "\n", addr);
411     }
412 }
413 
414 static const MemoryRegionOps pnv_lpc_mmio_ops = {
415     .read = pnv_lpc_mmio_read,
416     .write = pnv_lpc_mmio_write,
417     .impl = {
418         .min_access_size = 1,
419         .max_access_size = 4,
420     },
421     .endianness = DEVICE_BIG_ENDIAN,
422 };
423 
424 /* Program the POWER9 LPC irq to PSI serirq routing table */
425 static void pnv_lpc_eval_serirq_routes(PnvLpcController *lpc)
426 {
427     int irq;
428 
429     if (!lpc->psi_has_serirq) {
430         if ((lpc->opb_irq_route0 & PPC_BITMASK(8, 13)) ||
431             (lpc->opb_irq_route1 & PPC_BITMASK(4, 31))) {
432             qemu_log_mask(LOG_GUEST_ERROR,
433                 "OPB: setting serirq routing on POWER8 system, ignoring.\n");
434         }
435         return;
436     }
437 
438     for (irq = 0; irq <= 13; irq++) {
439         int serirq = (lpc->opb_irq_route1 >> (31 - 5 - (irq * 2))) & 0x3;
440         lpc->irq_to_serirq_route[irq] = serirq;
441     }
442 
443     for (irq = 14; irq < ISA_NUM_IRQS; irq++) {
444         int serirq = (lpc->opb_irq_route0 >> (31 - 9 - (irq * 2))) & 0x3;
445         lpc->irq_to_serirq_route[irq] = serirq;
446     }
447 }
448 
449 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
450 {
451     uint32_t active_irqs = 0;
452 
453     if (lpc->lpc_hc_irqstat & PPC_BITMASK32(16, 31)) {
454         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented irqs in IRQSTAT: "
455                                  "0x%08"PRIx32"\n", lpc->lpc_hc_irqstat);
456     }
457 
458     if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
459         active_irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
460     }
461 
462     /* Reflect the interrupt */
463     if (!lpc->psi_has_serirq) {
464         /*
465          * POWER8 ORs all irqs together (also with LPCHC internal interrupt
466          * sources) and outputs a single line that raises the PSI LPCHC irq
467          * which then latches an OPB IRQ status register that sends the irq
468          * to PSI.
469          *
470          * We don't honor the polarity register, it's pointless and unused
471          * anyway
472          */
473         if (active_irqs) {
474             lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
475         } else {
476             lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
477         }
478 
479         /* Update OPB internal latch */
480         lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
481 
482         qemu_set_irq(lpc->psi_irq_lpchc, lpc->opb_irq_stat != 0);
483     } else {
484         /*
485          * POWER9 and POWER10 have routing fields in OPB master registers that
486          * send LPC irqs to 4 output lines that raise the PSI SERIRQ irqs.
487          * These don't appear to get latched into an OPB register like the
488          * LPCHC irqs.
489          *
490          * POWER9 LPC controller internal irqs still go via the OPB
491          * and LPCHC PSI irqs like P8, but we have no such internal sources
492          * modelled yet.
493          */
494         bool serirq_out[4] = { false, false, false, false };
495         int irq;
496 
497         for (irq = 0; irq < ISA_NUM_IRQS; irq++) {
498             if (active_irqs & (LPC_HC_IRQ_SERIRQ0 >> irq)) {
499                 serirq_out[lpc->irq_to_serirq_route[irq]] = true;
500             }
501         }
502 
503         qemu_set_irq(lpc->psi_irq_serirq[0], serirq_out[0]);
504         qemu_set_irq(lpc->psi_irq_serirq[1], serirq_out[1]);
505         qemu_set_irq(lpc->psi_irq_serirq[2], serirq_out[2]);
506         qemu_set_irq(lpc->psi_irq_serirq[3], serirq_out[3]);
507     }
508 }
509 
510 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
511 {
512     PnvLpcController *lpc = opaque;
513     uint64_t val = 0xfffffffffffffffful;
514 
515     switch (addr) {
516     case LPC_HC_FW_SEG_IDSEL:
517         val =  lpc->lpc_hc_fw_seg_idsel;
518         break;
519     case LPC_HC_FW_RD_ACC_SIZE:
520         val =  lpc->lpc_hc_fw_rd_acc_size;
521         break;
522     case LPC_HC_IRQSER_CTRL:
523         val =  lpc->lpc_hc_irqser_ctrl;
524         break;
525     case LPC_HC_IRQMASK:
526         val =  lpc->lpc_hc_irqmask;
527         break;
528     case LPC_HC_IRQSTAT:
529         val =  lpc->lpc_hc_irqstat;
530         break;
531     case LPC_HC_ERROR_ADDRESS:
532         val =  lpc->lpc_hc_error_addr;
533         break;
534     default:
535         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
536                       HWADDR_PRIx "\n", addr);
537     }
538     return val;
539 }
540 
541 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
542                          unsigned size)
543 {
544     PnvLpcController *lpc = opaque;
545 
546     /* XXX Filter out reserved bits */
547 
548     switch (addr) {
549     case LPC_HC_FW_SEG_IDSEL:
550         /* XXX Actually figure out how that works as this impact
551          * memory regions/aliases
552          */
553         lpc->lpc_hc_fw_seg_idsel = val;
554         break;
555     case LPC_HC_FW_RD_ACC_SIZE:
556         lpc->lpc_hc_fw_rd_acc_size = val;
557         break;
558     case LPC_HC_IRQSER_CTRL:
559         lpc->lpc_hc_irqser_ctrl = val;
560         pnv_lpc_eval_irqs(lpc);
561         break;
562     case LPC_HC_IRQMASK:
563         lpc->lpc_hc_irqmask = val;
564         pnv_lpc_eval_irqs(lpc);
565         break;
566     case LPC_HC_IRQSTAT:
567         /*
568          * This register is write-to-clear for the IRQSER (LPC device IRQ)
569          * status. However if the device has not de-asserted its interrupt
570          * that will just raise this IRQ status bit again. Model this by
571          * keeping track of the inputs and only clearing if the inputs are
572          * deasserted.
573          */
574         lpc->lpc_hc_irqstat &= ~(val & ~lpc->lpc_hc_irq_inputs);
575         pnv_lpc_eval_irqs(lpc);
576         break;
577     case LPC_HC_ERROR_ADDRESS:
578         break;
579     default:
580         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
581                       HWADDR_PRIx "\n", addr);
582     }
583 }
584 
585 static const MemoryRegionOps lpc_hc_ops = {
586     .read = lpc_hc_read,
587     .write = lpc_hc_write,
588     .endianness = DEVICE_BIG_ENDIAN,
589     .valid = {
590         .min_access_size = 4,
591         .max_access_size = 4,
592     },
593     .impl = {
594         .min_access_size = 4,
595         .max_access_size = 4,
596     },
597 };
598 
599 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
600 {
601     PnvLpcController *lpc = opaque;
602     uint64_t val = 0xfffffffffffffffful;
603 
604     switch (addr) {
605     case OPB_MASTER_LS_ROUTE0:
606         val = lpc->opb_irq_route0;
607         break;
608     case OPB_MASTER_LS_ROUTE1:
609         val = lpc->opb_irq_route1;
610         break;
611     case OPB_MASTER_LS_IRQ_STAT:
612         val = lpc->opb_irq_stat;
613         break;
614     case OPB_MASTER_LS_IRQ_MASK:
615         val = lpc->opb_irq_mask;
616         break;
617     case OPB_MASTER_LS_IRQ_POL:
618         val = lpc->opb_irq_pol;
619         break;
620     case OPB_MASTER_LS_IRQ_INPUT:
621         val = lpc->opb_irq_input;
622         break;
623     default:
624         qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
625                       HWADDR_PRIx "\n", addr);
626     }
627 
628     return val;
629 }
630 
631 static void opb_master_write(void *opaque, hwaddr addr,
632                              uint64_t val, unsigned size)
633 {
634     PnvLpcController *lpc = opaque;
635 
636     switch (addr) {
637     case OPB_MASTER_LS_ROUTE0:
638         lpc->opb_irq_route0 = val;
639         pnv_lpc_eval_serirq_routes(lpc);
640         pnv_lpc_eval_irqs(lpc);
641         break;
642     case OPB_MASTER_LS_ROUTE1:
643         lpc->opb_irq_route1 = val;
644         pnv_lpc_eval_serirq_routes(lpc);
645         pnv_lpc_eval_irqs(lpc);
646         break;
647     case OPB_MASTER_LS_IRQ_STAT:
648         lpc->opb_irq_stat &= ~val;
649         pnv_lpc_eval_irqs(lpc);
650         break;
651     case OPB_MASTER_LS_IRQ_MASK:
652         lpc->opb_irq_mask = val;
653         pnv_lpc_eval_irqs(lpc);
654         break;
655     case OPB_MASTER_LS_IRQ_POL:
656         lpc->opb_irq_pol = val;
657         pnv_lpc_eval_irqs(lpc);
658         break;
659     case OPB_MASTER_LS_IRQ_INPUT:
660         /* Read only */
661         break;
662     default:
663         qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
664                       HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
665     }
666 }
667 
668 static const MemoryRegionOps opb_master_ops = {
669     .read = opb_master_read,
670     .write = opb_master_write,
671     .endianness = DEVICE_BIG_ENDIAN,
672     .valid = {
673         .min_access_size = 4,
674         .max_access_size = 4,
675     },
676     .impl = {
677         .min_access_size = 4,
678         .max_access_size = 4,
679     },
680 };
681 
682 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
683 {
684     PnvLpcController *lpc = PNV_LPC(dev);
685     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
686     Error *local_err = NULL;
687 
688     plc->parent_realize(dev, &local_err);
689     if (local_err) {
690         error_propagate(errp, local_err);
691         return;
692     }
693 
694     /* P8 uses a XSCOM region for LPC registers */
695     pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
696                           &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
697                           PNV_XSCOM_LPC_SIZE);
698 }
699 
700 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
701 {
702     DeviceClass *dc = DEVICE_CLASS(klass);
703     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
704     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
705 
706     dc->desc = "PowerNV LPC Controller POWER8";
707 
708     xdc->dt_xscom = pnv_lpc_dt_xscom;
709 
710     device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
711                                     &plc->parent_realize);
712 }
713 
714 static const TypeInfo pnv_lpc_power8_info = {
715     .name          = TYPE_PNV8_LPC,
716     .parent        = TYPE_PNV_LPC,
717     .class_init    = pnv_lpc_power8_class_init,
718     .interfaces = (InterfaceInfo[]) {
719         { TYPE_PNV_XSCOM_INTERFACE },
720         { }
721     }
722 };
723 
724 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
725 {
726     PnvLpcController *lpc = PNV_LPC(dev);
727     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
728     Error *local_err = NULL;
729 
730     object_property_set_bool(OBJECT(lpc), "psi-serirq", true, &error_abort);
731 
732     plc->parent_realize(dev, &local_err);
733     if (local_err) {
734         error_propagate(errp, local_err);
735         return;
736     }
737 
738     /* P9 uses a MMIO region */
739     memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
740                           lpc, "lpcm", PNV9_LPCM_SIZE);
741 
742     /* P9 LPC routes ISA irqs to 4 PSI SERIRQ lines */
743     qdev_init_gpio_out_named(dev, lpc->psi_irq_serirq, "SERIRQ", 4);
744 }
745 
746 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
747 {
748     DeviceClass *dc = DEVICE_CLASS(klass);
749     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
750 
751     dc->desc = "PowerNV LPC Controller POWER9";
752 
753     device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
754                                     &plc->parent_realize);
755 }
756 
757 static const TypeInfo pnv_lpc_power9_info = {
758     .name          = TYPE_PNV9_LPC,
759     .parent        = TYPE_PNV_LPC,
760     .class_init    = pnv_lpc_power9_class_init,
761 };
762 
763 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
764 {
765     DeviceClass *dc = DEVICE_CLASS(klass);
766 
767     dc->desc = "PowerNV LPC Controller POWER10";
768 }
769 
770 static const TypeInfo pnv_lpc_power10_info = {
771     .name          = TYPE_PNV10_LPC,
772     .parent        = TYPE_PNV9_LPC,
773     .class_init    = pnv_lpc_power10_class_init,
774 };
775 
776 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
777 {
778     PnvLpcController *lpc = PNV_LPC(dev);
779 
780     /* Reg inits */
781     lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
782 
783     /* Create address space and backing MR for the OPB bus */
784     memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
785     address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
786 
787     /* Create ISA IO and Mem space regions which are the root of
788      * the ISA bus (ie, ISA address spaces). We don't create a
789      * separate one for FW which we alias to memory.
790      */
791     memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
792     memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
793     memory_region_init(&lpc->isa_fw, OBJECT(dev),  "isa-fw", ISA_FW_SIZE);
794 
795     /* Create windows from the OPB space to the ISA space */
796     memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
797                              &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
798     memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
799                                 &lpc->opb_isa_io);
800     memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
801                              &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
802     memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
803                                 &lpc->opb_isa_mem);
804     memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
805                              &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
806     memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
807                                 &lpc->opb_isa_fw);
808 
809     /* Create MMIO regions for LPC HC and OPB registers */
810     memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
811                           lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
812     lpc->opb_master_regs.disable_reentrancy_guard = true;
813     memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
814                                 &lpc->opb_master_regs);
815     memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
816                           "lpc-hc", LPC_HC_REGS_OPB_SIZE);
817     /* xscom writes to lpc-hc. As such mark lpc-hc re-entrancy safe */
818     lpc->lpc_hc_regs.disable_reentrancy_guard = true;
819     memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
820                                 &lpc->lpc_hc_regs);
821 
822     qdev_init_gpio_out_named(dev, &lpc->psi_irq_lpchc, "LPCHC", 1);
823 }
824 
825 static Property pnv_lpc_properties[] = {
826     DEFINE_PROP_BOOL("psi-serirq", PnvLpcController, psi_has_serirq, false),
827     DEFINE_PROP_END_OF_LIST(),
828 };
829 
830 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
831 {
832     DeviceClass *dc = DEVICE_CLASS(klass);
833 
834     device_class_set_props(dc, pnv_lpc_properties);
835     dc->realize = pnv_lpc_realize;
836     dc->desc = "PowerNV LPC Controller";
837     dc->user_creatable = false;
838 }
839 
840 static const TypeInfo pnv_lpc_info = {
841     .name          = TYPE_PNV_LPC,
842     .parent        = TYPE_DEVICE,
843     .instance_size = sizeof(PnvLpcController),
844     .class_init    = pnv_lpc_class_init,
845     .class_size    = sizeof(PnvLpcClass),
846     .abstract      = true,
847 };
848 
849 static void pnv_lpc_register_types(void)
850 {
851     type_register_static(&pnv_lpc_info);
852     type_register_static(&pnv_lpc_power8_info);
853     type_register_static(&pnv_lpc_power9_info);
854     type_register_static(&pnv_lpc_power10_info);
855 }
856 
857 type_init(pnv_lpc_register_types)
858 
859 /* If we don't use the built-in LPC interrupt deserializer, we need
860  * to provide a set of qirqs for the ISA bus or things will go bad.
861  *
862  * Most machines using pre-Naples chips (without said deserializer)
863  * have a CPLD that will collect the SerIRQ and shoot them as a
864  * single level interrupt to the P8 chip. So let's setup a hook
865  * for doing just that.
866  */
867 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
868 {
869     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
870     uint32_t old_state = pnv->cpld_irqstate;
871     PnvLpcController *lpc = PNV_LPC(opaque);
872 
873     if (level) {
874         pnv->cpld_irqstate |= 1u << n;
875     } else {
876         pnv->cpld_irqstate &= ~(1u << n);
877     }
878 
879     if (pnv->cpld_irqstate != old_state) {
880         qemu_set_irq(lpc->psi_irq_lpchc, pnv->cpld_irqstate != 0);
881     }
882 }
883 
884 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
885 {
886     PnvLpcController *lpc = PNV_LPC(opaque);
887     uint32_t irq_bit = LPC_HC_IRQ_SERIRQ0 >> n;
888 
889     if (level) {
890         lpc->lpc_hc_irq_inputs |= irq_bit;
891 
892         /*
893          * The LPC HC in Naples and later latches LPC IRQ into a bit field in
894          * the IRQSTAT register, and that drives the PSI IRQ to the IC.
895          * Software clears this bit manually (see LPC_HC_IRQSTAT handler).
896          */
897         lpc->lpc_hc_irqstat |= irq_bit;
898         pnv_lpc_eval_irqs(lpc);
899     } else {
900         lpc->lpc_hc_irq_inputs &= ~irq_bit;
901 
902         /* POWER9 adds an auto-clear mode that clears IRQSTAT bits on EOI */
903         if (lpc->psi_has_serirq &&
904             (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_AUTO_CLEAR)) {
905             lpc->lpc_hc_irqstat &= ~irq_bit;
906             pnv_lpc_eval_irqs(lpc);
907         }
908     }
909 }
910 
911 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
912 {
913     Error *local_err = NULL;
914     ISABus *isa_bus;
915     qemu_irq *irqs;
916     qemu_irq_handler handler;
917 
918     /* let isa_bus_new() create its own bridge on SysBus otherwise
919      * devices specified on the command line won't find the bus and
920      * will fail to create.
921      */
922     isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
923     if (local_err) {
924         error_propagate(errp, local_err);
925         return NULL;
926     }
927 
928     /* Not all variants have a working serial irq decoder. If not,
929      * handling of LPC interrupts becomes a platform issue (some
930      * platforms have a CPLD to do it).
931      */
932     if (use_cpld) {
933         handler = pnv_lpc_isa_irq_handler_cpld;
934     } else {
935         handler = pnv_lpc_isa_irq_handler;
936     }
937 
938     /* POWER has a 17th irq, QEMU only implements the 16 regular device irqs */
939     irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
940 
941     isa_bus_register_input_irqs(isa_bus, irqs);
942 
943     return isa_bus;
944 }
945