xref: /openbmc/qemu/hw/ppc/pnv_core.c (revision c8891955086b2fa795efb7fa0e409e32f25e5447)
1 /*
2  * QEMU PowerPC PowerNV CPU Core model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public License
8  * as published by the Free Software Foundation; either version 2.1 of
9  * the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "sysemu/reset.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "target/ppc/cpu.h"
26 #include "hw/ppc/ppc.h"
27 #include "hw/ppc/pnv.h"
28 #include "hw/ppc/pnv_chip.h"
29 #include "hw/ppc/pnv_core.h"
30 #include "hw/ppc/pnv_xscom.h"
31 #include "hw/ppc/xics.h"
32 #include "hw/qdev-properties.h"
33 #include "helper_regs.h"
34 
35 static const char *pnv_core_cpu_typename(PnvCore *pc)
36 {
37     const char *core_type = object_class_get_name(object_get_class(OBJECT(pc)));
38     int len = strlen(core_type) - strlen(PNV_CORE_TYPE_SUFFIX);
39     char *s = g_strdup_printf(POWERPC_CPU_TYPE_NAME("%.*s"), len, core_type);
40     const char *cpu_type = object_class_get_name(object_class_by_name(s));
41     g_free(s);
42     return cpu_type;
43 }
44 
45 static void pnv_core_cpu_reset(PnvCore *pc, PowerPCCPU *cpu)
46 {
47     CPUState *cs = CPU(cpu);
48     CPUPPCState *env = &cpu->env;
49     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
50 
51     cpu_reset(cs);
52 
53     /*
54      * the skiboot firmware elects a primary thread to initialize the
55      * system and it can be any.
56      */
57     env->gpr[3] = PNV_FDT_ADDR;
58     env->nip = 0x10;
59     env->msr |= MSR_HVB; /* Hypervisor mode */
60     env->spr[SPR_HRMOR] = pc->hrmor;
61     if (pc->big_core) {
62         /* Clear "small core" bit on Power9/10 (this is set in default PVR) */
63         env->spr[SPR_PVR] &= ~PPC_BIT(51);
64     }
65     hreg_compute_hflags(env);
66     ppc_maybe_interrupt(env);
67 
68     cpu_ppc_tb_reset(env);
69 
70     pcc->intc_reset(pc->chip, cpu);
71 }
72 
73 /*
74  * These values are read by the PowerNV HW monitors under Linux
75  */
76 #define PNV_XSCOM_EX_DTS_RESULT0     0x50000
77 #define PNV_XSCOM_EX_DTS_RESULT1     0x50001
78 
79 static uint64_t pnv_core_power8_xscom_read(void *opaque, hwaddr addr,
80                                            unsigned int width)
81 {
82     uint32_t offset = addr >> 3;
83     uint64_t val = 0;
84 
85     /* The result should be 38 C */
86     switch (offset) {
87     case PNV_XSCOM_EX_DTS_RESULT0:
88         val = 0x26f024f023f0000ull;
89         break;
90     case PNV_XSCOM_EX_DTS_RESULT1:
91         val = 0x24f000000000000ull;
92         break;
93     default:
94         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
95                       offset);
96     }
97 
98     return val;
99 }
100 
101 static void pnv_core_power8_xscom_write(void *opaque, hwaddr addr, uint64_t val,
102                                         unsigned int width)
103 {
104     uint32_t offset = addr >> 3;
105 
106     qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
107                   offset);
108 }
109 
110 static const MemoryRegionOps pnv_core_power8_xscom_ops = {
111     .read = pnv_core_power8_xscom_read,
112     .write = pnv_core_power8_xscom_write,
113     .valid.min_access_size = 8,
114     .valid.max_access_size = 8,
115     .impl.min_access_size = 8,
116     .impl.max_access_size = 8,
117     .endianness = DEVICE_BIG_ENDIAN,
118 };
119 
120 
121 /*
122  * POWER9 core controls
123  */
124 #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP 0xf010d
125 #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR 0xf010a
126 
127 #define PNV9_XSCOM_EC_CORE_THREAD_STATE    0x10ab3
128 
129 static uint64_t pnv_core_power9_xscom_read(void *opaque, hwaddr addr,
130                                            unsigned int width)
131 {
132     uint32_t offset = addr >> 3;
133     uint64_t val = 0;
134 
135     /* The result should be 38 C */
136     switch (offset) {
137     case PNV_XSCOM_EX_DTS_RESULT0:
138         val = 0x26f024f023f0000ull;
139         break;
140     case PNV_XSCOM_EX_DTS_RESULT1:
141         val = 0x24f000000000000ull;
142         break;
143     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
144     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
145         val = 0x0;
146         break;
147     case PNV9_XSCOM_EC_CORE_THREAD_STATE:
148         val = 0;
149         break;
150     default:
151         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
152                       offset);
153     }
154 
155     return val;
156 }
157 
158 static void pnv_core_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
159                                         unsigned int width)
160 {
161     uint32_t offset = addr >> 3;
162 
163     switch (offset) {
164     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
165     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
166         break;
167     default:
168         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
169                       offset);
170     }
171 }
172 
173 static const MemoryRegionOps pnv_core_power9_xscom_ops = {
174     .read = pnv_core_power9_xscom_read,
175     .write = pnv_core_power9_xscom_write,
176     .valid.min_access_size = 8,
177     .valid.max_access_size = 8,
178     .impl.min_access_size = 8,
179     .impl.max_access_size = 8,
180     .endianness = DEVICE_BIG_ENDIAN,
181 };
182 
183 /*
184  * POWER10 core controls
185  */
186 
187 #define PNV10_XSCOM_EC_CORE_THREAD_STATE    0x412
188 #define PNV10_XSCOM_EC_CORE_THREAD_INFO     0x413
189 #define PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS 0x449
190 #define PNV10_XSCOM_EC_CORE_RAS_STATUS      0x454
191 
192 static uint64_t pnv_core_power10_xscom_read(void *opaque, hwaddr addr,
193                                            unsigned int width)
194 {
195     PnvCore *pc = PNV_CORE(opaque);
196     int nr_threads = CPU_CORE(pc)->nr_threads;
197     int i;
198     uint32_t offset = addr >> 3;
199     uint64_t val = 0;
200 
201     switch (offset) {
202     case PNV10_XSCOM_EC_CORE_THREAD_STATE:
203         for (i = 0; i < nr_threads; i++) {
204             PowerPCCPU *cpu = pc->threads[i];
205             CPUState *cs = CPU(cpu);
206 
207             if (cs->halted) {
208                 val |= PPC_BIT(56 + i);
209             }
210         }
211         break;
212     case PNV10_XSCOM_EC_CORE_THREAD_INFO:
213         break;
214     case PNV10_XSCOM_EC_CORE_RAS_STATUS:
215         for (i = 0; i < nr_threads; i++) {
216             PowerPCCPU *cpu = pc->threads[i];
217             CPUState *cs = CPU(cpu);
218             if (cs->stopped) {
219                 val |= PPC_BIT(0 + 8 * i) | PPC_BIT(1 + 8 * i);
220             }
221         }
222         break;
223     default:
224         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
225                       offset);
226     }
227 
228     return val;
229 }
230 
231 static void pnv_core_power10_xscom_write(void *opaque, hwaddr addr,
232                                          uint64_t val, unsigned int width)
233 {
234     PnvCore *pc = PNV_CORE(opaque);
235     int nr_threads = CPU_CORE(pc)->nr_threads;
236     int i;
237     uint32_t offset = addr >> 3;
238 
239     switch (offset) {
240     case PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS:
241         for (i = 0; i < nr_threads; i++) {
242             PowerPCCPU *cpu = pc->threads[i];
243             CPUState *cs = CPU(cpu);
244 
245             if (val & PPC_BIT(7 + 8 * i)) { /* stop */
246                 val &= ~PPC_BIT(7 + 8 * i);
247                 cpu_pause(cs);
248             }
249             if (val & PPC_BIT(6 + 8 * i)) { /* start */
250                 val &= ~PPC_BIT(6 + 8 * i);
251                 cpu_resume(cs);
252             }
253             if (val & PPC_BIT(4 + 8 * i)) { /* sreset */
254                 val &= ~PPC_BIT(4 + 8 * i);
255                 pnv_cpu_do_nmi_resume(cs);
256             }
257             if (val & PPC_BIT(3 + 8 * i)) { /* clear maint */
258                 /*
259                  * Hardware has very particular cases for where clear maint
260                  * must be used and where start must be used to resume a
261                  * thread. These are not modelled exactly, just treat
262                  * this and start the same.
263                  */
264                 val &= ~PPC_BIT(3 + 8 * i);
265                 cpu_resume(cs);
266             }
267         }
268         if (val) {
269             qemu_log_mask(LOG_UNIMP, "%s: unimp bits in DIRECT_CONTROLS "
270                                      "0x%016" PRIx64 "\n", __func__, val);
271         }
272         break;
273 
274     default:
275         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
276                       offset);
277     }
278 }
279 
280 static const MemoryRegionOps pnv_core_power10_xscom_ops = {
281     .read = pnv_core_power10_xscom_read,
282     .write = pnv_core_power10_xscom_write,
283     .valid.min_access_size = 8,
284     .valid.max_access_size = 8,
285     .impl.min_access_size = 8,
286     .impl.max_access_size = 8,
287     .endianness = DEVICE_BIG_ENDIAN,
288 };
289 
290 static void pnv_core_cpu_realize(PnvCore *pc, PowerPCCPU *cpu, Error **errp,
291                                  int thread_index)
292 {
293     CPUPPCState *env = &cpu->env;
294     int core_hwid;
295     ppc_spr_t *pir_spr = &env->spr_cb[SPR_PIR];
296     ppc_spr_t *tir_spr = &env->spr_cb[SPR_TIR];
297     uint32_t pir, tir;
298     Error *local_err = NULL;
299     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
300 
301     if (!qdev_realize(DEVICE(cpu), NULL, errp)) {
302         return;
303     }
304 
305     pcc->intc_create(pc->chip, cpu, &local_err);
306     if (local_err) {
307         error_propagate(errp, local_err);
308         return;
309     }
310 
311     core_hwid = object_property_get_uint(OBJECT(pc), "hwid", &error_abort);
312 
313     pcc->get_pir_tir(pc->chip, core_hwid, thread_index, &pir, &tir);
314     pir_spr->default_value = pir;
315     tir_spr->default_value = tir;
316 
317     if (pc->big_core) {
318         /* 2 "small cores" get the same core index for SMT operations */
319         env->core_index = core_hwid >> 1;
320     } else {
321         env->core_index = core_hwid;
322     }
323 
324     /* Set time-base frequency to 512 MHz */
325     cpu_ppc_tb_init(env, PNV_TIMEBASE_FREQ);
326 }
327 
328 static void pnv_core_reset(void *dev)
329 {
330     CPUCore *cc = CPU_CORE(dev);
331     PnvCore *pc = PNV_CORE(dev);
332     int i;
333 
334     for (i = 0; i < cc->nr_threads; i++) {
335         pnv_core_cpu_reset(pc, pc->threads[i]);
336     }
337 }
338 
339 static void pnv_core_realize(DeviceState *dev, Error **errp)
340 {
341     PnvCore *pc = PNV_CORE(OBJECT(dev));
342     PnvCoreClass *pcc = PNV_CORE_GET_CLASS(pc);
343     CPUCore *cc = CPU_CORE(OBJECT(dev));
344     const char *typename = pnv_core_cpu_typename(pc);
345     Error *local_err = NULL;
346     void *obj;
347     int i, j;
348     char name[32];
349 
350     assert(pc->chip);
351 
352     pc->threads = g_new(PowerPCCPU *, cc->nr_threads);
353     for (i = 0; i < cc->nr_threads; i++) {
354         PowerPCCPU *cpu;
355         PnvCPUState *pnv_cpu;
356 
357         obj = object_new(typename);
358         cpu = POWERPC_CPU(obj);
359 
360         pc->threads[i] = POWERPC_CPU(obj);
361         if (cc->nr_threads > 1) {
362             cpu->env.has_smt_siblings = true;
363         }
364 
365         snprintf(name, sizeof(name), "thread[%d]", i);
366         object_property_add_child(OBJECT(pc), name, obj);
367 
368         cpu->machine_data = g_new0(PnvCPUState, 1);
369         pnv_cpu = pnv_cpu_state(cpu);
370         pnv_cpu->pnv_core = pc;
371 
372         object_unref(obj);
373     }
374 
375     for (j = 0; j < cc->nr_threads; j++) {
376         pnv_core_cpu_realize(pc, pc->threads[j], &local_err, j);
377         if (local_err) {
378             goto err;
379         }
380     }
381 
382     snprintf(name, sizeof(name), "xscom-core.%d", cc->core_id);
383     pnv_xscom_region_init(&pc->xscom_regs, OBJECT(dev), pcc->xscom_ops,
384                           pc, name, pcc->xscom_size);
385 
386     qemu_register_reset(pnv_core_reset, pc);
387     return;
388 
389 err:
390     while (--i >= 0) {
391         obj = OBJECT(pc->threads[i]);
392         object_unparent(obj);
393     }
394     g_free(pc->threads);
395     error_propagate(errp, local_err);
396 }
397 
398 static void pnv_core_cpu_unrealize(PnvCore *pc, PowerPCCPU *cpu)
399 {
400     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
401     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
402 
403     pcc->intc_destroy(pc->chip, cpu);
404     cpu_remove_sync(CPU(cpu));
405     cpu->machine_data = NULL;
406     g_free(pnv_cpu);
407     object_unparent(OBJECT(cpu));
408 }
409 
410 static void pnv_core_unrealize(DeviceState *dev)
411 {
412     PnvCore *pc = PNV_CORE(dev);
413     CPUCore *cc = CPU_CORE(dev);
414     int i;
415 
416     qemu_unregister_reset(pnv_core_reset, pc);
417 
418     for (i = 0; i < cc->nr_threads; i++) {
419         pnv_core_cpu_unrealize(pc, pc->threads[i]);
420     }
421     g_free(pc->threads);
422 }
423 
424 static Property pnv_core_properties[] = {
425     DEFINE_PROP_UINT32("hwid", PnvCore, hwid, 0),
426     DEFINE_PROP_UINT64("hrmor", PnvCore, hrmor, 0),
427     DEFINE_PROP_BOOL("big-core", PnvCore, big_core, false),
428     DEFINE_PROP_BOOL("quirk-tb-big-core", PnvCore, tod_state.big_core_quirk,
429                      false),
430     DEFINE_PROP_LINK("chip", PnvCore, chip, TYPE_PNV_CHIP, PnvChip *),
431     DEFINE_PROP_END_OF_LIST(),
432 };
433 
434 static void pnv_core_power8_class_init(ObjectClass *oc, void *data)
435 {
436     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
437 
438     pcc->xscom_ops = &pnv_core_power8_xscom_ops;
439     pcc->xscom_size = PNV_XSCOM_EX_SIZE;
440 }
441 
442 static void pnv_core_power9_class_init(ObjectClass *oc, void *data)
443 {
444     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
445 
446     pcc->xscom_ops = &pnv_core_power9_xscom_ops;
447     pcc->xscom_size = PNV_XSCOM_EX_SIZE;
448 }
449 
450 static void pnv_core_power10_class_init(ObjectClass *oc, void *data)
451 {
452     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
453 
454     pcc->xscom_ops = &pnv_core_power10_xscom_ops;
455     pcc->xscom_size = PNV10_XSCOM_EC_SIZE;
456 }
457 
458 static void pnv_core_class_init(ObjectClass *oc, void *data)
459 {
460     DeviceClass *dc = DEVICE_CLASS(oc);
461 
462     dc->realize = pnv_core_realize;
463     dc->unrealize = pnv_core_unrealize;
464     device_class_set_props(dc, pnv_core_properties);
465     dc->user_creatable = false;
466 }
467 
468 #define DEFINE_PNV_CORE_TYPE(family, cpu_model) \
469     {                                           \
470         .parent = TYPE_PNV_CORE,                \
471         .name = PNV_CORE_TYPE_NAME(cpu_model),  \
472         .class_init = pnv_core_##family##_class_init, \
473     }
474 
475 static const TypeInfo pnv_core_infos[] = {
476     {
477         .name           = TYPE_PNV_CORE,
478         .parent         = TYPE_CPU_CORE,
479         .instance_size  = sizeof(PnvCore),
480         .class_size     = sizeof(PnvCoreClass),
481         .class_init = pnv_core_class_init,
482         .abstract       = true,
483     },
484     DEFINE_PNV_CORE_TYPE(power8, "power8e_v2.1"),
485     DEFINE_PNV_CORE_TYPE(power8, "power8_v2.0"),
486     DEFINE_PNV_CORE_TYPE(power8, "power8nvl_v1.0"),
487     DEFINE_PNV_CORE_TYPE(power9, "power9_v2.2"),
488     DEFINE_PNV_CORE_TYPE(power10, "power10_v2.0"),
489 };
490 
491 DEFINE_TYPES(pnv_core_infos)
492 
493 /*
494  * POWER9 Quads
495  */
496 
497 #define P9X_EX_NCU_SPEC_BAR                     0x11010
498 
499 static uint64_t pnv_quad_power9_xscom_read(void *opaque, hwaddr addr,
500                                            unsigned int width)
501 {
502     uint32_t offset = addr >> 3;
503     uint64_t val = -1;
504 
505     switch (offset) {
506     case P9X_EX_NCU_SPEC_BAR:
507     case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
508         val = 0;
509         break;
510     default:
511         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
512                       offset);
513     }
514 
515     return val;
516 }
517 
518 static void pnv_quad_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
519                                         unsigned int width)
520 {
521     uint32_t offset = addr >> 3;
522 
523     switch (offset) {
524     case P9X_EX_NCU_SPEC_BAR:
525     case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
526         break;
527     default:
528         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
529                   offset);
530     }
531 }
532 
533 static const MemoryRegionOps pnv_quad_power9_xscom_ops = {
534     .read = pnv_quad_power9_xscom_read,
535     .write = pnv_quad_power9_xscom_write,
536     .valid.min_access_size = 8,
537     .valid.max_access_size = 8,
538     .impl.min_access_size = 8,
539     .impl.max_access_size = 8,
540     .endianness = DEVICE_BIG_ENDIAN,
541 };
542 
543 /*
544  * POWER10 Quads
545  */
546 
547 static uint64_t pnv_quad_power10_xscom_read(void *opaque, hwaddr addr,
548                                             unsigned int width)
549 {
550     uint32_t offset = addr >> 3;
551     uint64_t val = -1;
552 
553     switch (offset) {
554     default:
555         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
556                       offset);
557     }
558 
559     return val;
560 }
561 
562 static void pnv_quad_power10_xscom_write(void *opaque, hwaddr addr,
563                                          uint64_t val, unsigned int width)
564 {
565     uint32_t offset = addr >> 3;
566 
567     switch (offset) {
568     default:
569         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
570                       offset);
571     }
572 }
573 
574 static const MemoryRegionOps pnv_quad_power10_xscom_ops = {
575     .read = pnv_quad_power10_xscom_read,
576     .write = pnv_quad_power10_xscom_write,
577     .valid.min_access_size = 8,
578     .valid.max_access_size = 8,
579     .impl.min_access_size = 8,
580     .impl.max_access_size = 8,
581     .endianness = DEVICE_BIG_ENDIAN,
582 };
583 
584 #define P10_QME_SPWU_HYP 0x83c
585 #define P10_QME_SSH_HYP  0x82c
586 
587 static uint64_t pnv_qme_power10_xscom_read(void *opaque, hwaddr addr,
588                                             unsigned int width)
589 {
590     PnvQuad *eq = PNV_QUAD(opaque);
591     uint32_t offset = addr >> 3;
592     uint64_t val = -1;
593 
594     /*
595      * Forth nibble selects the core within a quad, mask it to process read
596      * for any core.
597      */
598     switch (offset & ~PPC_BITMASK32(16, 19)) {
599     case P10_QME_SSH_HYP:
600         val = 0;
601         if (eq->special_wakeup_done) {
602             val |= PPC_BIT(1); /* SPWU DONE */
603             val |= PPC_BIT(4); /* SSH SPWU DONE */
604         }
605         break;
606     default:
607         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
608                       offset);
609     }
610 
611     return val;
612 }
613 
614 static void pnv_qme_power10_xscom_write(void *opaque, hwaddr addr,
615                                          uint64_t val, unsigned int width)
616 {
617     PnvQuad *eq = PNV_QUAD(opaque);
618     uint32_t offset = addr >> 3;
619     bool set;
620     int i;
621 
622     switch (offset & ~PPC_BITMASK32(16, 19)) {
623     case P10_QME_SPWU_HYP:
624         set = !!(val & PPC_BIT(0));
625         eq->special_wakeup_done = set;
626         for (i = 0; i < 4; i++) {
627             /* These bits select cores in the quad */
628             if (offset & PPC_BIT32(16 + i)) {
629                 eq->special_wakeup[i] = set;
630             }
631         }
632         break;
633     default:
634         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
635                       offset);
636     }
637 }
638 
639 static const MemoryRegionOps pnv_qme_power10_xscom_ops = {
640     .read = pnv_qme_power10_xscom_read,
641     .write = pnv_qme_power10_xscom_write,
642     .valid.min_access_size = 8,
643     .valid.max_access_size = 8,
644     .impl.min_access_size = 8,
645     .impl.max_access_size = 8,
646     .endianness = DEVICE_BIG_ENDIAN,
647 };
648 
649 static void pnv_quad_power9_realize(DeviceState *dev, Error **errp)
650 {
651     PnvQuad *eq = PNV_QUAD(dev);
652     PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
653     char name[32];
654 
655     snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
656     pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
657                           pqc->xscom_ops,
658                           eq, name,
659                           pqc->xscom_size);
660 }
661 
662 static void pnv_quad_power10_realize(DeviceState *dev, Error **errp)
663 {
664     PnvQuad *eq = PNV_QUAD(dev);
665     PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
666     char name[32];
667 
668     snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
669     pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
670                           pqc->xscom_ops,
671                           eq, name,
672                           pqc->xscom_size);
673 
674     snprintf(name, sizeof(name), "xscom-qme.%d", eq->quad_id);
675     pnv_xscom_region_init(&eq->xscom_qme_regs, OBJECT(dev),
676                           pqc->xscom_qme_ops,
677                           eq, name,
678                           pqc->xscom_qme_size);
679 }
680 
681 static Property pnv_quad_properties[] = {
682     DEFINE_PROP_UINT32("quad-id", PnvQuad, quad_id, 0),
683     DEFINE_PROP_END_OF_LIST(),
684 };
685 
686 static void pnv_quad_power9_class_init(ObjectClass *oc, void *data)
687 {
688     PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
689     DeviceClass *dc = DEVICE_CLASS(oc);
690 
691     dc->realize = pnv_quad_power9_realize;
692 
693     pqc->xscom_ops = &pnv_quad_power9_xscom_ops;
694     pqc->xscom_size = PNV9_XSCOM_EQ_SIZE;
695 }
696 
697 static void pnv_quad_power10_class_init(ObjectClass *oc, void *data)
698 {
699     PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
700     DeviceClass *dc = DEVICE_CLASS(oc);
701 
702     dc->realize = pnv_quad_power10_realize;
703 
704     pqc->xscom_ops = &pnv_quad_power10_xscom_ops;
705     pqc->xscom_size = PNV10_XSCOM_EQ_SIZE;
706 
707     pqc->xscom_qme_ops = &pnv_qme_power10_xscom_ops;
708     pqc->xscom_qme_size = PNV10_XSCOM_QME_SIZE;
709 }
710 
711 static void pnv_quad_class_init(ObjectClass *oc, void *data)
712 {
713     DeviceClass *dc = DEVICE_CLASS(oc);
714 
715     device_class_set_props(dc, pnv_quad_properties);
716     dc->user_creatable = false;
717 }
718 
719 static const TypeInfo pnv_quad_infos[] = {
720     {
721         .name          = TYPE_PNV_QUAD,
722         .parent        = TYPE_DEVICE,
723         .instance_size = sizeof(PnvQuad),
724         .class_size    = sizeof(PnvQuadClass),
725         .class_init    = pnv_quad_class_init,
726         .abstract      = true,
727     },
728     {
729         .parent = TYPE_PNV_QUAD,
730         .name = PNV_QUAD_TYPE_NAME("power9"),
731         .class_init = pnv_quad_power9_class_init,
732     },
733     {
734         .parent = TYPE_PNV_QUAD,
735         .name = PNV_QUAD_TYPE_NAME("power10"),
736         .class_init = pnv_quad_power10_class_init,
737     },
738 };
739 
740 DEFINE_TYPES(pnv_quad_infos);
741