xref: /openbmc/qemu/hw/ppc/pnv.c (revision feecc6a0435d46da45b2d383693fe1292043606c)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     int i;
284 
285     pnv_dt_xscom(chip, fdt, 0);
286 
287     for (i = 0; i < chip->nr_cores; i++) {
288         PnvCore *pnv_core = chip->cores[i];
289 
290         pnv_dt_core(chip, pnv_core, fdt);
291 
292         /* Interrupt Control Presenters (ICP). One per core. */
293         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
294     }
295 
296     if (chip->ram_size) {
297         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
298     }
299 }
300 
301 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
302 {
303     int i;
304 
305     pnv_dt_xscom(chip, fdt, 0);
306 
307     for (i = 0; i < chip->nr_cores; i++) {
308         PnvCore *pnv_core = chip->cores[i];
309 
310         pnv_dt_core(chip, pnv_core, fdt);
311     }
312 
313     if (chip->ram_size) {
314         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
315     }
316 
317     pnv_dt_lpc(chip, fdt, 0);
318 }
319 
320 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
321 {
322     uint32_t io_base = d->ioport_id;
323     uint32_t io_regs[] = {
324         cpu_to_be32(1),
325         cpu_to_be32(io_base),
326         cpu_to_be32(2)
327     };
328     char *name;
329     int node;
330 
331     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
332     node = fdt_add_subnode(fdt, lpc_off, name);
333     _FDT(node);
334     g_free(name);
335 
336     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
337     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
338 }
339 
340 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
341 {
342     const char compatible[] = "ns16550\0pnpPNP,501";
343     uint32_t io_base = d->ioport_id;
344     uint32_t io_regs[] = {
345         cpu_to_be32(1),
346         cpu_to_be32(io_base),
347         cpu_to_be32(8)
348     };
349     char *name;
350     int node;
351 
352     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
353     node = fdt_add_subnode(fdt, lpc_off, name);
354     _FDT(node);
355     g_free(name);
356 
357     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
358     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
359                       sizeof(compatible))));
360 
361     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
362     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
363     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
364     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
365                            fdt_get_phandle(fdt, lpc_off))));
366 
367     /* This is needed by Linux */
368     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
369 }
370 
371 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
372 {
373     const char compatible[] = "bt\0ipmi-bt";
374     uint32_t io_base;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
378         cpu_to_be32(3)
379     };
380     uint32_t irq;
381     char *name;
382     int node;
383 
384     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
385     io_regs[1] = cpu_to_be32(io_base);
386 
387     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
388 
389     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
390     node = fdt_add_subnode(fdt, lpc_off, name);
391     _FDT(node);
392     g_free(name);
393 
394     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
395     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
396                       sizeof(compatible))));
397 
398     /* Mark it as reserved to avoid Linux trying to claim it */
399     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
401     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
402                            fdt_get_phandle(fdt, lpc_off))));
403 }
404 
405 typedef struct ForeachPopulateArgs {
406     void *fdt;
407     int offset;
408 } ForeachPopulateArgs;
409 
410 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
411 {
412     ForeachPopulateArgs *args = opaque;
413     ISADevice *d = ISA_DEVICE(dev);
414 
415     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
416         pnv_dt_rtc(d, args->fdt, args->offset);
417     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
418         pnv_dt_serial(d, args->fdt, args->offset);
419     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
420         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
421     } else {
422         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
423                      d->ioport_id);
424     }
425 
426     return 0;
427 }
428 
429 /*
430  * The default LPC bus of a multichip system is on chip 0. It's
431  * recognized by the firmware (skiboot) using a "primary" property.
432  */
433 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
434 {
435     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
436     ForeachPopulateArgs args = {
437         .fdt = fdt,
438         .offset = isa_offset,
439     };
440     uint32_t phandle;
441 
442     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
443 
444     phandle = qemu_fdt_alloc_phandle(fdt);
445     assert(phandle > 0);
446     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
447 
448     /*
449      * ISA devices are not necessarily parented to the ISA bus so we
450      * can not use object_child_foreach()
451      */
452     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
453                        &args);
454 }
455 
456 static void pnv_dt_power_mgt(void *fdt)
457 {
458     int off;
459 
460     off = fdt_add_subnode(fdt, 0, "ibm,opal");
461     off = fdt_add_subnode(fdt, off, "power-mgt");
462 
463     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
464 }
465 
466 static void *pnv_dt_create(MachineState *machine)
467 {
468     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
469     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
470     PnvMachineState *pnv = PNV_MACHINE(machine);
471     void *fdt;
472     char *buf;
473     int off;
474     int i;
475 
476     fdt = g_malloc0(FDT_MAX_SIZE);
477     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
478 
479     /* /qemu node */
480     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
481 
482     /* Root node */
483     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
484     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
485     _FDT((fdt_setprop_string(fdt, 0, "model",
486                              "IBM PowerNV (emulated by qemu)")));
487     if (pnv_is_power9(pnv)) {
488         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
489                           sizeof(plat_compat9))));
490     } else {
491         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
492                           sizeof(plat_compat8))));
493     }
494 
495 
496     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
497     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
498     if (qemu_uuid_set) {
499         _FDT((fdt_property_string(fdt, "system-id", buf)));
500     }
501     g_free(buf);
502 
503     off = fdt_add_subnode(fdt, 0, "chosen");
504     if (machine->kernel_cmdline) {
505         _FDT((fdt_setprop_string(fdt, off, "bootargs",
506                                  machine->kernel_cmdline)));
507     }
508 
509     if (pnv->initrd_size) {
510         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
511         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
512 
513         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
514                                &start_prop, sizeof(start_prop))));
515         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
516                                &end_prop, sizeof(end_prop))));
517     }
518 
519     /* Populate device tree for each chip */
520     for (i = 0; i < pnv->num_chips; i++) {
521         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
522     }
523 
524     /* Populate ISA devices on chip 0 */
525     pnv_dt_isa(pnv, fdt);
526 
527     if (pnv->bmc) {
528         pnv_dt_bmc_sensors(pnv->bmc, fdt);
529     }
530 
531     /* Create an extra node for power management on Power9 */
532     if (pnv_is_power9(pnv)) {
533         pnv_dt_power_mgt(fdt);
534     }
535 
536     return fdt;
537 }
538 
539 static void pnv_powerdown_notify(Notifier *n, void *opaque)
540 {
541     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
542 
543     if (pnv->bmc) {
544         pnv_bmc_powerdown(pnv->bmc);
545     }
546 }
547 
548 static void pnv_reset(MachineState *machine)
549 {
550     void *fdt;
551 
552     qemu_devices_reset();
553 
554     fdt = pnv_dt_create(machine);
555 
556     /* Pack resulting tree */
557     _FDT((fdt_pack(fdt)));
558 
559     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
560     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
561 }
562 
563 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
564 {
565     Pnv8Chip *chip8 = PNV8_CHIP(chip);
566     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
567 }
568 
569 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
570 {
571     Pnv8Chip *chip8 = PNV8_CHIP(chip);
572     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
573 }
574 
575 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
576 {
577     Pnv9Chip *chip9 = PNV9_CHIP(chip);
578     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
579 }
580 
581 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
582 {
583     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
584 }
585 
586 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589 
590     ics_pic_print_info(&chip8->psi.ics, mon);
591 }
592 
593 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
594 {
595     Pnv9Chip *chip9 = PNV9_CHIP(chip);
596 
597     pnv_xive_pic_print_info(&chip9->xive, mon);
598     pnv_psi_pic_print_info(&chip9->psi, mon);
599 }
600 
601 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
602 {
603     PowerPCCPUClass *ppc_default =
604         POWERPC_CPU_CLASS(object_class_by_name(default_type));
605     PowerPCCPUClass *ppc =
606         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
607 
608     return ppc_default->pvr_match(ppc_default, ppc->pvr);
609 }
610 
611 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
612 {
613     Object *obj;
614 
615     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
616     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
617     object_property_set_int(obj, irq, "irq", &error_fatal);
618     object_property_set_bool(obj, true, "realized", &error_fatal);
619 }
620 
621 static void pnv_init(MachineState *machine)
622 {
623     PnvMachineState *pnv = PNV_MACHINE(machine);
624     MachineClass *mc = MACHINE_GET_CLASS(machine);
625     MemoryRegion *ram;
626     char *fw_filename;
627     long fw_size;
628     int i;
629     char *chip_typename;
630     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
631     DeviceState *dev;
632 
633     /* allocate RAM */
634     if (machine->ram_size < (1 * GiB)) {
635         warn_report("skiboot may not work with < 1GB of RAM");
636     }
637 
638     ram = g_new(MemoryRegion, 1);
639     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
640                                          machine->ram_size);
641     memory_region_add_subregion(get_system_memory(), 0, ram);
642 
643     /*
644      * Create our simple PNOR device
645      */
646     dev = qdev_create(NULL, TYPE_PNV_PNOR);
647     if (pnor) {
648         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
649                             &error_abort);
650     }
651     qdev_init_nofail(dev);
652     pnv->pnor = PNV_PNOR(dev);
653 
654     /* load skiboot firmware  */
655     if (bios_name == NULL) {
656         bios_name = FW_FILE_NAME;
657     }
658 
659     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
660     if (!fw_filename) {
661         error_report("Could not find OPAL firmware '%s'", bios_name);
662         exit(1);
663     }
664 
665     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
666     if (fw_size < 0) {
667         error_report("Could not load OPAL firmware '%s'", fw_filename);
668         exit(1);
669     }
670     g_free(fw_filename);
671 
672     /* load kernel */
673     if (machine->kernel_filename) {
674         long kernel_size;
675 
676         kernel_size = load_image_targphys(machine->kernel_filename,
677                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
678         if (kernel_size < 0) {
679             error_report("Could not load kernel '%s'",
680                          machine->kernel_filename);
681             exit(1);
682         }
683     }
684 
685     /* load initrd */
686     if (machine->initrd_filename) {
687         pnv->initrd_base = INITRD_LOAD_ADDR;
688         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
689                                   pnv->initrd_base, INITRD_MAX_SIZE);
690         if (pnv->initrd_size < 0) {
691             error_report("Could not load initial ram disk '%s'",
692                          machine->initrd_filename);
693             exit(1);
694         }
695     }
696 
697     /*
698      * Check compatibility of the specified CPU with the machine
699      * default.
700      */
701     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
702         error_report("invalid CPU model '%s' for %s machine",
703                      machine->cpu_type, mc->name);
704         exit(1);
705     }
706 
707     /* Create the processor chips */
708     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
709     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
710                                     i, machine->cpu_type);
711     if (!object_class_by_name(chip_typename)) {
712         error_report("invalid chip model '%.*s' for %s machine",
713                      i, machine->cpu_type, mc->name);
714         exit(1);
715     }
716 
717     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
718     for (i = 0; i < pnv->num_chips; i++) {
719         char chip_name[32];
720         Object *chip = object_new(chip_typename);
721 
722         pnv->chips[i] = PNV_CHIP(chip);
723 
724         /*
725          * TODO: put all the memory in one node on chip 0 until we find a
726          * way to specify different ranges for each chip
727          */
728         if (i == 0) {
729             object_property_set_int(chip, machine->ram_size, "ram-size",
730                                     &error_fatal);
731         }
732 
733         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
734         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
735         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
736                                 &error_fatal);
737         object_property_set_int(chip, machine->smp.cores,
738                                 "nr-cores", &error_fatal);
739         object_property_set_bool(chip, true, "realized", &error_fatal);
740     }
741     g_free(chip_typename);
742 
743     /* Create the machine BMC simulator */
744     pnv->bmc = pnv_bmc_create();
745 
746     /* Instantiate ISA bus on chip 0 */
747     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
748 
749     /* Create serial port */
750     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
751 
752     /* Create an RTC ISA device too */
753     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
754 
755     /* Create the IPMI BT device for communication with the BMC */
756     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
757 
758     /*
759      * OpenPOWER systems use a IPMI SEL Event message to notify the
760      * host to powerdown
761      */
762     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
763     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
764 }
765 
766 /*
767  *    0:21  Reserved - Read as zeros
768  *   22:24  Chip ID
769  *   25:28  Core number
770  *   29:31  Thread ID
771  */
772 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
773 {
774     return (chip->chip_id << 7) | (core_id << 3);
775 }
776 
777 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
778                                         Error **errp)
779 {
780     Error *local_err = NULL;
781     Object *obj;
782     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
783 
784     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
785                      &local_err);
786     if (local_err) {
787         error_propagate(errp, local_err);
788         return;
789     }
790 
791     pnv_cpu->intc = obj;
792 }
793 
794 
795 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
796 {
797     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
798 
799     icp_reset(ICP(pnv_cpu->intc));
800 }
801 
802 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
803 {
804     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
805 
806     icp_destroy(ICP(pnv_cpu->intc));
807     pnv_cpu->intc = NULL;
808 }
809 
810 /*
811  *    0:48  Reserved - Read as zeroes
812  *   49:52  Node ID
813  *   53:55  Chip ID
814  *   56     Reserved - Read as zero
815  *   57:61  Core number
816  *   62:63  Thread ID
817  *
818  * We only care about the lower bits. uint32_t is fine for the moment.
819  */
820 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
821 {
822     return (chip->chip_id << 8) | (core_id << 2);
823 }
824 
825 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
826                                         Error **errp)
827 {
828     Pnv9Chip *chip9 = PNV9_CHIP(chip);
829     Error *local_err = NULL;
830     Object *obj;
831     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
832 
833     /*
834      * The core creates its interrupt presenter but the XIVE interrupt
835      * controller object is initialized afterwards. Hopefully, it's
836      * only used at runtime.
837      */
838     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
839     if (local_err) {
840         error_propagate(errp, local_err);
841         return;
842     }
843 
844     pnv_cpu->intc = obj;
845 }
846 
847 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
848 {
849     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
850 
851     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
852 }
853 
854 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
855 {
856     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
857 
858     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
859     pnv_cpu->intc = NULL;
860 }
861 
862 /*
863  * Allowed core identifiers on a POWER8 Processor Chip :
864  *
865  * <EX0 reserved>
866  *  EX1  - Venice only
867  *  EX2  - Venice only
868  *  EX3  - Venice only
869  *  EX4
870  *  EX5
871  *  EX6
872  * <EX7,8 reserved> <reserved>
873  *  EX9  - Venice only
874  *  EX10 - Venice only
875  *  EX11 - Venice only
876  *  EX12
877  *  EX13
878  *  EX14
879  * <EX15 reserved>
880  */
881 #define POWER8E_CORE_MASK  (0x7070ull)
882 #define POWER8_CORE_MASK   (0x7e7eull)
883 
884 /*
885  * POWER9 has 24 cores, ids starting at 0x0
886  */
887 #define POWER9_CORE_MASK   (0xffffffffffffffull)
888 
889 static void pnv_chip_power8_instance_init(Object *obj)
890 {
891     Pnv8Chip *chip8 = PNV8_CHIP(obj);
892 
893     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
894                             TYPE_PNV8_PSI, &error_abort, NULL);
895     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
896                                    OBJECT(qdev_get_machine()), &error_abort);
897 
898     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
899                             TYPE_PNV8_LPC, &error_abort, NULL);
900 
901     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
902                             TYPE_PNV8_OCC, &error_abort, NULL);
903 
904     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
905                             TYPE_PNV8_HOMER, &error_abort, NULL);
906 }
907 
908 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
909  {
910     PnvChip *chip = PNV_CHIP(chip8);
911     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
912     int i, j;
913     char *name;
914     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
915 
916     name = g_strdup_printf("icp-%x", chip->chip_id);
917     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
918     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
919     g_free(name);
920 
921     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
922 
923     /* Map the ICP registers for each thread */
924     for (i = 0; i < chip->nr_cores; i++) {
925         PnvCore *pnv_core = chip->cores[i];
926         int core_hwid = CPU_CORE(pnv_core)->core_id;
927 
928         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
929             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
930             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
931 
932             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
933                                         &icp->mmio);
934         }
935     }
936 }
937 
938 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
939 {
940     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
941     PnvChip *chip = PNV_CHIP(dev);
942     Pnv8Chip *chip8 = PNV8_CHIP(dev);
943     Pnv8Psi *psi8 = &chip8->psi;
944     Error *local_err = NULL;
945 
946     /* XSCOM bridge is first */
947     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
948     if (local_err) {
949         error_propagate(errp, local_err);
950         return;
951     }
952     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
953 
954     pcc->parent_realize(dev, &local_err);
955     if (local_err) {
956         error_propagate(errp, local_err);
957         return;
958     }
959 
960     /* Processor Service Interface (PSI) Host Bridge */
961     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
962                             "bar", &error_fatal);
963     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
964     if (local_err) {
965         error_propagate(errp, local_err);
966         return;
967     }
968     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
969                             &PNV_PSI(psi8)->xscom_regs);
970 
971     /* Create LPC controller */
972     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
973                              &error_abort);
974     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
975                              &error_fatal);
976     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
977 
978     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
979                                             (uint64_t) PNV_XSCOM_BASE(chip),
980                                             PNV_XSCOM_LPC_BASE);
981 
982     /*
983      * Interrupt Management Area. This is the memory region holding
984      * all the Interrupt Control Presenter (ICP) registers
985      */
986     pnv_chip_icp_realize(chip8, &local_err);
987     if (local_err) {
988         error_propagate(errp, local_err);
989         return;
990     }
991 
992     /* Create the simplified OCC model */
993     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
994                              &error_abort);
995     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
996     if (local_err) {
997         error_propagate(errp, local_err);
998         return;
999     }
1000     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1001 
1002     /* OCC SRAM model */
1003     memory_region_add_subregion(get_system_memory(), PNV_OCC_COMMON_AREA(chip),
1004                                 &chip8->occ.sram_regs);
1005 
1006     /* HOMER */
1007     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1008                              &error_abort);
1009     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1010                              &local_err);
1011     if (local_err) {
1012         error_propagate(errp, local_err);
1013         return;
1014     }
1015     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1016                                 &chip8->homer.regs);
1017 }
1018 
1019 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1020 {
1021     DeviceClass *dc = DEVICE_CLASS(klass);
1022     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1023 
1024     k->chip_type = PNV_CHIP_POWER8E;
1025     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1026     k->cores_mask = POWER8E_CORE_MASK;
1027     k->core_pir = pnv_chip_core_pir_p8;
1028     k->intc_create = pnv_chip_power8_intc_create;
1029     k->intc_reset = pnv_chip_power8_intc_reset;
1030     k->intc_destroy = pnv_chip_power8_intc_destroy;
1031     k->isa_create = pnv_chip_power8_isa_create;
1032     k->dt_populate = pnv_chip_power8_dt_populate;
1033     k->pic_print_info = pnv_chip_power8_pic_print_info;
1034     dc->desc = "PowerNV Chip POWER8E";
1035 
1036     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1037                                     &k->parent_realize);
1038 }
1039 
1040 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1041 {
1042     DeviceClass *dc = DEVICE_CLASS(klass);
1043     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1044 
1045     k->chip_type = PNV_CHIP_POWER8;
1046     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1047     k->cores_mask = POWER8_CORE_MASK;
1048     k->core_pir = pnv_chip_core_pir_p8;
1049     k->intc_create = pnv_chip_power8_intc_create;
1050     k->intc_reset = pnv_chip_power8_intc_reset;
1051     k->intc_destroy = pnv_chip_power8_intc_destroy;
1052     k->isa_create = pnv_chip_power8_isa_create;
1053     k->dt_populate = pnv_chip_power8_dt_populate;
1054     k->pic_print_info = pnv_chip_power8_pic_print_info;
1055     dc->desc = "PowerNV Chip POWER8";
1056 
1057     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1058                                     &k->parent_realize);
1059 }
1060 
1061 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1062 {
1063     DeviceClass *dc = DEVICE_CLASS(klass);
1064     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1065 
1066     k->chip_type = PNV_CHIP_POWER8NVL;
1067     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1068     k->cores_mask = POWER8_CORE_MASK;
1069     k->core_pir = pnv_chip_core_pir_p8;
1070     k->intc_create = pnv_chip_power8_intc_create;
1071     k->intc_reset = pnv_chip_power8_intc_reset;
1072     k->intc_destroy = pnv_chip_power8_intc_destroy;
1073     k->isa_create = pnv_chip_power8nvl_isa_create;
1074     k->dt_populate = pnv_chip_power8_dt_populate;
1075     k->pic_print_info = pnv_chip_power8_pic_print_info;
1076     dc->desc = "PowerNV Chip POWER8NVL";
1077 
1078     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1079                                     &k->parent_realize);
1080 }
1081 
1082 static void pnv_chip_power9_instance_init(Object *obj)
1083 {
1084     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1085 
1086     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1087                             TYPE_PNV_XIVE, &error_abort, NULL);
1088 
1089     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1090                             TYPE_PNV9_PSI, &error_abort, NULL);
1091 
1092     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1093                             TYPE_PNV9_LPC, &error_abort, NULL);
1094 
1095     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1096                             TYPE_PNV9_OCC, &error_abort, NULL);
1097 
1098     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1099                             TYPE_PNV9_HOMER, &error_abort, NULL);
1100 }
1101 
1102 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1103 {
1104     PnvChip *chip = PNV_CHIP(chip9);
1105     int i;
1106 
1107     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1108     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1109 
1110     for (i = 0; i < chip9->nr_quads; i++) {
1111         char eq_name[32];
1112         PnvQuad *eq = &chip9->quads[i];
1113         PnvCore *pnv_core = chip->cores[i * 4];
1114         int core_id = CPU_CORE(pnv_core)->core_id;
1115 
1116         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1117         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1118                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1119 
1120         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1121         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1122 
1123         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1124                                 &eq->xscom_regs);
1125     }
1126 }
1127 
1128 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1129 {
1130     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1131     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1132     PnvChip *chip = PNV_CHIP(dev);
1133     Pnv9Psi *psi9 = &chip9->psi;
1134     Error *local_err = NULL;
1135 
1136     /* XSCOM bridge is first */
1137     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1138     if (local_err) {
1139         error_propagate(errp, local_err);
1140         return;
1141     }
1142     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1143 
1144     pcc->parent_realize(dev, &local_err);
1145     if (local_err) {
1146         error_propagate(errp, local_err);
1147         return;
1148     }
1149 
1150     pnv_chip_quad_realize(chip9, &local_err);
1151     if (local_err) {
1152         error_propagate(errp, local_err);
1153         return;
1154     }
1155 
1156     /* XIVE interrupt controller (POWER9) */
1157     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1158                             "ic-bar", &error_fatal);
1159     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1160                             "vc-bar", &error_fatal);
1161     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1162                             "pc-bar", &error_fatal);
1163     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1164                             "tm-bar", &error_fatal);
1165     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1166                              &error_abort);
1167     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1168                              &local_err);
1169     if (local_err) {
1170         error_propagate(errp, local_err);
1171         return;
1172     }
1173     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1174                             &chip9->xive.xscom_regs);
1175 
1176     /* Processor Service Interface (PSI) Host Bridge */
1177     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1178                             "bar", &error_fatal);
1179     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1180     if (local_err) {
1181         error_propagate(errp, local_err);
1182         return;
1183     }
1184     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1185                             &PNV_PSI(psi9)->xscom_regs);
1186 
1187     /* LPC */
1188     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1189                              &error_abort);
1190     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1191     if (local_err) {
1192         error_propagate(errp, local_err);
1193         return;
1194     }
1195     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1196                                 &chip9->lpc.xscom_regs);
1197 
1198     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1199                                             (uint64_t) PNV9_LPCM_BASE(chip));
1200 
1201     /* Create the simplified OCC model */
1202     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1203                              &error_abort);
1204     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1205     if (local_err) {
1206         error_propagate(errp, local_err);
1207         return;
1208     }
1209     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1210 
1211     /* OCC SRAM model */
1212     memory_region_add_subregion(get_system_memory(), PNV9_OCC_COMMON_AREA(chip),
1213                                 &chip9->occ.sram_regs);
1214 
1215     /* HOMER */
1216     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1217                              &error_abort);
1218     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1219                              &local_err);
1220     if (local_err) {
1221         error_propagate(errp, local_err);
1222         return;
1223     }
1224     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1225                                 &chip9->homer.regs);
1226 }
1227 
1228 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1229 {
1230     DeviceClass *dc = DEVICE_CLASS(klass);
1231     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1232 
1233     k->chip_type = PNV_CHIP_POWER9;
1234     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1235     k->cores_mask = POWER9_CORE_MASK;
1236     k->core_pir = pnv_chip_core_pir_p9;
1237     k->intc_create = pnv_chip_power9_intc_create;
1238     k->intc_reset = pnv_chip_power9_intc_reset;
1239     k->intc_destroy = pnv_chip_power9_intc_destroy;
1240     k->isa_create = pnv_chip_power9_isa_create;
1241     k->dt_populate = pnv_chip_power9_dt_populate;
1242     k->pic_print_info = pnv_chip_power9_pic_print_info;
1243     dc->desc = "PowerNV Chip POWER9";
1244 
1245     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1246                                     &k->parent_realize);
1247 }
1248 
1249 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1250 {
1251     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1252     int cores_max;
1253 
1254     /*
1255      * No custom mask for this chip, let's use the default one from *
1256      * the chip class
1257      */
1258     if (!chip->cores_mask) {
1259         chip->cores_mask = pcc->cores_mask;
1260     }
1261 
1262     /* filter alien core ids ! some are reserved */
1263     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1264         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1265                    chip->cores_mask);
1266         return;
1267     }
1268     chip->cores_mask &= pcc->cores_mask;
1269 
1270     /* now that we have a sane layout, let check the number of cores */
1271     cores_max = ctpop64(chip->cores_mask);
1272     if (chip->nr_cores > cores_max) {
1273         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1274                    cores_max);
1275         return;
1276     }
1277 }
1278 
1279 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1280 {
1281     MachineState *ms = MACHINE(qdev_get_machine());
1282     Error *error = NULL;
1283     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1284     const char *typename = pnv_chip_core_typename(chip);
1285     int i, core_hwid;
1286 
1287     if (!object_class_by_name(typename)) {
1288         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1289         return;
1290     }
1291 
1292     /* Cores */
1293     pnv_chip_core_sanitize(chip, &error);
1294     if (error) {
1295         error_propagate(errp, error);
1296         return;
1297     }
1298 
1299     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1300 
1301     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1302              && (i < chip->nr_cores); core_hwid++) {
1303         char core_name[32];
1304         PnvCore *pnv_core;
1305         uint64_t xscom_core_base;
1306 
1307         if (!(chip->cores_mask & (1ull << core_hwid))) {
1308             continue;
1309         }
1310 
1311         pnv_core = PNV_CORE(object_new(typename));
1312 
1313         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1314         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1315                                   &error_abort);
1316         chip->cores[i] = pnv_core;
1317         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1318                                 &error_fatal);
1319         object_property_set_int(OBJECT(pnv_core), core_hwid,
1320                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1321         object_property_set_int(OBJECT(pnv_core),
1322                                 pcc->core_pir(chip, core_hwid),
1323                                 "pir", &error_fatal);
1324         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1325                                  &error_abort);
1326         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1327                                  &error_fatal);
1328 
1329         /* Each core has an XSCOM MMIO region */
1330         if (!pnv_chip_is_power9(chip)) {
1331             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1332         } else {
1333             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1334         }
1335 
1336         pnv_xscom_add_subregion(chip, xscom_core_base,
1337                                 &pnv_core->xscom_regs);
1338         i++;
1339     }
1340 }
1341 
1342 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1343 {
1344     PnvChip *chip = PNV_CHIP(dev);
1345     Error *error = NULL;
1346 
1347     /* Cores */
1348     pnv_chip_core_realize(chip, &error);
1349     if (error) {
1350         error_propagate(errp, error);
1351         return;
1352     }
1353 }
1354 
1355 static Property pnv_chip_properties[] = {
1356     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1357     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1358     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1359     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1360     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1361     DEFINE_PROP_END_OF_LIST(),
1362 };
1363 
1364 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1365 {
1366     DeviceClass *dc = DEVICE_CLASS(klass);
1367 
1368     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1369     dc->realize = pnv_chip_realize;
1370     dc->props = pnv_chip_properties;
1371     dc->desc = "PowerNV Chip";
1372 }
1373 
1374 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1375 {
1376     PnvMachineState *pnv = PNV_MACHINE(xi);
1377     int i;
1378 
1379     for (i = 0; i < pnv->num_chips; i++) {
1380         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1381 
1382         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1383             return &chip8->psi.ics;
1384         }
1385     }
1386     return NULL;
1387 }
1388 
1389 static void pnv_ics_resend(XICSFabric *xi)
1390 {
1391     PnvMachineState *pnv = PNV_MACHINE(xi);
1392     int i;
1393 
1394     for (i = 0; i < pnv->num_chips; i++) {
1395         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1396         ics_resend(&chip8->psi.ics);
1397     }
1398 }
1399 
1400 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1401 {
1402     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1403 
1404     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1405 }
1406 
1407 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1408                                Monitor *mon)
1409 {
1410     PnvMachineState *pnv = PNV_MACHINE(obj);
1411     int i;
1412     CPUState *cs;
1413 
1414     CPU_FOREACH(cs) {
1415         PowerPCCPU *cpu = POWERPC_CPU(cs);
1416 
1417         if (pnv_chip_is_power9(pnv->chips[0])) {
1418             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1419         } else {
1420             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1421         }
1422     }
1423 
1424     for (i = 0; i < pnv->num_chips; i++) {
1425         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1426     }
1427 }
1428 
1429 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1430                               void *opaque, Error **errp)
1431 {
1432     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1433 }
1434 
1435 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1436                               void *opaque, Error **errp)
1437 {
1438     PnvMachineState *pnv = PNV_MACHINE(obj);
1439     uint32_t num_chips;
1440     Error *local_err = NULL;
1441 
1442     visit_type_uint32(v, name, &num_chips, &local_err);
1443     if (local_err) {
1444         error_propagate(errp, local_err);
1445         return;
1446     }
1447 
1448     /*
1449      * TODO: should we decide on how many chips we can create based
1450      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1451      */
1452     if (!is_power_of_2(num_chips) || num_chips > 4) {
1453         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1454         return;
1455     }
1456 
1457     pnv->num_chips = num_chips;
1458 }
1459 
1460 static void pnv_machine_instance_init(Object *obj)
1461 {
1462     PnvMachineState *pnv = PNV_MACHINE(obj);
1463     pnv->num_chips = 1;
1464 }
1465 
1466 static void pnv_machine_class_props_init(ObjectClass *oc)
1467 {
1468     object_class_property_add(oc, "num-chips", "uint32",
1469                               pnv_get_num_chips, pnv_set_num_chips,
1470                               NULL, NULL, NULL);
1471     object_class_property_set_description(oc, "num-chips",
1472                               "Specifies the number of processor chips",
1473                               NULL);
1474 }
1475 
1476 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1477 {
1478     MachineClass *mc = MACHINE_CLASS(oc);
1479     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1480 
1481     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1482     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1483 
1484     xic->icp_get = pnv_icp_get;
1485     xic->ics_get = pnv_ics_get;
1486     xic->ics_resend = pnv_ics_resend;
1487 }
1488 
1489 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1490 {
1491     MachineClass *mc = MACHINE_CLASS(oc);
1492 
1493     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1494     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1495 
1496     mc->alias = "powernv";
1497 }
1498 
1499 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1500 {
1501     MachineClass *mc = MACHINE_CLASS(oc);
1502     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1503 
1504     mc->desc = "IBM PowerNV (Non-Virtualized)";
1505     mc->init = pnv_init;
1506     mc->reset = pnv_reset;
1507     mc->max_cpus = MAX_CPUS;
1508     /* Pnv provides a AHCI device for storage */
1509     mc->block_default_type = IF_IDE;
1510     mc->no_parallel = 1;
1511     mc->default_boot_order = NULL;
1512     /*
1513      * RAM defaults to less than 2048 for 32-bit hosts, and large
1514      * enough to fit the maximum initrd size at it's load address
1515      */
1516     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1517     ispc->print_info = pnv_pic_print_info;
1518 
1519     pnv_machine_class_props_init(oc);
1520 }
1521 
1522 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1523     {                                             \
1524         .name          = type,                    \
1525         .class_init    = class_initfn,            \
1526         .parent        = TYPE_PNV8_CHIP,          \
1527     }
1528 
1529 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1530     {                                             \
1531         .name          = type,                    \
1532         .class_init    = class_initfn,            \
1533         .parent        = TYPE_PNV9_CHIP,          \
1534     }
1535 
1536 static const TypeInfo types[] = {
1537     {
1538         .name          = MACHINE_TYPE_NAME("powernv9"),
1539         .parent        = TYPE_PNV_MACHINE,
1540         .class_init    = pnv_machine_power9_class_init,
1541     },
1542     {
1543         .name          = MACHINE_TYPE_NAME("powernv8"),
1544         .parent        = TYPE_PNV_MACHINE,
1545         .class_init    = pnv_machine_power8_class_init,
1546         .interfaces = (InterfaceInfo[]) {
1547             { TYPE_XICS_FABRIC },
1548             { },
1549         },
1550     },
1551     {
1552         .name          = TYPE_PNV_MACHINE,
1553         .parent        = TYPE_MACHINE,
1554         .abstract       = true,
1555         .instance_size = sizeof(PnvMachineState),
1556         .instance_init = pnv_machine_instance_init,
1557         .class_init    = pnv_machine_class_init,
1558         .interfaces = (InterfaceInfo[]) {
1559             { TYPE_INTERRUPT_STATS_PROVIDER },
1560             { },
1561         },
1562     },
1563     {
1564         .name          = TYPE_PNV_CHIP,
1565         .parent        = TYPE_SYS_BUS_DEVICE,
1566         .class_init    = pnv_chip_class_init,
1567         .instance_size = sizeof(PnvChip),
1568         .class_size    = sizeof(PnvChipClass),
1569         .abstract      = true,
1570     },
1571 
1572     /*
1573      * P9 chip and variants
1574      */
1575     {
1576         .name          = TYPE_PNV9_CHIP,
1577         .parent        = TYPE_PNV_CHIP,
1578         .instance_init = pnv_chip_power9_instance_init,
1579         .instance_size = sizeof(Pnv9Chip),
1580     },
1581     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1582 
1583     /*
1584      * P8 chip and variants
1585      */
1586     {
1587         .name          = TYPE_PNV8_CHIP,
1588         .parent        = TYPE_PNV_CHIP,
1589         .instance_init = pnv_chip_power8_instance_init,
1590         .instance_size = sizeof(Pnv8Chip),
1591     },
1592     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1593     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1594     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1595                           pnv_chip_power8nvl_class_init),
1596 };
1597 
1598 DEFINE_TYPES(types)
1599