xref: /openbmc/qemu/hw/ppc/pnv.c (revision fa3673e4)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 #include "hw/pci-host/pnv_phb3.h"
48 #include "hw/pci-host/pnv_phb4.h"
49 
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_chip.h"
53 #include "hw/ppc/pnv_xscom.h"
54 #include "hw/ppc/pnv_pnor.h"
55 
56 #include "hw/isa/isa.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
59 
60 #include <libfdt.h>
61 
62 #define FDT_MAX_SIZE            (1 * MiB)
63 
64 #define FW_FILE_NAME            "skiboot.lid"
65 #define FW_LOAD_ADDR            0x0
66 #define FW_MAX_SIZE             (16 * MiB)
67 
68 #define KERNEL_LOAD_ADDR        0x20000000
69 #define KERNEL_MAX_SIZE         (128 * MiB)
70 #define INITRD_LOAD_ADDR        0x28000000
71 #define INITRD_MAX_SIZE         (128 * MiB)
72 
73 static const char *pnv_chip_core_typename(const PnvChip *o)
74 {
75     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78     const char *core_type = object_class_get_name(object_class_by_name(s));
79     g_free(s);
80     return core_type;
81 }
82 
83 /*
84  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85  *     4 * 4 sockets * 12 cores * 8 threads = 1536
86  * Let's make it 2^11
87  */
88 #define MAX_CPUS                2048
89 
90 /*
91  * Memory nodes are created by hostboot, one for each range of memory
92  * that has a different "affinity". In practice, it means one range
93  * per chip.
94  */
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96 {
97     char *mem_name;
98     uint64_t mem_reg_property[2];
99     int off;
100 
101     mem_reg_property[0] = cpu_to_be64(start);
102     mem_reg_property[1] = cpu_to_be64(size);
103 
104     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105     off = fdt_add_subnode(fdt, 0, mem_name);
106     g_free(mem_name);
107 
108     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                        sizeof(mem_reg_property))));
111     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112 }
113 
114 static int get_cpus_node(void *fdt)
115 {
116     int cpus_offset = fdt_path_offset(fdt, "/cpus");
117 
118     if (cpus_offset < 0) {
119         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120         if (cpus_offset) {
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123         }
124     }
125     _FDT(cpus_offset);
126     return cpus_offset;
127 }
128 
129 /*
130  * The PowerNV cores (and threads) need to use real HW ids and not an
131  * incremental index like it has been done on other platforms. This HW
132  * id is stored in the CPU PIR, it is used to create cpu nodes in the
133  * device tree, used in XSCOM to address cores and in interrupt
134  * servers.
135  */
136 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137 {
138     PowerPCCPU *cpu = pc->threads[0];
139     CPUState *cs = CPU(cpu);
140     DeviceClass *dc = DEVICE_GET_CLASS(cs);
141     int smt_threads = CPU_CORE(pc)->nr_threads;
142     CPUPPCState *env = &cpu->env;
143     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
147                        0xffffffff, 0xffffffff};
148     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
149     uint32_t cpufreq = 1000000000;
150     uint32_t page_sizes_prop[64];
151     size_t page_sizes_prop_size;
152     const uint8_t pa_features[] = { 24, 0,
153                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
154                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
155                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
156                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
157     int offset;
158     char *nodename;
159     int cpus_offset = get_cpus_node(fdt);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
240                        pa_features, sizeof(pa_features))));
241 
242     /* Build interrupt servers properties */
243     for (i = 0; i < smt_threads; i++) {
244         servers_prop[i] = cpu_to_be32(pc->pir + i);
245     }
246     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247                        servers_prop, sizeof(*servers_prop) * smt_threads)));
248 }
249 
250 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
251                        uint32_t nr_threads)
252 {
253     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     irange[0] = cpu_to_be32(pir);
261     irange[1] = cpu_to_be32(nr_threads);
262 
263     rsize = sizeof(uint64_t) * 2 * nr_threads;
264     reg = g_malloc(rsize);
265     for (i = 0; i < nr_threads; i++) {
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 /*
288  * Adds a PnvPHB to the chip on P8.
289  * Implemented here, like for defaults PHBs
290  */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293     Pnv8Chip *chip8 = PNV8_CHIP(chip);
294 
295     phb->chip = chip;
296 
297     chip8->phbs[chip8->num_phbs] = phb;
298     chip8->num_phbs++;
299     return chip;
300 }
301 
302 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
303 {
304     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
305     int i;
306 
307     pnv_dt_xscom(chip, fdt, 0,
308                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
309                  cpu_to_be64(PNV_XSCOM_SIZE),
310                  compat, sizeof(compat));
311 
312     for (i = 0; i < chip->nr_cores; i++) {
313         PnvCore *pnv_core = chip->cores[i];
314 
315         pnv_dt_core(chip, pnv_core, fdt);
316 
317         /* Interrupt Control Presenters (ICP). One per core. */
318         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
319     }
320 
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324 }
325 
326 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
327 {
328     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
329     int i;
330 
331     pnv_dt_xscom(chip, fdt, 0,
332                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
333                  cpu_to_be64(PNV9_XSCOM_SIZE),
334                  compat, sizeof(compat));
335 
336     for (i = 0; i < chip->nr_cores; i++) {
337         PnvCore *pnv_core = chip->cores[i];
338 
339         pnv_dt_core(chip, pnv_core, fdt);
340     }
341 
342     if (chip->ram_size) {
343         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
344     }
345 
346     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
347 }
348 
349 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
350 {
351     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
352     int i;
353 
354     pnv_dt_xscom(chip, fdt, 0,
355                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
356                  cpu_to_be64(PNV10_XSCOM_SIZE),
357                  compat, sizeof(compat));
358 
359     for (i = 0; i < chip->nr_cores; i++) {
360         PnvCore *pnv_core = chip->cores[i];
361 
362         pnv_dt_core(chip, pnv_core, fdt);
363     }
364 
365     if (chip->ram_size) {
366         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
367     }
368 
369     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
370 }
371 
372 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
373 {
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(2)
379     };
380     char *name;
381     int node;
382 
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387 
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
390 }
391 
392 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
393 {
394     const char compatible[] = "ns16550\0pnpPNP,501";
395     uint32_t io_base = d->ioport_id;
396     uint32_t io_regs[] = {
397         cpu_to_be32(1),
398         cpu_to_be32(io_base),
399         cpu_to_be32(8)
400     };
401     uint32_t irq;
402     char *name;
403     int node;
404 
405     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
406 
407     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
408     node = fdt_add_subnode(fdt, lpc_off, name);
409     _FDT(node);
410     g_free(name);
411 
412     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
413     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
414                       sizeof(compatible))));
415 
416     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
417     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
418     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
419     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
420                            fdt_get_phandle(fdt, lpc_off))));
421 
422     /* This is needed by Linux */
423     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
424 }
425 
426 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
427 {
428     const char compatible[] = "bt\0ipmi-bt";
429     uint32_t io_base;
430     uint32_t io_regs[] = {
431         cpu_to_be32(1),
432         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
433         cpu_to_be32(3)
434     };
435     uint32_t irq;
436     char *name;
437     int node;
438 
439     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
440     io_regs[1] = cpu_to_be32(io_base);
441 
442     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
443 
444     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
445     node = fdt_add_subnode(fdt, lpc_off, name);
446     _FDT(node);
447     g_free(name);
448 
449     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
450     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
451                       sizeof(compatible))));
452 
453     /* Mark it as reserved to avoid Linux trying to claim it */
454     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
455     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
456     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
457                            fdt_get_phandle(fdt, lpc_off))));
458 }
459 
460 typedef struct ForeachPopulateArgs {
461     void *fdt;
462     int offset;
463 } ForeachPopulateArgs;
464 
465 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
466 {
467     ForeachPopulateArgs *args = opaque;
468     ISADevice *d = ISA_DEVICE(dev);
469 
470     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
471         pnv_dt_rtc(d, args->fdt, args->offset);
472     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
473         pnv_dt_serial(d, args->fdt, args->offset);
474     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
475         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
476     } else {
477         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
478                      d->ioport_id);
479     }
480 
481     return 0;
482 }
483 
484 /*
485  * The default LPC bus of a multichip system is on chip 0. It's
486  * recognized by the firmware (skiboot) using a "primary" property.
487  */
488 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
489 {
490     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
491     ForeachPopulateArgs args = {
492         .fdt = fdt,
493         .offset = isa_offset,
494     };
495     uint32_t phandle;
496 
497     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
498 
499     phandle = qemu_fdt_alloc_phandle(fdt);
500     assert(phandle > 0);
501     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
502 
503     /*
504      * ISA devices are not necessarily parented to the ISA bus so we
505      * can not use object_child_foreach()
506      */
507     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
508                        &args);
509 }
510 
511 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
512 {
513     int off;
514 
515     off = fdt_add_subnode(fdt, 0, "ibm,opal");
516     off = fdt_add_subnode(fdt, off, "power-mgt");
517 
518     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
519 }
520 
521 static void *pnv_dt_create(MachineState *machine)
522 {
523     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
524     PnvMachineState *pnv = PNV_MACHINE(machine);
525     void *fdt;
526     char *buf;
527     int off;
528     int i;
529 
530     fdt = g_malloc0(FDT_MAX_SIZE);
531     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
532 
533     /* /qemu node */
534     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
535 
536     /* Root node */
537     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
538     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
539     _FDT((fdt_setprop_string(fdt, 0, "model",
540                              "IBM PowerNV (emulated by qemu)")));
541     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
542 
543     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
544     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
545     if (qemu_uuid_set) {
546         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
547     }
548     g_free(buf);
549 
550     off = fdt_add_subnode(fdt, 0, "chosen");
551     if (machine->kernel_cmdline) {
552         _FDT((fdt_setprop_string(fdt, off, "bootargs",
553                                  machine->kernel_cmdline)));
554     }
555 
556     if (pnv->initrd_size) {
557         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
558         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
559 
560         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
561                                &start_prop, sizeof(start_prop))));
562         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
563                                &end_prop, sizeof(end_prop))));
564     }
565 
566     /* Populate device tree for each chip */
567     for (i = 0; i < pnv->num_chips; i++) {
568         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
569     }
570 
571     /* Populate ISA devices on chip 0 */
572     pnv_dt_isa(pnv, fdt);
573 
574     if (pnv->bmc) {
575         pnv_dt_bmc_sensors(pnv->bmc, fdt);
576     }
577 
578     /* Create an extra node for power management on machines that support it */
579     if (pmc->dt_power_mgt) {
580         pmc->dt_power_mgt(pnv, fdt);
581     }
582 
583     return fdt;
584 }
585 
586 static void pnv_powerdown_notify(Notifier *n, void *opaque)
587 {
588     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
589 
590     if (pnv->bmc) {
591         pnv_bmc_powerdown(pnv->bmc);
592     }
593 }
594 
595 static void pnv_reset(MachineState *machine, ShutdownCause reason)
596 {
597     PnvMachineState *pnv = PNV_MACHINE(machine);
598     IPMIBmc *bmc;
599     void *fdt;
600 
601     qemu_devices_reset(reason);
602 
603     /*
604      * The machine should provide by default an internal BMC simulator.
605      * If not, try to use the BMC device that was provided on the command
606      * line.
607      */
608     bmc = pnv_bmc_find(&error_fatal);
609     if (!pnv->bmc) {
610         if (!bmc) {
611             if (!qtest_enabled()) {
612                 warn_report("machine has no BMC device. Use '-device "
613                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
614                             "to define one");
615             }
616         } else {
617             pnv_bmc_set_pnor(bmc, pnv->pnor);
618             pnv->bmc = bmc;
619         }
620     }
621 
622     fdt = pnv_dt_create(machine);
623 
624     /* Pack resulting tree */
625     _FDT((fdt_pack(fdt)));
626 
627     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
628     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
629 
630     /*
631      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
632      * the existing machine->fdt to avoid leaking it during
633      * a reset.
634      */
635     g_free(machine->fdt);
636     machine->fdt = fdt;
637 }
638 
639 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
640 {
641     Pnv8Chip *chip8 = PNV8_CHIP(chip);
642     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
643 
644     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
645     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
646 }
647 
648 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
649 {
650     Pnv8Chip *chip8 = PNV8_CHIP(chip);
651     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
652 
653     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
654     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
655 }
656 
657 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
658 {
659     Pnv9Chip *chip9 = PNV9_CHIP(chip);
660     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
661 
662     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
663     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
664 }
665 
666 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
667 {
668     Pnv10Chip *chip10 = PNV10_CHIP(chip);
669     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
670 
671     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
672     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
673 }
674 
675 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
676 {
677     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
678 }
679 
680 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
681 {
682     Pnv8Chip *chip8 = PNV8_CHIP(chip);
683     int i;
684 
685     ics_pic_print_info(&chip8->psi.ics, mon);
686 
687     for (i = 0; i < chip8->num_phbs; i++) {
688         PnvPHB *phb = chip8->phbs[i];
689         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
690 
691         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
692         ics_pic_print_info(&phb3->lsis, mon);
693     }
694 }
695 
696 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
697 {
698     Monitor *mon = opaque;
699     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
700 
701     if (!phb) {
702         return 0;
703     }
704 
705     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
706 
707     return 0;
708 }
709 
710 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
711 {
712     Pnv9Chip *chip9 = PNV9_CHIP(chip);
713 
714     pnv_xive_pic_print_info(&chip9->xive, mon);
715     pnv_psi_pic_print_info(&chip9->psi, mon);
716 
717     object_child_foreach_recursive(OBJECT(chip),
718                          pnv_chip_power9_pic_print_info_child, mon);
719 }
720 
721 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
722                                                 uint32_t core_id)
723 {
724     return PNV_XSCOM_EX_BASE(core_id);
725 }
726 
727 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
728                                                 uint32_t core_id)
729 {
730     return PNV9_XSCOM_EC_BASE(core_id);
731 }
732 
733 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
734                                                  uint32_t core_id)
735 {
736     return PNV10_XSCOM_EC_BASE(core_id);
737 }
738 
739 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
740 {
741     PowerPCCPUClass *ppc_default =
742         POWERPC_CPU_CLASS(object_class_by_name(default_type));
743     PowerPCCPUClass *ppc =
744         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
745 
746     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
747 }
748 
749 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
750 {
751     ISADevice *dev = isa_new("isa-ipmi-bt");
752 
753     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
754     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
755     isa_realize_and_unref(dev, bus, &error_fatal);
756 }
757 
758 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
759 {
760     Pnv10Chip *chip10 = PNV10_CHIP(chip);
761 
762     pnv_xive2_pic_print_info(&chip10->xive, mon);
763     pnv_psi_pic_print_info(&chip10->psi, mon);
764 
765     object_child_foreach_recursive(OBJECT(chip),
766                          pnv_chip_power9_pic_print_info_child, mon);
767 }
768 
769 /* Always give the first 1GB to chip 0 else we won't boot */
770 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
771 {
772     MachineState *machine = MACHINE(pnv);
773     uint64_t ram_per_chip;
774 
775     assert(machine->ram_size >= 1 * GiB);
776 
777     ram_per_chip = machine->ram_size / pnv->num_chips;
778     if (ram_per_chip >= 1 * GiB) {
779         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
780     }
781 
782     assert(pnv->num_chips > 1);
783 
784     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
785     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
786 }
787 
788 static void pnv_init(MachineState *machine)
789 {
790     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
791     PnvMachineState *pnv = PNV_MACHINE(machine);
792     MachineClass *mc = MACHINE_GET_CLASS(machine);
793     char *fw_filename;
794     long fw_size;
795     uint64_t chip_ram_start = 0;
796     int i;
797     char *chip_typename;
798     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
799     DeviceState *dev;
800 
801     if (kvm_enabled()) {
802         error_report("machine %s does not support the KVM accelerator",
803                      mc->name);
804         exit(EXIT_FAILURE);
805     }
806 
807     /* allocate RAM */
808     if (machine->ram_size < mc->default_ram_size) {
809         char *sz = size_to_str(mc->default_ram_size);
810         error_report("Invalid RAM size, should be bigger than %s", sz);
811         g_free(sz);
812         exit(EXIT_FAILURE);
813     }
814     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
815 
816     /*
817      * Create our simple PNOR device
818      */
819     dev = qdev_new(TYPE_PNV_PNOR);
820     if (pnor) {
821         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
822     }
823     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
824     pnv->pnor = PNV_PNOR(dev);
825 
826     /* load skiboot firmware  */
827     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
828     if (!fw_filename) {
829         error_report("Could not find OPAL firmware '%s'", bios_name);
830         exit(1);
831     }
832 
833     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
834     if (fw_size < 0) {
835         error_report("Could not load OPAL firmware '%s'", fw_filename);
836         exit(1);
837     }
838     g_free(fw_filename);
839 
840     /* load kernel */
841     if (machine->kernel_filename) {
842         long kernel_size;
843 
844         kernel_size = load_image_targphys(machine->kernel_filename,
845                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
846         if (kernel_size < 0) {
847             error_report("Could not load kernel '%s'",
848                          machine->kernel_filename);
849             exit(1);
850         }
851     }
852 
853     /* load initrd */
854     if (machine->initrd_filename) {
855         pnv->initrd_base = INITRD_LOAD_ADDR;
856         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
857                                   pnv->initrd_base, INITRD_MAX_SIZE);
858         if (pnv->initrd_size < 0) {
859             error_report("Could not load initial ram disk '%s'",
860                          machine->initrd_filename);
861             exit(1);
862         }
863     }
864 
865     /* MSIs are supported on this platform */
866     msi_nonbroken = true;
867 
868     /*
869      * Check compatibility of the specified CPU with the machine
870      * default.
871      */
872     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
873         error_report("invalid CPU model '%s' for %s machine",
874                      machine->cpu_type, mc->name);
875         exit(1);
876     }
877 
878     /* Create the processor chips */
879     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
880     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
881                                     i, machine->cpu_type);
882     if (!object_class_by_name(chip_typename)) {
883         error_report("invalid chip model '%.*s' for %s machine",
884                      i, machine->cpu_type, mc->name);
885         exit(1);
886     }
887 
888     pnv->num_chips =
889         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
890 
891     if (machine->smp.threads > 8) {
892         error_report("Cannot support more than 8 threads/core "
893                      "on a powernv machine");
894         exit(1);
895     }
896     if (!is_power_of_2(machine->smp.threads)) {
897         error_report("Cannot support %d threads/core on a powernv"
898                      "machine because it must be a power of 2",
899                      machine->smp.threads);
900         exit(1);
901     }
902     /*
903      * TODO: should we decide on how many chips we can create based
904      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
905      */
906     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
907         error_report("invalid number of chips: '%d'", pnv->num_chips);
908         error_printf(
909             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
910         exit(1);
911     }
912 
913     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
914     for (i = 0; i < pnv->num_chips; i++) {
915         char chip_name[32];
916         Object *chip = OBJECT(qdev_new(chip_typename));
917         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
918 
919         pnv->chips[i] = PNV_CHIP(chip);
920 
921         /* Distribute RAM among the chips  */
922         object_property_set_int(chip, "ram-start", chip_ram_start,
923                                 &error_fatal);
924         object_property_set_int(chip, "ram-size", chip_ram_size,
925                                 &error_fatal);
926         chip_ram_start += chip_ram_size;
927 
928         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
929         object_property_add_child(OBJECT(pnv), chip_name, chip);
930         object_property_set_int(chip, "chip-id", i, &error_fatal);
931         object_property_set_int(chip, "nr-cores", machine->smp.cores,
932                                 &error_fatal);
933         object_property_set_int(chip, "nr-threads", machine->smp.threads,
934                                 &error_fatal);
935         /*
936          * The POWER8 machine use the XICS interrupt interface.
937          * Propagate the XICS fabric to the chip and its controllers.
938          */
939         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
940             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
941         }
942         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
943             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
944                                      &error_abort);
945         }
946         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
947     }
948     g_free(chip_typename);
949 
950     /* Instantiate ISA bus on chip 0 */
951     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
952 
953     /* Create serial port */
954     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
955 
956     /* Create an RTC ISA device too */
957     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
958 
959     /*
960      * Create the machine BMC simulator and the IPMI BT device for
961      * communication with the BMC
962      */
963     if (defaults_enabled()) {
964         pnv->bmc = pnv_bmc_create(pnv->pnor);
965         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
966     }
967 
968     /*
969      * The PNOR is mapped on the LPC FW address space by the BMC.
970      * Since we can not reach the remote BMC machine with LPC memops,
971      * map it always for now.
972      */
973     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
974                                 &pnv->pnor->mmio);
975 
976     /*
977      * OpenPOWER systems use a IPMI SEL Event message to notify the
978      * host to powerdown
979      */
980     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
981     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
982 }
983 
984 /*
985  *    0:21  Reserved - Read as zeros
986  *   22:24  Chip ID
987  *   25:28  Core number
988  *   29:31  Thread ID
989  */
990 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
991 {
992     return (chip->chip_id << 7) | (core_id << 3);
993 }
994 
995 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
996                                         Error **errp)
997 {
998     Pnv8Chip *chip8 = PNV8_CHIP(chip);
999     Error *local_err = NULL;
1000     Object *obj;
1001     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1002 
1003     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1004     if (local_err) {
1005         error_propagate(errp, local_err);
1006         return;
1007     }
1008 
1009     pnv_cpu->intc = obj;
1010 }
1011 
1012 
1013 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1014 {
1015     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1016 
1017     icp_reset(ICP(pnv_cpu->intc));
1018 }
1019 
1020 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1021 {
1022     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1023 
1024     icp_destroy(ICP(pnv_cpu->intc));
1025     pnv_cpu->intc = NULL;
1026 }
1027 
1028 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1029                                             Monitor *mon)
1030 {
1031     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1032 }
1033 
1034 /*
1035  *    0:48  Reserved - Read as zeroes
1036  *   49:52  Node ID
1037  *   53:55  Chip ID
1038  *   56     Reserved - Read as zero
1039  *   57:61  Core number
1040  *   62:63  Thread ID
1041  *
1042  * We only care about the lower bits. uint32_t is fine for the moment.
1043  */
1044 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1045 {
1046     return (chip->chip_id << 8) | (core_id << 2);
1047 }
1048 
1049 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1050 {
1051     return (chip->chip_id << 8) | (core_id << 2);
1052 }
1053 
1054 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1055                                         Error **errp)
1056 {
1057     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1058     Error *local_err = NULL;
1059     Object *obj;
1060     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1061 
1062     /*
1063      * The core creates its interrupt presenter but the XIVE interrupt
1064      * controller object is initialized afterwards. Hopefully, it's
1065      * only used at runtime.
1066      */
1067     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1068                            &local_err);
1069     if (local_err) {
1070         error_propagate(errp, local_err);
1071         return;
1072     }
1073 
1074     pnv_cpu->intc = obj;
1075 }
1076 
1077 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1078 {
1079     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1080 
1081     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1082 }
1083 
1084 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1085 {
1086     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1087 
1088     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1089     pnv_cpu->intc = NULL;
1090 }
1091 
1092 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1093                                             Monitor *mon)
1094 {
1095     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1096 }
1097 
1098 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1099                                         Error **errp)
1100 {
1101     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1102     Error *local_err = NULL;
1103     Object *obj;
1104     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1105 
1106     /*
1107      * The core creates its interrupt presenter but the XIVE2 interrupt
1108      * controller object is initialized afterwards. Hopefully, it's
1109      * only used at runtime.
1110      */
1111     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1112                            &local_err);
1113     if (local_err) {
1114         error_propagate(errp, local_err);
1115         return;
1116     }
1117 
1118     pnv_cpu->intc = obj;
1119 }
1120 
1121 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1122 {
1123     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1124 
1125     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1126 }
1127 
1128 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1129 {
1130     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1131 
1132     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1133     pnv_cpu->intc = NULL;
1134 }
1135 
1136 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1137                                              Monitor *mon)
1138 {
1139     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1140 }
1141 
1142 /*
1143  * Allowed core identifiers on a POWER8 Processor Chip :
1144  *
1145  * <EX0 reserved>
1146  *  EX1  - Venice only
1147  *  EX2  - Venice only
1148  *  EX3  - Venice only
1149  *  EX4
1150  *  EX5
1151  *  EX6
1152  * <EX7,8 reserved> <reserved>
1153  *  EX9  - Venice only
1154  *  EX10 - Venice only
1155  *  EX11 - Venice only
1156  *  EX12
1157  *  EX13
1158  *  EX14
1159  * <EX15 reserved>
1160  */
1161 #define POWER8E_CORE_MASK  (0x7070ull)
1162 #define POWER8_CORE_MASK   (0x7e7eull)
1163 
1164 /*
1165  * POWER9 has 24 cores, ids starting at 0x0
1166  */
1167 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1168 
1169 
1170 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1171 
1172 static void pnv_chip_power8_instance_init(Object *obj)
1173 {
1174     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1175     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1176     int i;
1177 
1178     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1179                              (Object **)&chip8->xics,
1180                              object_property_allow_set_link,
1181                              OBJ_PROP_LINK_STRONG);
1182 
1183     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1184 
1185     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1186 
1187     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1188 
1189     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1190 
1191     if (defaults_enabled()) {
1192         chip8->num_phbs = pcc->num_phbs;
1193 
1194         for (i = 0; i < chip8->num_phbs; i++) {
1195             Object *phb = object_new(TYPE_PNV_PHB);
1196 
1197             /*
1198              * We need the chip to parent the PHB to allow the DT
1199              * to build correctly (via pnv_xscom_dt()).
1200              *
1201              * TODO: the PHB should be parented by a PEC device that, at
1202              * this moment, is not modelled powernv8/phb3.
1203              */
1204             object_property_add_child(obj, "phb[*]", phb);
1205             chip8->phbs[i] = PNV_PHB(phb);
1206         }
1207     }
1208 
1209 }
1210 
1211 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1212  {
1213     PnvChip *chip = PNV_CHIP(chip8);
1214     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1215     int i, j;
1216     char *name;
1217 
1218     name = g_strdup_printf("icp-%x", chip->chip_id);
1219     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1220     g_free(name);
1221     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1222                                 &chip8->icp_mmio);
1223 
1224     /* Map the ICP registers for each thread */
1225     for (i = 0; i < chip->nr_cores; i++) {
1226         PnvCore *pnv_core = chip->cores[i];
1227         int core_hwid = CPU_CORE(pnv_core)->core_id;
1228 
1229         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1230             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1231             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1232 
1233             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1234                                         &icp->mmio);
1235         }
1236     }
1237 }
1238 
1239 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1240 {
1241     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1242     PnvChip *chip = PNV_CHIP(dev);
1243     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1244     Pnv8Psi *psi8 = &chip8->psi;
1245     Error *local_err = NULL;
1246     int i;
1247 
1248     assert(chip8->xics);
1249 
1250     /* XSCOM bridge is first */
1251     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1252 
1253     pcc->parent_realize(dev, &local_err);
1254     if (local_err) {
1255         error_propagate(errp, local_err);
1256         return;
1257     }
1258 
1259     /* Processor Service Interface (PSI) Host Bridge */
1260     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1261                             &error_fatal);
1262     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1263                              OBJECT(chip8->xics), &error_abort);
1264     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1265         return;
1266     }
1267     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1268                             &PNV_PSI(psi8)->xscom_regs);
1269 
1270     /* Create LPC controller */
1271     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1272     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1273 
1274     chip->fw_mr = &chip8->lpc.isa_fw;
1275     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1276                                             (uint64_t) PNV_XSCOM_BASE(chip),
1277                                             PNV_XSCOM_LPC_BASE);
1278 
1279     /*
1280      * Interrupt Management Area. This is the memory region holding
1281      * all the Interrupt Control Presenter (ICP) registers
1282      */
1283     pnv_chip_icp_realize(chip8, &local_err);
1284     if (local_err) {
1285         error_propagate(errp, local_err);
1286         return;
1287     }
1288 
1289     /* Create the simplified OCC model */
1290     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1291         return;
1292     }
1293     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1294     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1295                           qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1296 
1297     /* OCC SRAM model */
1298     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1299                                 &chip8->occ.sram_regs);
1300 
1301     /* HOMER */
1302     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1303                              &error_abort);
1304     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1305         return;
1306     }
1307     /* Homer Xscom region */
1308     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1309 
1310     /* Homer mmio region */
1311     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1312                                 &chip8->homer.regs);
1313 
1314     /* PHB controllers */
1315     for (i = 0; i < chip8->num_phbs; i++) {
1316         PnvPHB *phb = chip8->phbs[i];
1317 
1318         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1319         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1320                                 &error_fatal);
1321         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1322                                  &error_fatal);
1323         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1324             return;
1325         }
1326     }
1327 }
1328 
1329 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1330 {
1331     addr &= (PNV_XSCOM_SIZE - 1);
1332     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1333 }
1334 
1335 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1336 {
1337     DeviceClass *dc = DEVICE_CLASS(klass);
1338     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1339 
1340     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1341     k->cores_mask = POWER8E_CORE_MASK;
1342     k->num_phbs = 3;
1343     k->core_pir = pnv_chip_core_pir_p8;
1344     k->intc_create = pnv_chip_power8_intc_create;
1345     k->intc_reset = pnv_chip_power8_intc_reset;
1346     k->intc_destroy = pnv_chip_power8_intc_destroy;
1347     k->intc_print_info = pnv_chip_power8_intc_print_info;
1348     k->isa_create = pnv_chip_power8_isa_create;
1349     k->dt_populate = pnv_chip_power8_dt_populate;
1350     k->pic_print_info = pnv_chip_power8_pic_print_info;
1351     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1352     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1353     dc->desc = "PowerNV Chip POWER8E";
1354 
1355     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1356                                     &k->parent_realize);
1357 }
1358 
1359 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1360 {
1361     DeviceClass *dc = DEVICE_CLASS(klass);
1362     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1363 
1364     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1365     k->cores_mask = POWER8_CORE_MASK;
1366     k->num_phbs = 3;
1367     k->core_pir = pnv_chip_core_pir_p8;
1368     k->intc_create = pnv_chip_power8_intc_create;
1369     k->intc_reset = pnv_chip_power8_intc_reset;
1370     k->intc_destroy = pnv_chip_power8_intc_destroy;
1371     k->intc_print_info = pnv_chip_power8_intc_print_info;
1372     k->isa_create = pnv_chip_power8_isa_create;
1373     k->dt_populate = pnv_chip_power8_dt_populate;
1374     k->pic_print_info = pnv_chip_power8_pic_print_info;
1375     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1376     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1377     dc->desc = "PowerNV Chip POWER8";
1378 
1379     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1380                                     &k->parent_realize);
1381 }
1382 
1383 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1384 {
1385     DeviceClass *dc = DEVICE_CLASS(klass);
1386     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1387 
1388     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1389     k->cores_mask = POWER8_CORE_MASK;
1390     k->num_phbs = 4;
1391     k->core_pir = pnv_chip_core_pir_p8;
1392     k->intc_create = pnv_chip_power8_intc_create;
1393     k->intc_reset = pnv_chip_power8_intc_reset;
1394     k->intc_destroy = pnv_chip_power8_intc_destroy;
1395     k->intc_print_info = pnv_chip_power8_intc_print_info;
1396     k->isa_create = pnv_chip_power8nvl_isa_create;
1397     k->dt_populate = pnv_chip_power8_dt_populate;
1398     k->pic_print_info = pnv_chip_power8_pic_print_info;
1399     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1400     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1401     dc->desc = "PowerNV Chip POWER8NVL";
1402 
1403     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1404                                     &k->parent_realize);
1405 }
1406 
1407 static void pnv_chip_power9_instance_init(Object *obj)
1408 {
1409     PnvChip *chip = PNV_CHIP(obj);
1410     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1411     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1412     int i;
1413 
1414     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1415     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1416                               "xive-fabric");
1417 
1418     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1419 
1420     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1421 
1422     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1423 
1424     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1425 
1426     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1427 
1428     /* Number of PECs is the chip default */
1429     chip->num_pecs = pcc->num_pecs;
1430 
1431     for (i = 0; i < chip->num_pecs; i++) {
1432         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1433                                 TYPE_PNV_PHB4_PEC);
1434     }
1435 }
1436 
1437 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1438                                       PnvCore *pnv_core,
1439                                       const char *type)
1440 {
1441     char eq_name[32];
1442     int core_id = CPU_CORE(pnv_core)->core_id;
1443 
1444     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1445     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1446                                        sizeof(*eq), type,
1447                                        &error_fatal, NULL);
1448 
1449     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1450     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1451 }
1452 
1453 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1454 {
1455     PnvChip *chip = PNV_CHIP(chip9);
1456     int i;
1457 
1458     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1459     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1460 
1461     for (i = 0; i < chip9->nr_quads; i++) {
1462         PnvQuad *eq = &chip9->quads[i];
1463 
1464         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1465                                   PNV_QUAD_TYPE_NAME("power9"));
1466 
1467         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1468                                 &eq->xscom_regs);
1469     }
1470 }
1471 
1472 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1473 {
1474     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1475     int i;
1476 
1477     for (i = 0; i < chip->num_pecs; i++) {
1478         PnvPhb4PecState *pec = &chip9->pecs[i];
1479         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1480         uint32_t pec_nest_base;
1481         uint32_t pec_pci_base;
1482 
1483         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1484         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1485                                 &error_fatal);
1486         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1487                                  &error_fatal);
1488         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1489             return;
1490         }
1491 
1492         pec_nest_base = pecc->xscom_nest_base(pec);
1493         pec_pci_base = pecc->xscom_pci_base(pec);
1494 
1495         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1496         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1497     }
1498 }
1499 
1500 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1501 {
1502     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1503     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1504     PnvChip *chip = PNV_CHIP(dev);
1505     Pnv9Psi *psi9 = &chip9->psi;
1506     Error *local_err = NULL;
1507 
1508     /* XSCOM bridge is first */
1509     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1510 
1511     pcc->parent_realize(dev, &local_err);
1512     if (local_err) {
1513         error_propagate(errp, local_err);
1514         return;
1515     }
1516 
1517     pnv_chip_quad_realize(chip9, &local_err);
1518     if (local_err) {
1519         error_propagate(errp, local_err);
1520         return;
1521     }
1522 
1523     /* XIVE interrupt controller (POWER9) */
1524     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1525                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1526     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1527                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1528     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1529                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1530     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1531                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1532     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1533                              &error_abort);
1534     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1535         return;
1536     }
1537     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1538                             &chip9->xive.xscom_regs);
1539 
1540     /* Processor Service Interface (PSI) Host Bridge */
1541     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1542                             &error_fatal);
1543     /* This is the only device with 4k ESB pages */
1544     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1545                             &error_fatal);
1546     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1547         return;
1548     }
1549     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1550                             &PNV_PSI(psi9)->xscom_regs);
1551 
1552     /* LPC */
1553     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1554         return;
1555     }
1556     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1557                                 &chip9->lpc.xscom_regs);
1558 
1559     chip->fw_mr = &chip9->lpc.isa_fw;
1560     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1561                                             (uint64_t) PNV9_LPCM_BASE(chip));
1562 
1563     /* Create the simplified OCC model */
1564     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1565         return;
1566     }
1567     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1568     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1569                               DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1570 
1571     /* OCC SRAM model */
1572     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1573                                 &chip9->occ.sram_regs);
1574 
1575     /* SBE */
1576     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1577         return;
1578     }
1579     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1580                             &chip9->sbe.xscom_ctrl_regs);
1581     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1582                             &chip9->sbe.xscom_mbox_regs);
1583     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1584                               DEVICE(&chip9->psi), PSIHB9_IRQ_PSU));
1585 
1586     /* HOMER */
1587     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1588                              &error_abort);
1589     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1590         return;
1591     }
1592     /* Homer Xscom region */
1593     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1594 
1595     /* Homer mmio region */
1596     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1597                                 &chip9->homer.regs);
1598 
1599     /* PEC PHBs */
1600     pnv_chip_power9_pec_realize(chip, &local_err);
1601     if (local_err) {
1602         error_propagate(errp, local_err);
1603         return;
1604     }
1605 }
1606 
1607 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1608 {
1609     addr &= (PNV9_XSCOM_SIZE - 1);
1610     return addr >> 3;
1611 }
1612 
1613 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1614 {
1615     DeviceClass *dc = DEVICE_CLASS(klass);
1616     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1617 
1618     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1619     k->cores_mask = POWER9_CORE_MASK;
1620     k->core_pir = pnv_chip_core_pir_p9;
1621     k->intc_create = pnv_chip_power9_intc_create;
1622     k->intc_reset = pnv_chip_power9_intc_reset;
1623     k->intc_destroy = pnv_chip_power9_intc_destroy;
1624     k->intc_print_info = pnv_chip_power9_intc_print_info;
1625     k->isa_create = pnv_chip_power9_isa_create;
1626     k->dt_populate = pnv_chip_power9_dt_populate;
1627     k->pic_print_info = pnv_chip_power9_pic_print_info;
1628     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1629     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1630     dc->desc = "PowerNV Chip POWER9";
1631     k->num_pecs = PNV9_CHIP_MAX_PEC;
1632 
1633     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1634                                     &k->parent_realize);
1635 }
1636 
1637 static void pnv_chip_power10_instance_init(Object *obj)
1638 {
1639     PnvChip *chip = PNV_CHIP(obj);
1640     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1641     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1642     int i;
1643 
1644     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1645     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1646                               "xive-fabric");
1647     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1648     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1649     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1650     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1651     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1652 
1653     chip->num_pecs = pcc->num_pecs;
1654 
1655     for (i = 0; i < chip->num_pecs; i++) {
1656         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1657                                 TYPE_PNV_PHB5_PEC);
1658     }
1659 }
1660 
1661 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1662 {
1663     PnvChip *chip = PNV_CHIP(chip10);
1664     int i;
1665 
1666     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1667     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1668 
1669     for (i = 0; i < chip10->nr_quads; i++) {
1670         PnvQuad *eq = &chip10->quads[i];
1671 
1672         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1673                                   PNV_QUAD_TYPE_NAME("power10"));
1674 
1675         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1676                                 &eq->xscom_regs);
1677 
1678         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1679                                 &eq->xscom_qme_regs);
1680     }
1681 }
1682 
1683 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1684 {
1685     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1686     int i;
1687 
1688     for (i = 0; i < chip->num_pecs; i++) {
1689         PnvPhb4PecState *pec = &chip10->pecs[i];
1690         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1691         uint32_t pec_nest_base;
1692         uint32_t pec_pci_base;
1693 
1694         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1695         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1696                                 &error_fatal);
1697         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1698                                  &error_fatal);
1699         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1700             return;
1701         }
1702 
1703         pec_nest_base = pecc->xscom_nest_base(pec);
1704         pec_pci_base = pecc->xscom_pci_base(pec);
1705 
1706         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1707         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1708     }
1709 }
1710 
1711 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1712 {
1713     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1714     PnvChip *chip = PNV_CHIP(dev);
1715     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1716     Error *local_err = NULL;
1717 
1718     /* XSCOM bridge is first */
1719     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1720 
1721     pcc->parent_realize(dev, &local_err);
1722     if (local_err) {
1723         error_propagate(errp, local_err);
1724         return;
1725     }
1726 
1727     pnv_chip_power10_quad_realize(chip10, &local_err);
1728     if (local_err) {
1729         error_propagate(errp, local_err);
1730         return;
1731     }
1732 
1733     /* XIVE2 interrupt controller (POWER10) */
1734     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1735                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1736     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1737                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1738     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1739                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1740     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1741                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1742     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1743                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1744     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1745                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1746     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1747                              &error_abort);
1748     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1749         return;
1750     }
1751     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1752                             &chip10->xive.xscom_regs);
1753 
1754     /* Processor Service Interface (PSI) Host Bridge */
1755     object_property_set_int(OBJECT(&chip10->psi), "bar",
1756                             PNV10_PSIHB_BASE(chip), &error_fatal);
1757     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1758     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1759                             &error_fatal);
1760     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1761         return;
1762     }
1763     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1764                             &PNV_PSI(&chip10->psi)->xscom_regs);
1765 
1766     /* LPC */
1767     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1768         return;
1769     }
1770     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1771                                 &chip10->lpc.xscom_regs);
1772 
1773     chip->fw_mr = &chip10->lpc.isa_fw;
1774     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1775                                             (uint64_t) PNV10_LPCM_BASE(chip));
1776 
1777     /* Create the simplified OCC model */
1778     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1779         return;
1780     }
1781     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1782                             &chip10->occ.xscom_regs);
1783     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1784                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1785 
1786     /* OCC SRAM model */
1787     memory_region_add_subregion(get_system_memory(),
1788                                 PNV10_OCC_SENSOR_BASE(chip),
1789                                 &chip10->occ.sram_regs);
1790 
1791     /* SBE */
1792     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1793         return;
1794     }
1795     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1796                             &chip10->sbe.xscom_ctrl_regs);
1797     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1798                             &chip10->sbe.xscom_mbox_regs);
1799     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1800                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1801 
1802     /* HOMER */
1803     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1804                              &error_abort);
1805     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1806         return;
1807     }
1808     /* Homer Xscom region */
1809     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1810                             &chip10->homer.pba_regs);
1811 
1812     /* Homer mmio region */
1813     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1814                                 &chip10->homer.regs);
1815 
1816     /* PHBs */
1817     pnv_chip_power10_phb_realize(chip, &local_err);
1818     if (local_err) {
1819         error_propagate(errp, local_err);
1820         return;
1821     }
1822 }
1823 
1824 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1825 {
1826     addr &= (PNV10_XSCOM_SIZE - 1);
1827     return addr >> 3;
1828 }
1829 
1830 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1831 {
1832     DeviceClass *dc = DEVICE_CLASS(klass);
1833     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1834 
1835     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1836     k->cores_mask = POWER10_CORE_MASK;
1837     k->core_pir = pnv_chip_core_pir_p10;
1838     k->intc_create = pnv_chip_power10_intc_create;
1839     k->intc_reset = pnv_chip_power10_intc_reset;
1840     k->intc_destroy = pnv_chip_power10_intc_destroy;
1841     k->intc_print_info = pnv_chip_power10_intc_print_info;
1842     k->isa_create = pnv_chip_power10_isa_create;
1843     k->dt_populate = pnv_chip_power10_dt_populate;
1844     k->pic_print_info = pnv_chip_power10_pic_print_info;
1845     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1846     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1847     dc->desc = "PowerNV Chip POWER10";
1848     k->num_pecs = PNV10_CHIP_MAX_PEC;
1849 
1850     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1851                                     &k->parent_realize);
1852 }
1853 
1854 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1855 {
1856     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1857     int cores_max;
1858 
1859     /*
1860      * No custom mask for this chip, let's use the default one from *
1861      * the chip class
1862      */
1863     if (!chip->cores_mask) {
1864         chip->cores_mask = pcc->cores_mask;
1865     }
1866 
1867     /* filter alien core ids ! some are reserved */
1868     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1869         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1870                    chip->cores_mask);
1871         return;
1872     }
1873     chip->cores_mask &= pcc->cores_mask;
1874 
1875     /* now that we have a sane layout, let check the number of cores */
1876     cores_max = ctpop64(chip->cores_mask);
1877     if (chip->nr_cores > cores_max) {
1878         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1879                    cores_max);
1880         return;
1881     }
1882 }
1883 
1884 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1885 {
1886     Error *error = NULL;
1887     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1888     const char *typename = pnv_chip_core_typename(chip);
1889     int i, core_hwid;
1890     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1891 
1892     if (!object_class_by_name(typename)) {
1893         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1894         return;
1895     }
1896 
1897     /* Cores */
1898     pnv_chip_core_sanitize(chip, &error);
1899     if (error) {
1900         error_propagate(errp, error);
1901         return;
1902     }
1903 
1904     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1905 
1906     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1907              && (i < chip->nr_cores); core_hwid++) {
1908         char core_name[32];
1909         PnvCore *pnv_core;
1910         uint64_t xscom_core_base;
1911 
1912         if (!(chip->cores_mask & (1ull << core_hwid))) {
1913             continue;
1914         }
1915 
1916         pnv_core = PNV_CORE(object_new(typename));
1917 
1918         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1919         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1920         chip->cores[i] = pnv_core;
1921         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1922                                 chip->nr_threads, &error_fatal);
1923         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1924                                 core_hwid, &error_fatal);
1925         object_property_set_int(OBJECT(pnv_core), "pir",
1926                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1927         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1928                                 &error_fatal);
1929         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1930                                  &error_abort);
1931         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1932 
1933         /* Each core has an XSCOM MMIO region */
1934         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1935 
1936         pnv_xscom_add_subregion(chip, xscom_core_base,
1937                                 &pnv_core->xscom_regs);
1938         i++;
1939     }
1940 }
1941 
1942 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1943 {
1944     PnvChip *chip = PNV_CHIP(dev);
1945     Error *error = NULL;
1946 
1947     /* Cores */
1948     pnv_chip_core_realize(chip, &error);
1949     if (error) {
1950         error_propagate(errp, error);
1951         return;
1952     }
1953 }
1954 
1955 static Property pnv_chip_properties[] = {
1956     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1957     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1958     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1959     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1960     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1961     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1962     DEFINE_PROP_END_OF_LIST(),
1963 };
1964 
1965 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1966 {
1967     DeviceClass *dc = DEVICE_CLASS(klass);
1968 
1969     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1970     dc->realize = pnv_chip_realize;
1971     device_class_set_props(dc, pnv_chip_properties);
1972     dc->desc = "PowerNV Chip";
1973 }
1974 
1975 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1976 {
1977     int i, j;
1978 
1979     for (i = 0; i < chip->nr_cores; i++) {
1980         PnvCore *pc = chip->cores[i];
1981         CPUCore *cc = CPU_CORE(pc);
1982 
1983         for (j = 0; j < cc->nr_threads; j++) {
1984             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1985                 return pc->threads[j];
1986             }
1987         }
1988     }
1989     return NULL;
1990 }
1991 
1992 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1993 {
1994     PnvMachineState *pnv = PNV_MACHINE(xi);
1995     int i, j;
1996 
1997     for (i = 0; i < pnv->num_chips; i++) {
1998         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1999 
2000         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2001             return &chip8->psi.ics;
2002         }
2003 
2004         for (j = 0; j < chip8->num_phbs; j++) {
2005             PnvPHB *phb = chip8->phbs[j];
2006             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2007 
2008             if (ics_valid_irq(&phb3->lsis, irq)) {
2009                 return &phb3->lsis;
2010             }
2011 
2012             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2013                 return ICS(&phb3->msis);
2014             }
2015         }
2016     }
2017     return NULL;
2018 }
2019 
2020 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2021 {
2022     int i;
2023 
2024     for (i = 0; i < pnv->num_chips; i++) {
2025         PnvChip *chip = pnv->chips[i];
2026         if (chip->chip_id == chip_id) {
2027             return chip;
2028         }
2029     }
2030     return NULL;
2031 }
2032 
2033 static void pnv_ics_resend(XICSFabric *xi)
2034 {
2035     PnvMachineState *pnv = PNV_MACHINE(xi);
2036     int i, j;
2037 
2038     for (i = 0; i < pnv->num_chips; i++) {
2039         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2040 
2041         ics_resend(&chip8->psi.ics);
2042 
2043         for (j = 0; j < chip8->num_phbs; j++) {
2044             PnvPHB *phb = chip8->phbs[j];
2045             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2046 
2047             ics_resend(&phb3->lsis);
2048             ics_resend(ICS(&phb3->msis));
2049         }
2050     }
2051 }
2052 
2053 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2054 {
2055     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2056 
2057     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2058 }
2059 
2060 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2061                                Monitor *mon)
2062 {
2063     PnvMachineState *pnv = PNV_MACHINE(obj);
2064     int i;
2065     CPUState *cs;
2066 
2067     CPU_FOREACH(cs) {
2068         PowerPCCPU *cpu = POWERPC_CPU(cs);
2069 
2070         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2071         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2072                                                            mon);
2073     }
2074 
2075     for (i = 0; i < pnv->num_chips; i++) {
2076         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2077     }
2078 }
2079 
2080 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2081                          uint8_t nvt_blk, uint32_t nvt_idx,
2082                          bool cam_ignore, uint8_t priority,
2083                          uint32_t logic_serv,
2084                          XiveTCTXMatch *match)
2085 {
2086     PnvMachineState *pnv = PNV_MACHINE(xfb);
2087     int total_count = 0;
2088     int i;
2089 
2090     for (i = 0; i < pnv->num_chips; i++) {
2091         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2092         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2093         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2094         int count;
2095 
2096         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2097                                priority, logic_serv, match);
2098 
2099         if (count < 0) {
2100             return count;
2101         }
2102 
2103         total_count += count;
2104     }
2105 
2106     return total_count;
2107 }
2108 
2109 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2110                                 uint8_t nvt_blk, uint32_t nvt_idx,
2111                                 bool cam_ignore, uint8_t priority,
2112                                 uint32_t logic_serv,
2113                                 XiveTCTXMatch *match)
2114 {
2115     PnvMachineState *pnv = PNV_MACHINE(xfb);
2116     int total_count = 0;
2117     int i;
2118 
2119     for (i = 0; i < pnv->num_chips; i++) {
2120         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2121         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2122         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2123         int count;
2124 
2125         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2126                                priority, logic_serv, match);
2127 
2128         if (count < 0) {
2129             return count;
2130         }
2131 
2132         total_count += count;
2133     }
2134 
2135     return total_count;
2136 }
2137 
2138 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2139 {
2140     MachineClass *mc = MACHINE_CLASS(oc);
2141     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2142     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2143     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2144 
2145     static GlobalProperty phb_compat[] = {
2146         { TYPE_PNV_PHB, "version", "3" },
2147         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2148     };
2149 
2150     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2151     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2152     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2153 
2154     xic->icp_get = pnv_icp_get;
2155     xic->ics_get = pnv_ics_get;
2156     xic->ics_resend = pnv_ics_resend;
2157 
2158     pmc->compat = compat;
2159     pmc->compat_size = sizeof(compat);
2160 
2161     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2162 }
2163 
2164 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2165 {
2166     MachineClass *mc = MACHINE_CLASS(oc);
2167     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2168     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2169     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2170 
2171     static GlobalProperty phb_compat[] = {
2172         { TYPE_PNV_PHB, "version", "4" },
2173         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2174     };
2175 
2176     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2177     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2178     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2179 
2180     xfc->match_nvt = pnv_match_nvt;
2181 
2182     mc->alias = "powernv";
2183 
2184     pmc->compat = compat;
2185     pmc->compat_size = sizeof(compat);
2186     pmc->dt_power_mgt = pnv_dt_power_mgt;
2187 
2188     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2189 }
2190 
2191 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2192 {
2193     MachineClass *mc = MACHINE_CLASS(oc);
2194     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2195     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2196     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2197 
2198     static GlobalProperty phb_compat[] = {
2199         { TYPE_PNV_PHB, "version", "5" },
2200         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2201     };
2202 
2203     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2204     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2205     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2206 
2207     pmc->compat = compat;
2208     pmc->compat_size = sizeof(compat);
2209     pmc->dt_power_mgt = pnv_dt_power_mgt;
2210 
2211     xfc->match_nvt = pnv10_xive_match_nvt;
2212 
2213     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2214 }
2215 
2216 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2217 {
2218     PnvMachineState *pnv = PNV_MACHINE(obj);
2219 
2220     return !!pnv->fw_load_addr;
2221 }
2222 
2223 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2224 {
2225     PnvMachineState *pnv = PNV_MACHINE(obj);
2226 
2227     if (value) {
2228         pnv->fw_load_addr = 0x8000000;
2229     }
2230 }
2231 
2232 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2233 {
2234     PowerPCCPU *cpu = POWERPC_CPU(cs);
2235     CPUPPCState *env = &cpu->env;
2236 
2237     cpu_synchronize_state(cs);
2238     ppc_cpu_do_system_reset(cs);
2239     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2240         /*
2241          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2242          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2243          * (PPC_BIT(43)).
2244          */
2245         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2246             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2247             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2248         }
2249     } else {
2250         /*
2251          * For non-powersave system resets, SRR1[42:45] are defined to be
2252          * implementation-dependent. The POWER9 User Manual specifies that
2253          * an external (SCOM driven, which may come from a BMC nmi command or
2254          * another CPU requesting a NMI IPI) system reset exception should be
2255          * 0b0010 (PPC_BIT(44)).
2256          */
2257         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2258     }
2259 }
2260 
2261 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2262 {
2263     CPUState *cs;
2264 
2265     CPU_FOREACH(cs) {
2266         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2267     }
2268 }
2269 
2270 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2271 {
2272     MachineClass *mc = MACHINE_CLASS(oc);
2273     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2274     NMIClass *nc = NMI_CLASS(oc);
2275 
2276     mc->desc = "IBM PowerNV (Non-Virtualized)";
2277     mc->init = pnv_init;
2278     mc->reset = pnv_reset;
2279     mc->max_cpus = MAX_CPUS;
2280     /* Pnv provides a AHCI device for storage */
2281     mc->block_default_type = IF_IDE;
2282     mc->no_parallel = 1;
2283     mc->default_boot_order = NULL;
2284     /*
2285      * RAM defaults to less than 2048 for 32-bit hosts, and large
2286      * enough to fit the maximum initrd size at it's load address
2287      */
2288     mc->default_ram_size = 1 * GiB;
2289     mc->default_ram_id = "pnv.ram";
2290     ispc->print_info = pnv_pic_print_info;
2291     nc->nmi_monitor_handler = pnv_nmi;
2292 
2293     object_class_property_add_bool(oc, "hb-mode",
2294                                    pnv_machine_get_hb, pnv_machine_set_hb);
2295     object_class_property_set_description(oc, "hb-mode",
2296                               "Use a hostboot like boot loader");
2297 }
2298 
2299 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2300     {                                             \
2301         .name          = type,                    \
2302         .class_init    = class_initfn,            \
2303         .parent        = TYPE_PNV8_CHIP,          \
2304     }
2305 
2306 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2307     {                                             \
2308         .name          = type,                    \
2309         .class_init    = class_initfn,            \
2310         .parent        = TYPE_PNV9_CHIP,          \
2311     }
2312 
2313 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2314     {                                              \
2315         .name          = type,                     \
2316         .class_init    = class_initfn,             \
2317         .parent        = TYPE_PNV10_CHIP,          \
2318     }
2319 
2320 static const TypeInfo types[] = {
2321     {
2322         .name          = MACHINE_TYPE_NAME("powernv10"),
2323         .parent        = TYPE_PNV_MACHINE,
2324         .class_init    = pnv_machine_power10_class_init,
2325         .interfaces = (InterfaceInfo[]) {
2326             { TYPE_XIVE_FABRIC },
2327             { },
2328         },
2329     },
2330     {
2331         .name          = MACHINE_TYPE_NAME("powernv9"),
2332         .parent        = TYPE_PNV_MACHINE,
2333         .class_init    = pnv_machine_power9_class_init,
2334         .interfaces = (InterfaceInfo[]) {
2335             { TYPE_XIVE_FABRIC },
2336             { },
2337         },
2338     },
2339     {
2340         .name          = MACHINE_TYPE_NAME("powernv8"),
2341         .parent        = TYPE_PNV_MACHINE,
2342         .class_init    = pnv_machine_power8_class_init,
2343         .interfaces = (InterfaceInfo[]) {
2344             { TYPE_XICS_FABRIC },
2345             { },
2346         },
2347     },
2348     {
2349         .name          = TYPE_PNV_MACHINE,
2350         .parent        = TYPE_MACHINE,
2351         .abstract       = true,
2352         .instance_size = sizeof(PnvMachineState),
2353         .class_init    = pnv_machine_class_init,
2354         .class_size    = sizeof(PnvMachineClass),
2355         .interfaces = (InterfaceInfo[]) {
2356             { TYPE_INTERRUPT_STATS_PROVIDER },
2357             { TYPE_NMI },
2358             { },
2359         },
2360     },
2361     {
2362         .name          = TYPE_PNV_CHIP,
2363         .parent        = TYPE_SYS_BUS_DEVICE,
2364         .class_init    = pnv_chip_class_init,
2365         .instance_size = sizeof(PnvChip),
2366         .class_size    = sizeof(PnvChipClass),
2367         .abstract      = true,
2368     },
2369 
2370     /*
2371      * P10 chip and variants
2372      */
2373     {
2374         .name          = TYPE_PNV10_CHIP,
2375         .parent        = TYPE_PNV_CHIP,
2376         .instance_init = pnv_chip_power10_instance_init,
2377         .instance_size = sizeof(Pnv10Chip),
2378     },
2379     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2380 
2381     /*
2382      * P9 chip and variants
2383      */
2384     {
2385         .name          = TYPE_PNV9_CHIP,
2386         .parent        = TYPE_PNV_CHIP,
2387         .instance_init = pnv_chip_power9_instance_init,
2388         .instance_size = sizeof(Pnv9Chip),
2389     },
2390     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2391 
2392     /*
2393      * P8 chip and variants
2394      */
2395     {
2396         .name          = TYPE_PNV8_CHIP,
2397         .parent        = TYPE_PNV_CHIP,
2398         .instance_init = pnv_chip_power8_instance_init,
2399         .instance_size = sizeof(Pnv8Chip),
2400     },
2401     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2402     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2403     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2404                           pnv_chip_power8nvl_class_init),
2405 };
2406 
2407 DEFINE_TYPES(types)
2408