xref: /openbmc/qemu/hw/ppc/pnv.c (revision f8a233dedf2560d7d592dab347ddf2a58e8a98db)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     uint32_t irq;
384     char *name;
385     int node;
386 
387     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
388 
389     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
390     node = fdt_add_subnode(fdt, lpc_off, name);
391     _FDT(node);
392     g_free(name);
393 
394     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
395     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
396                       sizeof(compatible))));
397 
398     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
399     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
401     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
402                            fdt_get_phandle(fdt, lpc_off))));
403 
404     /* This is needed by Linux */
405     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
406 }
407 
408 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
409 {
410     const char compatible[] = "bt\0ipmi-bt";
411     uint32_t io_base;
412     uint32_t io_regs[] = {
413         cpu_to_be32(1),
414         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
415         cpu_to_be32(3)
416     };
417     uint32_t irq;
418     char *name;
419     int node;
420 
421     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
422     io_regs[1] = cpu_to_be32(io_base);
423 
424     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
425 
426     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
427     node = fdt_add_subnode(fdt, lpc_off, name);
428     _FDT(node);
429     g_free(name);
430 
431     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
432     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
433                       sizeof(compatible))));
434 
435     /* Mark it as reserved to avoid Linux trying to claim it */
436     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
437     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
438     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
439                            fdt_get_phandle(fdt, lpc_off))));
440 }
441 
442 typedef struct ForeachPopulateArgs {
443     void *fdt;
444     int offset;
445 } ForeachPopulateArgs;
446 
447 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
448 {
449     ForeachPopulateArgs *args = opaque;
450     ISADevice *d = ISA_DEVICE(dev);
451 
452     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
453         pnv_dt_rtc(d, args->fdt, args->offset);
454     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
455         pnv_dt_serial(d, args->fdt, args->offset);
456     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
457         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
458     } else {
459         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
460                      d->ioport_id);
461     }
462 
463     return 0;
464 }
465 
466 /*
467  * The default LPC bus of a multichip system is on chip 0. It's
468  * recognized by the firmware (skiboot) using a "primary" property.
469  */
470 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
471 {
472     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
473     ForeachPopulateArgs args = {
474         .fdt = fdt,
475         .offset = isa_offset,
476     };
477     uint32_t phandle;
478 
479     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
480 
481     phandle = qemu_fdt_alloc_phandle(fdt);
482     assert(phandle > 0);
483     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
484 
485     /*
486      * ISA devices are not necessarily parented to the ISA bus so we
487      * can not use object_child_foreach()
488      */
489     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
490                        &args);
491 }
492 
493 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
494 {
495     int off;
496 
497     off = fdt_add_subnode(fdt, 0, "ibm,opal");
498     off = fdt_add_subnode(fdt, off, "power-mgt");
499 
500     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
501 }
502 
503 static void *pnv_dt_create(MachineState *machine)
504 {
505     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
506     PnvMachineState *pnv = PNV_MACHINE(machine);
507     void *fdt;
508     char *buf;
509     int off;
510     int i;
511 
512     fdt = g_malloc0(FDT_MAX_SIZE);
513     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
514 
515     /* /qemu node */
516     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
517 
518     /* Root node */
519     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
520     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
521     _FDT((fdt_setprop_string(fdt, 0, "model",
522                              "IBM PowerNV (emulated by qemu)")));
523     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
524 
525     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
526     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
527     if (qemu_uuid_set) {
528         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
529     }
530     g_free(buf);
531 
532     off = fdt_add_subnode(fdt, 0, "chosen");
533     if (machine->kernel_cmdline) {
534         _FDT((fdt_setprop_string(fdt, off, "bootargs",
535                                  machine->kernel_cmdline)));
536     }
537 
538     if (pnv->initrd_size) {
539         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
540         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
541 
542         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
543                                &start_prop, sizeof(start_prop))));
544         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
545                                &end_prop, sizeof(end_prop))));
546     }
547 
548     /* Populate device tree for each chip */
549     for (i = 0; i < pnv->num_chips; i++) {
550         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
551     }
552 
553     /* Populate ISA devices on chip 0 */
554     pnv_dt_isa(pnv, fdt);
555 
556     if (pnv->bmc) {
557         pnv_dt_bmc_sensors(pnv->bmc, fdt);
558     }
559 
560     /* Create an extra node for power management on machines that support it */
561     if (pmc->dt_power_mgt) {
562         pmc->dt_power_mgt(pnv, fdt);
563     }
564 
565     return fdt;
566 }
567 
568 static void pnv_powerdown_notify(Notifier *n, void *opaque)
569 {
570     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
571 
572     if (pnv->bmc) {
573         pnv_bmc_powerdown(pnv->bmc);
574     }
575 }
576 
577 static void pnv_reset(MachineState *machine)
578 {
579     PnvMachineState *pnv = PNV_MACHINE(machine);
580     IPMIBmc *bmc;
581     void *fdt;
582 
583     qemu_devices_reset();
584 
585     /*
586      * The machine should provide by default an internal BMC simulator.
587      * If not, try to use the BMC device that was provided on the command
588      * line.
589      */
590     bmc = pnv_bmc_find(&error_fatal);
591     if (!pnv->bmc) {
592         if (!bmc) {
593             if (!qtest_enabled()) {
594                 warn_report("machine has no BMC device. Use '-device "
595                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
596                             "to define one");
597             }
598         } else {
599             pnv_bmc_set_pnor(bmc, pnv->pnor);
600             pnv->bmc = bmc;
601         }
602     }
603 
604     fdt = pnv_dt_create(machine);
605 
606     /* Pack resulting tree */
607     _FDT((fdt_pack(fdt)));
608 
609     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
610     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
611 
612     g_free(fdt);
613 }
614 
615 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
619 }
620 
621 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
622 {
623     Pnv8Chip *chip8 = PNV8_CHIP(chip);
624     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
625 }
626 
627 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
628 {
629     Pnv9Chip *chip9 = PNV9_CHIP(chip);
630     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
631 }
632 
633 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
634 {
635     Pnv10Chip *chip10 = PNV10_CHIP(chip);
636     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
637 }
638 
639 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
640 {
641     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
642 }
643 
644 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
645 {
646     Monitor *mon = opaque;
647     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
648 
649     if (phb3) {
650         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
651         ics_pic_print_info(&phb3->lsis, mon);
652     }
653     return 0;
654 }
655 
656 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
657 {
658     Pnv8Chip *chip8 = PNV8_CHIP(chip);
659 
660     ics_pic_print_info(&chip8->psi.ics, mon);
661     object_child_foreach(OBJECT(chip),
662                          pnv_chip_power8_pic_print_info_child, mon);
663 }
664 
665 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
666 {
667     Monitor *mon = opaque;
668     PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
669 
670     if (phb4) {
671         pnv_phb4_pic_print_info(phb4, mon);
672     }
673     return 0;
674 }
675 
676 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
677 {
678     Pnv9Chip *chip9 = PNV9_CHIP(chip);
679 
680     pnv_xive_pic_print_info(&chip9->xive, mon);
681     pnv_psi_pic_print_info(&chip9->psi, mon);
682 
683     object_child_foreach_recursive(OBJECT(chip),
684                          pnv_chip_power9_pic_print_info_child, mon);
685 }
686 
687 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
688                                                 uint32_t core_id)
689 {
690     return PNV_XSCOM_EX_BASE(core_id);
691 }
692 
693 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
694                                                 uint32_t core_id)
695 {
696     return PNV9_XSCOM_EC_BASE(core_id);
697 }
698 
699 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
700                                                  uint32_t core_id)
701 {
702     return PNV10_XSCOM_EC_BASE(core_id);
703 }
704 
705 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
706 {
707     PowerPCCPUClass *ppc_default =
708         POWERPC_CPU_CLASS(object_class_by_name(default_type));
709     PowerPCCPUClass *ppc =
710         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
711 
712     return ppc_default->pvr_match(ppc_default, ppc->pvr);
713 }
714 
715 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
716 {
717     ISADevice *dev = isa_new("isa-ipmi-bt");
718 
719     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
720     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
721     isa_realize_and_unref(dev, bus, &error_fatal);
722 }
723 
724 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
725 {
726     Pnv10Chip *chip10 = PNV10_CHIP(chip);
727 
728     pnv_psi_pic_print_info(&chip10->psi, mon);
729 }
730 
731 /* Always give the first 1GB to chip 0 else we won't boot */
732 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
733 {
734     MachineState *machine = MACHINE(pnv);
735     uint64_t ram_per_chip;
736 
737     assert(machine->ram_size >= 1 * GiB);
738 
739     ram_per_chip = machine->ram_size / pnv->num_chips;
740     if (ram_per_chip >= 1 * GiB) {
741         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
742     }
743 
744     assert(pnv->num_chips > 1);
745 
746     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
747     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
748 }
749 
750 static void pnv_init(MachineState *machine)
751 {
752     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
753     PnvMachineState *pnv = PNV_MACHINE(machine);
754     MachineClass *mc = MACHINE_GET_CLASS(machine);
755     char *fw_filename;
756     long fw_size;
757     uint64_t chip_ram_start = 0;
758     int i;
759     char *chip_typename;
760     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
761     DeviceState *dev;
762 
763     if (kvm_enabled()) {
764         error_report("The powernv machine does not work with KVM acceleration");
765         exit(EXIT_FAILURE);
766     }
767 
768     /* allocate RAM */
769     if (machine->ram_size < mc->default_ram_size) {
770         char *sz = size_to_str(mc->default_ram_size);
771         error_report("Invalid RAM size, should be bigger than %s", sz);
772         g_free(sz);
773         exit(EXIT_FAILURE);
774     }
775     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
776 
777     /*
778      * Create our simple PNOR device
779      */
780     dev = qdev_new(TYPE_PNV_PNOR);
781     if (pnor) {
782         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
783     }
784     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
785     pnv->pnor = PNV_PNOR(dev);
786 
787     /* load skiboot firmware  */
788     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
789     if (!fw_filename) {
790         error_report("Could not find OPAL firmware '%s'", bios_name);
791         exit(1);
792     }
793 
794     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
795     if (fw_size < 0) {
796         error_report("Could not load OPAL firmware '%s'", fw_filename);
797         exit(1);
798     }
799     g_free(fw_filename);
800 
801     /* load kernel */
802     if (machine->kernel_filename) {
803         long kernel_size;
804 
805         kernel_size = load_image_targphys(machine->kernel_filename,
806                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
807         if (kernel_size < 0) {
808             error_report("Could not load kernel '%s'",
809                          machine->kernel_filename);
810             exit(1);
811         }
812     }
813 
814     /* load initrd */
815     if (machine->initrd_filename) {
816         pnv->initrd_base = INITRD_LOAD_ADDR;
817         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
818                                   pnv->initrd_base, INITRD_MAX_SIZE);
819         if (pnv->initrd_size < 0) {
820             error_report("Could not load initial ram disk '%s'",
821                          machine->initrd_filename);
822             exit(1);
823         }
824     }
825 
826     /* MSIs are supported on this platform */
827     msi_nonbroken = true;
828 
829     /*
830      * Check compatibility of the specified CPU with the machine
831      * default.
832      */
833     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
834         error_report("invalid CPU model '%s' for %s machine",
835                      machine->cpu_type, mc->name);
836         exit(1);
837     }
838 
839     /* Create the processor chips */
840     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
841     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
842                                     i, machine->cpu_type);
843     if (!object_class_by_name(chip_typename)) {
844         error_report("invalid chip model '%.*s' for %s machine",
845                      i, machine->cpu_type, mc->name);
846         exit(1);
847     }
848 
849     pnv->num_chips =
850         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
851     /*
852      * TODO: should we decide on how many chips we can create based
853      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
854      */
855     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
856         error_report("invalid number of chips: '%d'", pnv->num_chips);
857         error_printf(
858             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
859         exit(1);
860     }
861 
862     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
863     for (i = 0; i < pnv->num_chips; i++) {
864         char chip_name[32];
865         Object *chip = OBJECT(qdev_new(chip_typename));
866         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
867 
868         pnv->chips[i] = PNV_CHIP(chip);
869 
870         /* Distribute RAM among the chips  */
871         object_property_set_int(chip, "ram-start", chip_ram_start,
872                                 &error_fatal);
873         object_property_set_int(chip, "ram-size", chip_ram_size,
874                                 &error_fatal);
875         chip_ram_start += chip_ram_size;
876 
877         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
878         object_property_add_child(OBJECT(pnv), chip_name, chip);
879         object_property_set_int(chip, "chip-id", i, &error_fatal);
880         object_property_set_int(chip, "nr-cores", machine->smp.cores,
881                                 &error_fatal);
882         object_property_set_int(chip, "nr-threads", machine->smp.threads,
883                                 &error_fatal);
884         /*
885          * The POWER8 machine use the XICS interrupt interface.
886          * Propagate the XICS fabric to the chip and its controllers.
887          */
888         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
889             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
890         }
891         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
892             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
893                                      &error_abort);
894         }
895         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
896     }
897     g_free(chip_typename);
898 
899     /* Instantiate ISA bus on chip 0 */
900     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
901 
902     /* Create serial port */
903     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
904 
905     /* Create an RTC ISA device too */
906     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
907 
908     /*
909      * Create the machine BMC simulator and the IPMI BT device for
910      * communication with the BMC
911      */
912     if (defaults_enabled()) {
913         pnv->bmc = pnv_bmc_create(pnv->pnor);
914         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
915     }
916 
917     /*
918      * The PNOR is mapped on the LPC FW address space by the BMC.
919      * Since we can not reach the remote BMC machine with LPC memops,
920      * map it always for now.
921      */
922     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
923                                 &pnv->pnor->mmio);
924 
925     /*
926      * OpenPOWER systems use a IPMI SEL Event message to notify the
927      * host to powerdown
928      */
929     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
930     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
931 }
932 
933 /*
934  *    0:21  Reserved - Read as zeros
935  *   22:24  Chip ID
936  *   25:28  Core number
937  *   29:31  Thread ID
938  */
939 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
940 {
941     return (chip->chip_id << 7) | (core_id << 3);
942 }
943 
944 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
945                                         Error **errp)
946 {
947     Pnv8Chip *chip8 = PNV8_CHIP(chip);
948     Error *local_err = NULL;
949     Object *obj;
950     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
951 
952     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
953     if (local_err) {
954         error_propagate(errp, local_err);
955         return;
956     }
957 
958     pnv_cpu->intc = obj;
959 }
960 
961 
962 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
963 {
964     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
965 
966     icp_reset(ICP(pnv_cpu->intc));
967 }
968 
969 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
970 {
971     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
972 
973     icp_destroy(ICP(pnv_cpu->intc));
974     pnv_cpu->intc = NULL;
975 }
976 
977 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
978                                             Monitor *mon)
979 {
980     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
981 }
982 
983 /*
984  *    0:48  Reserved - Read as zeroes
985  *   49:52  Node ID
986  *   53:55  Chip ID
987  *   56     Reserved - Read as zero
988  *   57:61  Core number
989  *   62:63  Thread ID
990  *
991  * We only care about the lower bits. uint32_t is fine for the moment.
992  */
993 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
994 {
995     return (chip->chip_id << 8) | (core_id << 2);
996 }
997 
998 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
999 {
1000     return (chip->chip_id << 8) | (core_id << 2);
1001 }
1002 
1003 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1004                                         Error **errp)
1005 {
1006     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1007     Error *local_err = NULL;
1008     Object *obj;
1009     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1010 
1011     /*
1012      * The core creates its interrupt presenter but the XIVE interrupt
1013      * controller object is initialized afterwards. Hopefully, it's
1014      * only used at runtime.
1015      */
1016     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1017                            &local_err);
1018     if (local_err) {
1019         error_propagate(errp, local_err);
1020         return;
1021     }
1022 
1023     pnv_cpu->intc = obj;
1024 }
1025 
1026 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1027 {
1028     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1029 
1030     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1031 }
1032 
1033 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1034 {
1035     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1036 
1037     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1038     pnv_cpu->intc = NULL;
1039 }
1040 
1041 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1042                                             Monitor *mon)
1043 {
1044     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1045 }
1046 
1047 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1048                                         Error **errp)
1049 {
1050     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1051 
1052     /* Will be defined when the interrupt controller is */
1053     pnv_cpu->intc = NULL;
1054 }
1055 
1056 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1057 {
1058     ;
1059 }
1060 
1061 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1062 {
1063     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1064 
1065     pnv_cpu->intc = NULL;
1066 }
1067 
1068 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1069                                              Monitor *mon)
1070 {
1071 }
1072 
1073 /*
1074  * Allowed core identifiers on a POWER8 Processor Chip :
1075  *
1076  * <EX0 reserved>
1077  *  EX1  - Venice only
1078  *  EX2  - Venice only
1079  *  EX3  - Venice only
1080  *  EX4
1081  *  EX5
1082  *  EX6
1083  * <EX7,8 reserved> <reserved>
1084  *  EX9  - Venice only
1085  *  EX10 - Venice only
1086  *  EX11 - Venice only
1087  *  EX12
1088  *  EX13
1089  *  EX14
1090  * <EX15 reserved>
1091  */
1092 #define POWER8E_CORE_MASK  (0x7070ull)
1093 #define POWER8_CORE_MASK   (0x7e7eull)
1094 
1095 /*
1096  * POWER9 has 24 cores, ids starting at 0x0
1097  */
1098 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1099 
1100 
1101 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1102 
1103 static void pnv_chip_power8_instance_init(Object *obj)
1104 {
1105     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1106     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1107     int i;
1108 
1109     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1110                              (Object **)&chip8->xics,
1111                              object_property_allow_set_link,
1112                              OBJ_PROP_LINK_STRONG);
1113 
1114     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1115 
1116     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1117 
1118     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1119 
1120     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1121 
1122     if (defaults_enabled()) {
1123         chip8->num_phbs = pcc->num_phbs;
1124     }
1125 
1126     for (i = 0; i < chip8->num_phbs; i++) {
1127         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1128     }
1129 
1130 }
1131 
1132 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1133  {
1134     PnvChip *chip = PNV_CHIP(chip8);
1135     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1136     int i, j;
1137     char *name;
1138 
1139     name = g_strdup_printf("icp-%x", chip->chip_id);
1140     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1141     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1142     g_free(name);
1143 
1144     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1145 
1146     /* Map the ICP registers for each thread */
1147     for (i = 0; i < chip->nr_cores; i++) {
1148         PnvCore *pnv_core = chip->cores[i];
1149         int core_hwid = CPU_CORE(pnv_core)->core_id;
1150 
1151         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1152             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1153             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1154 
1155             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1156                                         &icp->mmio);
1157         }
1158     }
1159 }
1160 
1161 /* Attach a root port device */
1162 void pnv_phb_attach_root_port(PCIHostState *pci, const char *name)
1163 {
1164     PCIDevice *root = pci_new(PCI_DEVFN(0, 0), name);
1165 
1166     pci_realize_and_unref(root, pci->bus, &error_fatal);
1167 }
1168 
1169 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1170 {
1171     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1172     PnvChip *chip = PNV_CHIP(dev);
1173     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1174     Pnv8Psi *psi8 = &chip8->psi;
1175     Error *local_err = NULL;
1176     int i;
1177 
1178     assert(chip8->xics);
1179 
1180     /* XSCOM bridge is first */
1181     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1182     if (local_err) {
1183         error_propagate(errp, local_err);
1184         return;
1185     }
1186     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1187 
1188     pcc->parent_realize(dev, &local_err);
1189     if (local_err) {
1190         error_propagate(errp, local_err);
1191         return;
1192     }
1193 
1194     /* Processor Service Interface (PSI) Host Bridge */
1195     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1196                             &error_fatal);
1197     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1198                              OBJECT(chip8->xics), &error_abort);
1199     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1200         return;
1201     }
1202     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1203                             &PNV_PSI(psi8)->xscom_regs);
1204 
1205     /* Create LPC controller */
1206     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1207                              &error_abort);
1208     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1209     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1210 
1211     chip->fw_mr = &chip8->lpc.isa_fw;
1212     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1213                                             (uint64_t) PNV_XSCOM_BASE(chip),
1214                                             PNV_XSCOM_LPC_BASE);
1215 
1216     /*
1217      * Interrupt Management Area. This is the memory region holding
1218      * all the Interrupt Control Presenter (ICP) registers
1219      */
1220     pnv_chip_icp_realize(chip8, &local_err);
1221     if (local_err) {
1222         error_propagate(errp, local_err);
1223         return;
1224     }
1225 
1226     /* Create the simplified OCC model */
1227     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1228                              &error_abort);
1229     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1230         return;
1231     }
1232     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1233 
1234     /* OCC SRAM model */
1235     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1236                                 &chip8->occ.sram_regs);
1237 
1238     /* HOMER */
1239     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1240                              &error_abort);
1241     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1242         return;
1243     }
1244     /* Homer Xscom region */
1245     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1246 
1247     /* Homer mmio region */
1248     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1249                                 &chip8->homer.regs);
1250 
1251     /* PHB3 controllers */
1252     for (i = 0; i < chip8->num_phbs; i++) {
1253         PnvPHB3 *phb = &chip8->phbs[i];
1254 
1255         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1256         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1257                                 &error_fatal);
1258         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1259                                  &error_fatal);
1260         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1261             return;
1262         }
1263     }
1264 }
1265 
1266 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1267 {
1268     addr &= (PNV_XSCOM_SIZE - 1);
1269     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1270 }
1271 
1272 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1273 {
1274     DeviceClass *dc = DEVICE_CLASS(klass);
1275     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1276 
1277     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1278     k->cores_mask = POWER8E_CORE_MASK;
1279     k->num_phbs = 3;
1280     k->core_pir = pnv_chip_core_pir_p8;
1281     k->intc_create = pnv_chip_power8_intc_create;
1282     k->intc_reset = pnv_chip_power8_intc_reset;
1283     k->intc_destroy = pnv_chip_power8_intc_destroy;
1284     k->intc_print_info = pnv_chip_power8_intc_print_info;
1285     k->isa_create = pnv_chip_power8_isa_create;
1286     k->dt_populate = pnv_chip_power8_dt_populate;
1287     k->pic_print_info = pnv_chip_power8_pic_print_info;
1288     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1289     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1290     dc->desc = "PowerNV Chip POWER8E";
1291 
1292     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1293                                     &k->parent_realize);
1294 }
1295 
1296 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1297 {
1298     DeviceClass *dc = DEVICE_CLASS(klass);
1299     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1300 
1301     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1302     k->cores_mask = POWER8_CORE_MASK;
1303     k->num_phbs = 3;
1304     k->core_pir = pnv_chip_core_pir_p8;
1305     k->intc_create = pnv_chip_power8_intc_create;
1306     k->intc_reset = pnv_chip_power8_intc_reset;
1307     k->intc_destroy = pnv_chip_power8_intc_destroy;
1308     k->intc_print_info = pnv_chip_power8_intc_print_info;
1309     k->isa_create = pnv_chip_power8_isa_create;
1310     k->dt_populate = pnv_chip_power8_dt_populate;
1311     k->pic_print_info = pnv_chip_power8_pic_print_info;
1312     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1313     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1314     dc->desc = "PowerNV Chip POWER8";
1315 
1316     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1317                                     &k->parent_realize);
1318 }
1319 
1320 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1321 {
1322     DeviceClass *dc = DEVICE_CLASS(klass);
1323     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1324 
1325     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1326     k->cores_mask = POWER8_CORE_MASK;
1327     k->num_phbs = 4;
1328     k->core_pir = pnv_chip_core_pir_p8;
1329     k->intc_create = pnv_chip_power8_intc_create;
1330     k->intc_reset = pnv_chip_power8_intc_reset;
1331     k->intc_destroy = pnv_chip_power8_intc_destroy;
1332     k->intc_print_info = pnv_chip_power8_intc_print_info;
1333     k->isa_create = pnv_chip_power8nvl_isa_create;
1334     k->dt_populate = pnv_chip_power8_dt_populate;
1335     k->pic_print_info = pnv_chip_power8_pic_print_info;
1336     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1337     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1338     dc->desc = "PowerNV Chip POWER8NVL";
1339 
1340     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1341                                     &k->parent_realize);
1342 }
1343 
1344 static void pnv_chip_power9_instance_init(Object *obj)
1345 {
1346     PnvChip *chip = PNV_CHIP(obj);
1347     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1348     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1349     int i;
1350 
1351     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1352     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1353                               "xive-fabric");
1354 
1355     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1356 
1357     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1358 
1359     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1360 
1361     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1362 
1363     /* Number of PECs is the chip default */
1364     chip->num_pecs = pcc->num_pecs;
1365 
1366     for (i = 0; i < chip->num_pecs; i++) {
1367         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1368                                 TYPE_PNV_PHB4_PEC);
1369     }
1370 }
1371 
1372 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1373 {
1374     PnvChip *chip = PNV_CHIP(chip9);
1375     int i;
1376 
1377     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1378     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1379 
1380     for (i = 0; i < chip9->nr_quads; i++) {
1381         char eq_name[32];
1382         PnvQuad *eq = &chip9->quads[i];
1383         PnvCore *pnv_core = chip->cores[i * 4];
1384         int core_id = CPU_CORE(pnv_core)->core_id;
1385 
1386         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1387         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1388                                            sizeof(*eq), TYPE_PNV_QUAD,
1389                                            &error_fatal, NULL);
1390 
1391         object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1392         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1393 
1394         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1395                                 &eq->xscom_regs);
1396     }
1397 }
1398 
1399 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1400 {
1401     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1402     int i;
1403 
1404     for (i = 0; i < chip->num_pecs; i++) {
1405         PnvPhb4PecState *pec = &chip9->pecs[i];
1406         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1407         uint32_t pec_nest_base;
1408         uint32_t pec_pci_base;
1409 
1410         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1411         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1412                                 &error_fatal);
1413         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1414                                  &error_fatal);
1415         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1416             return;
1417         }
1418 
1419         pec_nest_base = pecc->xscom_nest_base(pec);
1420         pec_pci_base = pecc->xscom_pci_base(pec);
1421 
1422         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1423         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1424     }
1425 }
1426 
1427 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1428 {
1429     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1430     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1431     PnvChip *chip = PNV_CHIP(dev);
1432     Pnv9Psi *psi9 = &chip9->psi;
1433     Error *local_err = NULL;
1434 
1435     /* XSCOM bridge is first */
1436     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1437     if (local_err) {
1438         error_propagate(errp, local_err);
1439         return;
1440     }
1441     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1442 
1443     pcc->parent_realize(dev, &local_err);
1444     if (local_err) {
1445         error_propagate(errp, local_err);
1446         return;
1447     }
1448 
1449     pnv_chip_quad_realize(chip9, &local_err);
1450     if (local_err) {
1451         error_propagate(errp, local_err);
1452         return;
1453     }
1454 
1455     /* XIVE interrupt controller (POWER9) */
1456     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1457                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1458     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1459                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1460     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1461                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1462     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1463                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1464     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1465                              &error_abort);
1466     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1467         return;
1468     }
1469     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1470                             &chip9->xive.xscom_regs);
1471 
1472     /* Processor Service Interface (PSI) Host Bridge */
1473     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1474                             &error_fatal);
1475     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1476         return;
1477     }
1478     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1479                             &PNV_PSI(psi9)->xscom_regs);
1480 
1481     /* LPC */
1482     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1483                              &error_abort);
1484     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1485         return;
1486     }
1487     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1488                                 &chip9->lpc.xscom_regs);
1489 
1490     chip->fw_mr = &chip9->lpc.isa_fw;
1491     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1492                                             (uint64_t) PNV9_LPCM_BASE(chip));
1493 
1494     /* Create the simplified OCC model */
1495     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1496                              &error_abort);
1497     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1498         return;
1499     }
1500     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1501 
1502     /* OCC SRAM model */
1503     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1504                                 &chip9->occ.sram_regs);
1505 
1506     /* HOMER */
1507     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1508                              &error_abort);
1509     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1510         return;
1511     }
1512     /* Homer Xscom region */
1513     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1514 
1515     /* Homer mmio region */
1516     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1517                                 &chip9->homer.regs);
1518 
1519     /* PEC PHBs */
1520     pnv_chip_power9_pec_realize(chip, &local_err);
1521     if (local_err) {
1522         error_propagate(errp, local_err);
1523         return;
1524     }
1525 }
1526 
1527 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1528 {
1529     addr &= (PNV9_XSCOM_SIZE - 1);
1530     return addr >> 3;
1531 }
1532 
1533 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1534 {
1535     DeviceClass *dc = DEVICE_CLASS(klass);
1536     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1537 
1538     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1539     k->cores_mask = POWER9_CORE_MASK;
1540     k->core_pir = pnv_chip_core_pir_p9;
1541     k->intc_create = pnv_chip_power9_intc_create;
1542     k->intc_reset = pnv_chip_power9_intc_reset;
1543     k->intc_destroy = pnv_chip_power9_intc_destroy;
1544     k->intc_print_info = pnv_chip_power9_intc_print_info;
1545     k->isa_create = pnv_chip_power9_isa_create;
1546     k->dt_populate = pnv_chip_power9_dt_populate;
1547     k->pic_print_info = pnv_chip_power9_pic_print_info;
1548     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1549     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1550     dc->desc = "PowerNV Chip POWER9";
1551     k->num_pecs = PNV9_CHIP_MAX_PEC;
1552 
1553     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1554                                     &k->parent_realize);
1555 }
1556 
1557 static void pnv_chip_power10_instance_init(Object *obj)
1558 {
1559     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1560 
1561     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1562     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1563 }
1564 
1565 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1566 {
1567     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1568     PnvChip *chip = PNV_CHIP(dev);
1569     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1570     Error *local_err = NULL;
1571 
1572     /* XSCOM bridge is first */
1573     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1574     if (local_err) {
1575         error_propagate(errp, local_err);
1576         return;
1577     }
1578     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1579 
1580     pcc->parent_realize(dev, &local_err);
1581     if (local_err) {
1582         error_propagate(errp, local_err);
1583         return;
1584     }
1585 
1586     /* Processor Service Interface (PSI) Host Bridge */
1587     object_property_set_int(OBJECT(&chip10->psi), "bar",
1588                             PNV10_PSIHB_BASE(chip), &error_fatal);
1589     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1590         return;
1591     }
1592     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1593                             &PNV_PSI(&chip10->psi)->xscom_regs);
1594 
1595     /* LPC */
1596     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1597                              OBJECT(&chip10->psi), &error_abort);
1598     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1599         return;
1600     }
1601     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1602                                 &chip10->lpc.xscom_regs);
1603 
1604     chip->fw_mr = &chip10->lpc.isa_fw;
1605     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1606                                             (uint64_t) PNV10_LPCM_BASE(chip));
1607 }
1608 
1609 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1610 {
1611     addr &= (PNV10_XSCOM_SIZE - 1);
1612     return addr >> 3;
1613 }
1614 
1615 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1616 {
1617     DeviceClass *dc = DEVICE_CLASS(klass);
1618     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1619 
1620     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1621     k->cores_mask = POWER10_CORE_MASK;
1622     k->core_pir = pnv_chip_core_pir_p10;
1623     k->intc_create = pnv_chip_power10_intc_create;
1624     k->intc_reset = pnv_chip_power10_intc_reset;
1625     k->intc_destroy = pnv_chip_power10_intc_destroy;
1626     k->intc_print_info = pnv_chip_power10_intc_print_info;
1627     k->isa_create = pnv_chip_power10_isa_create;
1628     k->dt_populate = pnv_chip_power10_dt_populate;
1629     k->pic_print_info = pnv_chip_power10_pic_print_info;
1630     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1631     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1632     dc->desc = "PowerNV Chip POWER10";
1633 
1634     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1635                                     &k->parent_realize);
1636 }
1637 
1638 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1639 {
1640     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1641     int cores_max;
1642 
1643     /*
1644      * No custom mask for this chip, let's use the default one from *
1645      * the chip class
1646      */
1647     if (!chip->cores_mask) {
1648         chip->cores_mask = pcc->cores_mask;
1649     }
1650 
1651     /* filter alien core ids ! some are reserved */
1652     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1653         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1654                    chip->cores_mask);
1655         return;
1656     }
1657     chip->cores_mask &= pcc->cores_mask;
1658 
1659     /* now that we have a sane layout, let check the number of cores */
1660     cores_max = ctpop64(chip->cores_mask);
1661     if (chip->nr_cores > cores_max) {
1662         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1663                    cores_max);
1664         return;
1665     }
1666 }
1667 
1668 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1669 {
1670     Error *error = NULL;
1671     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1672     const char *typename = pnv_chip_core_typename(chip);
1673     int i, core_hwid;
1674     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1675 
1676     if (!object_class_by_name(typename)) {
1677         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1678         return;
1679     }
1680 
1681     /* Cores */
1682     pnv_chip_core_sanitize(chip, &error);
1683     if (error) {
1684         error_propagate(errp, error);
1685         return;
1686     }
1687 
1688     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1689 
1690     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1691              && (i < chip->nr_cores); core_hwid++) {
1692         char core_name[32];
1693         PnvCore *pnv_core;
1694         uint64_t xscom_core_base;
1695 
1696         if (!(chip->cores_mask & (1ull << core_hwid))) {
1697             continue;
1698         }
1699 
1700         pnv_core = PNV_CORE(object_new(typename));
1701 
1702         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1703         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1704         chip->cores[i] = pnv_core;
1705         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1706                                 chip->nr_threads, &error_fatal);
1707         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1708                                 core_hwid, &error_fatal);
1709         object_property_set_int(OBJECT(pnv_core), "pir",
1710                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1711         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1712                                 &error_fatal);
1713         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1714                                  &error_abort);
1715         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1716 
1717         /* Each core has an XSCOM MMIO region */
1718         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1719 
1720         pnv_xscom_add_subregion(chip, xscom_core_base,
1721                                 &pnv_core->xscom_regs);
1722         i++;
1723     }
1724 }
1725 
1726 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1727 {
1728     PnvChip *chip = PNV_CHIP(dev);
1729     Error *error = NULL;
1730 
1731     /* Cores */
1732     pnv_chip_core_realize(chip, &error);
1733     if (error) {
1734         error_propagate(errp, error);
1735         return;
1736     }
1737 }
1738 
1739 static Property pnv_chip_properties[] = {
1740     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1741     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1742     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1743     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1744     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1745     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1746     DEFINE_PROP_END_OF_LIST(),
1747 };
1748 
1749 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1750 {
1751     DeviceClass *dc = DEVICE_CLASS(klass);
1752 
1753     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1754     dc->realize = pnv_chip_realize;
1755     device_class_set_props(dc, pnv_chip_properties);
1756     dc->desc = "PowerNV Chip";
1757 }
1758 
1759 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1760 {
1761     int i, j;
1762 
1763     for (i = 0; i < chip->nr_cores; i++) {
1764         PnvCore *pc = chip->cores[i];
1765         CPUCore *cc = CPU_CORE(pc);
1766 
1767         for (j = 0; j < cc->nr_threads; j++) {
1768             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1769                 return pc->threads[j];
1770             }
1771         }
1772     }
1773     return NULL;
1774 }
1775 
1776 typedef struct ForeachPhb3Args {
1777     int irq;
1778     ICSState *ics;
1779 } ForeachPhb3Args;
1780 
1781 static int pnv_ics_get_child(Object *child, void *opaque)
1782 {
1783     ForeachPhb3Args *args = opaque;
1784     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1785 
1786     if (phb3) {
1787         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1788             args->ics = &phb3->lsis;
1789         }
1790         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1791             args->ics = ICS(&phb3->msis);
1792         }
1793     }
1794     return args->ics ? 1 : 0;
1795 }
1796 
1797 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1798 {
1799     PnvMachineState *pnv = PNV_MACHINE(xi);
1800     ForeachPhb3Args args = { irq, NULL };
1801     int i;
1802 
1803     for (i = 0; i < pnv->num_chips; i++) {
1804         PnvChip *chip = pnv->chips[i];
1805         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1806 
1807         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1808             return &chip8->psi.ics;
1809         }
1810 
1811         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1812         if (args.ics) {
1813             return args.ics;
1814         }
1815     }
1816     return NULL;
1817 }
1818 
1819 void pnv_chip_parent_fixup(PnvChip *chip, Object *obj, int index)
1820 {
1821     Object *parent = OBJECT(chip);
1822     g_autofree char *default_id =
1823         g_strdup_printf("%s[%d]", object_get_typename(obj), index);
1824 
1825     if (obj->parent == parent) {
1826         return;
1827     }
1828 
1829     object_ref(obj);
1830     object_unparent(obj);
1831     object_property_add_child(
1832         parent, DEVICE(obj)->id ? DEVICE(obj)->id : default_id, obj);
1833     object_unref(obj);
1834 }
1835 
1836 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
1837 {
1838     int i;
1839 
1840     for (i = 0; i < pnv->num_chips; i++) {
1841         PnvChip *chip = pnv->chips[i];
1842         if (chip->chip_id == chip_id) {
1843             return chip;
1844         }
1845     }
1846     return NULL;
1847 }
1848 
1849 static int pnv_ics_resend_child(Object *child, void *opaque)
1850 {
1851     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1852 
1853     if (phb3) {
1854         ics_resend(&phb3->lsis);
1855         ics_resend(ICS(&phb3->msis));
1856     }
1857     return 0;
1858 }
1859 
1860 static void pnv_ics_resend(XICSFabric *xi)
1861 {
1862     PnvMachineState *pnv = PNV_MACHINE(xi);
1863     int i;
1864 
1865     for (i = 0; i < pnv->num_chips; i++) {
1866         PnvChip *chip = pnv->chips[i];
1867         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1868 
1869         ics_resend(&chip8->psi.ics);
1870         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
1871     }
1872 }
1873 
1874 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1875 {
1876     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1877 
1878     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1879 }
1880 
1881 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1882                                Monitor *mon)
1883 {
1884     PnvMachineState *pnv = PNV_MACHINE(obj);
1885     int i;
1886     CPUState *cs;
1887 
1888     CPU_FOREACH(cs) {
1889         PowerPCCPU *cpu = POWERPC_CPU(cs);
1890 
1891         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1892         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1893                                                            mon);
1894     }
1895 
1896     for (i = 0; i < pnv->num_chips; i++) {
1897         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1898     }
1899 }
1900 
1901 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1902                          uint8_t nvt_blk, uint32_t nvt_idx,
1903                          bool cam_ignore, uint8_t priority,
1904                          uint32_t logic_serv,
1905                          XiveTCTXMatch *match)
1906 {
1907     PnvMachineState *pnv = PNV_MACHINE(xfb);
1908     int total_count = 0;
1909     int i;
1910 
1911     for (i = 0; i < pnv->num_chips; i++) {
1912         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1913         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1914         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1915         int count;
1916 
1917         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1918                                priority, logic_serv, match);
1919 
1920         if (count < 0) {
1921             return count;
1922         }
1923 
1924         total_count += count;
1925     }
1926 
1927     return total_count;
1928 }
1929 
1930 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1931 {
1932     MachineClass *mc = MACHINE_CLASS(oc);
1933     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1934     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1935     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1936 
1937     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1938     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1939 
1940     xic->icp_get = pnv_icp_get;
1941     xic->ics_get = pnv_ics_get;
1942     xic->ics_resend = pnv_ics_resend;
1943 
1944     pmc->compat = compat;
1945     pmc->compat_size = sizeof(compat);
1946 
1947     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB3);
1948 }
1949 
1950 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1951 {
1952     MachineClass *mc = MACHINE_CLASS(oc);
1953     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1954     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1955     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1956 
1957     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1958     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1959     xfc->match_nvt = pnv_match_nvt;
1960 
1961     mc->alias = "powernv";
1962 
1963     pmc->compat = compat;
1964     pmc->compat_size = sizeof(compat);
1965     pmc->dt_power_mgt = pnv_dt_power_mgt;
1966 
1967     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB4);
1968 }
1969 
1970 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1971 {
1972     MachineClass *mc = MACHINE_CLASS(oc);
1973     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1974     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1975 
1976     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1977     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1978 
1979     pmc->compat = compat;
1980     pmc->compat_size = sizeof(compat);
1981     pmc->dt_power_mgt = pnv_dt_power_mgt;
1982 }
1983 
1984 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1985 {
1986     PnvMachineState *pnv = PNV_MACHINE(obj);
1987 
1988     return !!pnv->fw_load_addr;
1989 }
1990 
1991 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1992 {
1993     PnvMachineState *pnv = PNV_MACHINE(obj);
1994 
1995     if (value) {
1996         pnv->fw_load_addr = 0x8000000;
1997     }
1998 }
1999 
2000 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2001 {
2002     PowerPCCPU *cpu = POWERPC_CPU(cs);
2003     CPUPPCState *env = &cpu->env;
2004 
2005     cpu_synchronize_state(cs);
2006     ppc_cpu_do_system_reset(cs);
2007     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2008         /*
2009          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2010          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2011          * (PPC_BIT(43)).
2012          */
2013         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2014             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2015             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2016         }
2017     } else {
2018         /*
2019          * For non-powersave system resets, SRR1[42:45] are defined to be
2020          * implementation-dependent. The POWER9 User Manual specifies that
2021          * an external (SCOM driven, which may come from a BMC nmi command or
2022          * another CPU requesting a NMI IPI) system reset exception should be
2023          * 0b0010 (PPC_BIT(44)).
2024          */
2025         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2026     }
2027 }
2028 
2029 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2030 {
2031     CPUState *cs;
2032 
2033     CPU_FOREACH(cs) {
2034         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2035     }
2036 }
2037 
2038 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2039 {
2040     MachineClass *mc = MACHINE_CLASS(oc);
2041     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2042     NMIClass *nc = NMI_CLASS(oc);
2043 
2044     mc->desc = "IBM PowerNV (Non-Virtualized)";
2045     mc->init = pnv_init;
2046     mc->reset = pnv_reset;
2047     mc->max_cpus = MAX_CPUS;
2048     /* Pnv provides a AHCI device for storage */
2049     mc->block_default_type = IF_IDE;
2050     mc->no_parallel = 1;
2051     mc->default_boot_order = NULL;
2052     /*
2053      * RAM defaults to less than 2048 for 32-bit hosts, and large
2054      * enough to fit the maximum initrd size at it's load address
2055      */
2056     mc->default_ram_size = 1 * GiB;
2057     mc->default_ram_id = "pnv.ram";
2058     ispc->print_info = pnv_pic_print_info;
2059     nc->nmi_monitor_handler = pnv_nmi;
2060 
2061     object_class_property_add_bool(oc, "hb-mode",
2062                                    pnv_machine_get_hb, pnv_machine_set_hb);
2063     object_class_property_set_description(oc, "hb-mode",
2064                               "Use a hostboot like boot loader");
2065 }
2066 
2067 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2068     {                                             \
2069         .name          = type,                    \
2070         .class_init    = class_initfn,            \
2071         .parent        = TYPE_PNV8_CHIP,          \
2072     }
2073 
2074 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2075     {                                             \
2076         .name          = type,                    \
2077         .class_init    = class_initfn,            \
2078         .parent        = TYPE_PNV9_CHIP,          \
2079     }
2080 
2081 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2082     {                                              \
2083         .name          = type,                     \
2084         .class_init    = class_initfn,             \
2085         .parent        = TYPE_PNV10_CHIP,          \
2086     }
2087 
2088 static const TypeInfo types[] = {
2089     {
2090         .name          = MACHINE_TYPE_NAME("powernv10"),
2091         .parent        = TYPE_PNV_MACHINE,
2092         .class_init    = pnv_machine_power10_class_init,
2093     },
2094     {
2095         .name          = MACHINE_TYPE_NAME("powernv9"),
2096         .parent        = TYPE_PNV_MACHINE,
2097         .class_init    = pnv_machine_power9_class_init,
2098         .interfaces = (InterfaceInfo[]) {
2099             { TYPE_XIVE_FABRIC },
2100             { },
2101         },
2102     },
2103     {
2104         .name          = MACHINE_TYPE_NAME("powernv8"),
2105         .parent        = TYPE_PNV_MACHINE,
2106         .class_init    = pnv_machine_power8_class_init,
2107         .interfaces = (InterfaceInfo[]) {
2108             { TYPE_XICS_FABRIC },
2109             { },
2110         },
2111     },
2112     {
2113         .name          = TYPE_PNV_MACHINE,
2114         .parent        = TYPE_MACHINE,
2115         .abstract       = true,
2116         .instance_size = sizeof(PnvMachineState),
2117         .class_init    = pnv_machine_class_init,
2118         .class_size    = sizeof(PnvMachineClass),
2119         .interfaces = (InterfaceInfo[]) {
2120             { TYPE_INTERRUPT_STATS_PROVIDER },
2121             { TYPE_NMI },
2122             { },
2123         },
2124     },
2125     {
2126         .name          = TYPE_PNV_CHIP,
2127         .parent        = TYPE_SYS_BUS_DEVICE,
2128         .class_init    = pnv_chip_class_init,
2129         .instance_size = sizeof(PnvChip),
2130         .class_size    = sizeof(PnvChipClass),
2131         .abstract      = true,
2132     },
2133 
2134     /*
2135      * P10 chip and variants
2136      */
2137     {
2138         .name          = TYPE_PNV10_CHIP,
2139         .parent        = TYPE_PNV_CHIP,
2140         .instance_init = pnv_chip_power10_instance_init,
2141         .instance_size = sizeof(Pnv10Chip),
2142     },
2143     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2144 
2145     /*
2146      * P9 chip and variants
2147      */
2148     {
2149         .name          = TYPE_PNV9_CHIP,
2150         .parent        = TYPE_PNV_CHIP,
2151         .instance_init = pnv_chip_power9_instance_init,
2152         .instance_size = sizeof(Pnv9Chip),
2153     },
2154     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2155 
2156     /*
2157      * P8 chip and variants
2158      */
2159     {
2160         .name          = TYPE_PNV8_CHIP,
2161         .parent        = TYPE_PNV_CHIP,
2162         .instance_init = pnv_chip_power8_instance_init,
2163         .instance_size = sizeof(Pnv8Chip),
2164     },
2165     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2166     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2167     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2168                           pnv_chip_power8nvl_class_init),
2169 };
2170 
2171 DEFINE_TYPES(types)
2172