1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/datadir.h" 23 #include "qemu/units.h" 24 #include "qemu/cutils.h" 25 #include "qapi/error.h" 26 #include "sysemu/qtest.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/numa.h" 29 #include "sysemu/reset.h" 30 #include "sysemu/runstate.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/device_tree.h" 33 #include "sysemu/hw_accel.h" 34 #include "target/ppc/cpu.h" 35 #include "hw/ppc/fdt.h" 36 #include "hw/ppc/ppc.h" 37 #include "hw/ppc/pnv.h" 38 #include "hw/ppc/pnv_core.h" 39 #include "hw/loader.h" 40 #include "hw/nmi.h" 41 #include "qapi/visitor.h" 42 #include "monitor/monitor.h" 43 #include "hw/intc/intc.h" 44 #include "hw/ipmi/ipmi.h" 45 #include "target/ppc/mmu-hash64.h" 46 #include "hw/pci/msi.h" 47 48 #include "hw/ppc/xics.h" 49 #include "hw/qdev-properties.h" 50 #include "hw/ppc/pnv_xscom.h" 51 #include "hw/ppc/pnv_pnor.h" 52 53 #include "hw/isa/isa.h" 54 #include "hw/char/serial.h" 55 #include "hw/rtc/mc146818rtc.h" 56 57 #include <libfdt.h> 58 59 #define FDT_MAX_SIZE (1 * MiB) 60 61 #define FW_FILE_NAME "skiboot.lid" 62 #define FW_LOAD_ADDR 0x0 63 #define FW_MAX_SIZE (16 * MiB) 64 65 #define KERNEL_LOAD_ADDR 0x20000000 66 #define KERNEL_MAX_SIZE (128 * MiB) 67 #define INITRD_LOAD_ADDR 0x28000000 68 #define INITRD_MAX_SIZE (128 * MiB) 69 70 static const char *pnv_chip_core_typename(const PnvChip *o) 71 { 72 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 73 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 74 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 75 const char *core_type = object_class_get_name(object_class_by_name(s)); 76 g_free(s); 77 return core_type; 78 } 79 80 /* 81 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 82 * 4 * 4 sockets * 12 cores * 8 threads = 1536 83 * Let's make it 2^11 84 */ 85 #define MAX_CPUS 2048 86 87 /* 88 * Memory nodes are created by hostboot, one for each range of memory 89 * that has a different "affinity". In practice, it means one range 90 * per chip. 91 */ 92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 93 { 94 char *mem_name; 95 uint64_t mem_reg_property[2]; 96 int off; 97 98 mem_reg_property[0] = cpu_to_be64(start); 99 mem_reg_property[1] = cpu_to_be64(size); 100 101 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 102 off = fdt_add_subnode(fdt, 0, mem_name); 103 g_free(mem_name); 104 105 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 106 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 107 sizeof(mem_reg_property)))); 108 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 109 } 110 111 static int get_cpus_node(void *fdt) 112 { 113 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 114 115 if (cpus_offset < 0) { 116 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 117 if (cpus_offset) { 118 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 120 } 121 } 122 _FDT(cpus_offset); 123 return cpus_offset; 124 } 125 126 /* 127 * The PowerNV cores (and threads) need to use real HW ids and not an 128 * incremental index like it has been done on other platforms. This HW 129 * id is stored in the CPU PIR, it is used to create cpu nodes in the 130 * device tree, used in XSCOM to address cores and in interrupt 131 * servers. 132 */ 133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 134 { 135 PowerPCCPU *cpu = pc->threads[0]; 136 CPUState *cs = CPU(cpu); 137 DeviceClass *dc = DEVICE_GET_CLASS(cs); 138 int smt_threads = CPU_CORE(pc)->nr_threads; 139 CPUPPCState *env = &cpu->env; 140 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 141 uint32_t servers_prop[smt_threads]; 142 int i; 143 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 144 0xffffffff, 0xffffffff}; 145 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 146 uint32_t cpufreq = 1000000000; 147 uint32_t page_sizes_prop[64]; 148 size_t page_sizes_prop_size; 149 const uint8_t pa_features[] = { 24, 0, 150 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 151 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 152 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 153 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 154 int offset; 155 char *nodename; 156 int cpus_offset = get_cpus_node(fdt); 157 158 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 159 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 160 _FDT(offset); 161 g_free(nodename); 162 163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 164 165 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 167 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 168 169 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 171 env->dcache_line_size))); 172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 173 env->dcache_line_size))); 174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 175 env->icache_line_size))); 176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 177 env->icache_line_size))); 178 179 if (pcc->l1_dcache_size) { 180 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 181 pcc->l1_dcache_size))); 182 } else { 183 warn_report("Unknown L1 dcache size for cpu"); 184 } 185 if (pcc->l1_icache_size) { 186 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 187 pcc->l1_icache_size))); 188 } else { 189 warn_report("Unknown L1 icache size for cpu"); 190 } 191 192 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 193 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 194 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 195 cpu->hash64_opts->slb_size))); 196 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 197 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 198 199 if (ppc_has_spr(cpu, SPR_PURR)) { 200 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 201 } 202 203 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 204 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 205 segs, sizeof(segs)))); 206 } 207 208 /* 209 * Advertise VMX/VSX (vector extensions) if available 210 * 0 / no property == no vector extensions 211 * 1 == VMX / Altivec available 212 * 2 == VSX available 213 */ 214 if (env->insns_flags & PPC_ALTIVEC) { 215 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 216 217 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 218 } 219 220 /* 221 * Advertise DFP (Decimal Floating Point) if available 222 * 0 / no property == no DFP 223 * 1 == DFP available 224 */ 225 if (env->insns_flags2 & PPC2_DFP) { 226 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 227 } 228 229 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 230 sizeof(page_sizes_prop)); 231 if (page_sizes_prop_size) { 232 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 233 page_sizes_prop, page_sizes_prop_size))); 234 } 235 236 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 237 pa_features, sizeof(pa_features)))); 238 239 /* Build interrupt servers properties */ 240 for (i = 0; i < smt_threads; i++) { 241 servers_prop[i] = cpu_to_be32(pc->pir + i); 242 } 243 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 244 servers_prop, sizeof(servers_prop)))); 245 } 246 247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 248 uint32_t nr_threads) 249 { 250 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 251 char *name; 252 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 253 uint32_t irange[2], i, rsize; 254 uint64_t *reg; 255 int offset; 256 257 irange[0] = cpu_to_be32(pir); 258 irange[1] = cpu_to_be32(nr_threads); 259 260 rsize = sizeof(uint64_t) * 2 * nr_threads; 261 reg = g_malloc(rsize); 262 for (i = 0; i < nr_threads; i++) { 263 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 264 reg[i * 2 + 1] = cpu_to_be64(0x1000); 265 } 266 267 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 268 offset = fdt_add_subnode(fdt, 0, name); 269 _FDT(offset); 270 g_free(name); 271 272 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 273 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 274 _FDT((fdt_setprop_string(fdt, offset, "device_type", 275 "PowerPC-External-Interrupt-Presentation"))); 276 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 277 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 278 irange, sizeof(irange)))); 279 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 280 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 281 g_free(reg); 282 } 283 284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 285 { 286 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 287 int i; 288 289 pnv_dt_xscom(chip, fdt, 0, 290 cpu_to_be64(PNV_XSCOM_BASE(chip)), 291 cpu_to_be64(PNV_XSCOM_SIZE), 292 compat, sizeof(compat)); 293 294 for (i = 0; i < chip->nr_cores; i++) { 295 PnvCore *pnv_core = chip->cores[i]; 296 297 pnv_dt_core(chip, pnv_core, fdt); 298 299 /* Interrupt Control Presenters (ICP). One per core. */ 300 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 301 } 302 303 if (chip->ram_size) { 304 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 305 } 306 } 307 308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 309 { 310 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 311 int i; 312 313 pnv_dt_xscom(chip, fdt, 0, 314 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 315 cpu_to_be64(PNV9_XSCOM_SIZE), 316 compat, sizeof(compat)); 317 318 for (i = 0; i < chip->nr_cores; i++) { 319 PnvCore *pnv_core = chip->cores[i]; 320 321 pnv_dt_core(chip, pnv_core, fdt); 322 } 323 324 if (chip->ram_size) { 325 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 326 } 327 328 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 329 } 330 331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 332 { 333 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 334 int i; 335 336 pnv_dt_xscom(chip, fdt, 0, 337 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 338 cpu_to_be64(PNV10_XSCOM_SIZE), 339 compat, sizeof(compat)); 340 341 for (i = 0; i < chip->nr_cores; i++) { 342 PnvCore *pnv_core = chip->cores[i]; 343 344 pnv_dt_core(chip, pnv_core, fdt); 345 } 346 347 if (chip->ram_size) { 348 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 349 } 350 351 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 352 } 353 354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 355 { 356 uint32_t io_base = d->ioport_id; 357 uint32_t io_regs[] = { 358 cpu_to_be32(1), 359 cpu_to_be32(io_base), 360 cpu_to_be32(2) 361 }; 362 char *name; 363 int node; 364 365 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 366 node = fdt_add_subnode(fdt, lpc_off, name); 367 _FDT(node); 368 g_free(name); 369 370 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 371 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 372 } 373 374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 375 { 376 const char compatible[] = "ns16550\0pnpPNP,501"; 377 uint32_t io_base = d->ioport_id; 378 uint32_t io_regs[] = { 379 cpu_to_be32(1), 380 cpu_to_be32(io_base), 381 cpu_to_be32(8) 382 }; 383 char *name; 384 int node; 385 386 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 387 node = fdt_add_subnode(fdt, lpc_off, name); 388 _FDT(node); 389 g_free(name); 390 391 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 392 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 393 sizeof(compatible)))); 394 395 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 396 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 397 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 398 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 399 fdt_get_phandle(fdt, lpc_off)))); 400 401 /* This is needed by Linux */ 402 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 403 } 404 405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 406 { 407 const char compatible[] = "bt\0ipmi-bt"; 408 uint32_t io_base; 409 uint32_t io_regs[] = { 410 cpu_to_be32(1), 411 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 412 cpu_to_be32(3) 413 }; 414 uint32_t irq; 415 char *name; 416 int node; 417 418 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 419 io_regs[1] = cpu_to_be32(io_base); 420 421 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 422 423 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 424 node = fdt_add_subnode(fdt, lpc_off, name); 425 _FDT(node); 426 g_free(name); 427 428 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 429 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 430 sizeof(compatible)))); 431 432 /* Mark it as reserved to avoid Linux trying to claim it */ 433 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 434 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 435 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 436 fdt_get_phandle(fdt, lpc_off)))); 437 } 438 439 typedef struct ForeachPopulateArgs { 440 void *fdt; 441 int offset; 442 } ForeachPopulateArgs; 443 444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 445 { 446 ForeachPopulateArgs *args = opaque; 447 ISADevice *d = ISA_DEVICE(dev); 448 449 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 450 pnv_dt_rtc(d, args->fdt, args->offset); 451 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 452 pnv_dt_serial(d, args->fdt, args->offset); 453 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 454 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 455 } else { 456 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 457 d->ioport_id); 458 } 459 460 return 0; 461 } 462 463 /* 464 * The default LPC bus of a multichip system is on chip 0. It's 465 * recognized by the firmware (skiboot) using a "primary" property. 466 */ 467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 468 { 469 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 470 ForeachPopulateArgs args = { 471 .fdt = fdt, 472 .offset = isa_offset, 473 }; 474 uint32_t phandle; 475 476 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 477 478 phandle = qemu_fdt_alloc_phandle(fdt); 479 assert(phandle > 0); 480 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 481 482 /* 483 * ISA devices are not necessarily parented to the ISA bus so we 484 * can not use object_child_foreach() 485 */ 486 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 487 &args); 488 } 489 490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 491 { 492 int off; 493 494 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 495 off = fdt_add_subnode(fdt, off, "power-mgt"); 496 497 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 498 } 499 500 static void *pnv_dt_create(MachineState *machine) 501 { 502 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 503 PnvMachineState *pnv = PNV_MACHINE(machine); 504 void *fdt; 505 char *buf; 506 int off; 507 int i; 508 509 fdt = g_malloc0(FDT_MAX_SIZE); 510 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 511 512 /* /qemu node */ 513 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 514 515 /* Root node */ 516 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 517 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 518 _FDT((fdt_setprop_string(fdt, 0, "model", 519 "IBM PowerNV (emulated by qemu)"))); 520 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 521 522 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 523 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 524 if (qemu_uuid_set) { 525 _FDT((fdt_property_string(fdt, "system-id", buf))); 526 } 527 g_free(buf); 528 529 off = fdt_add_subnode(fdt, 0, "chosen"); 530 if (machine->kernel_cmdline) { 531 _FDT((fdt_setprop_string(fdt, off, "bootargs", 532 machine->kernel_cmdline))); 533 } 534 535 if (pnv->initrd_size) { 536 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 537 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 538 539 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 540 &start_prop, sizeof(start_prop)))); 541 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 542 &end_prop, sizeof(end_prop)))); 543 } 544 545 /* Populate device tree for each chip */ 546 for (i = 0; i < pnv->num_chips; i++) { 547 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 548 } 549 550 /* Populate ISA devices on chip 0 */ 551 pnv_dt_isa(pnv, fdt); 552 553 if (pnv->bmc) { 554 pnv_dt_bmc_sensors(pnv->bmc, fdt); 555 } 556 557 /* Create an extra node for power management on machines that support it */ 558 if (pmc->dt_power_mgt) { 559 pmc->dt_power_mgt(pnv, fdt); 560 } 561 562 return fdt; 563 } 564 565 static void pnv_powerdown_notify(Notifier *n, void *opaque) 566 { 567 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 568 569 if (pnv->bmc) { 570 pnv_bmc_powerdown(pnv->bmc); 571 } 572 } 573 574 static void pnv_reset(MachineState *machine) 575 { 576 PnvMachineState *pnv = PNV_MACHINE(machine); 577 IPMIBmc *bmc; 578 void *fdt; 579 580 qemu_devices_reset(); 581 582 /* 583 * The machine should provide by default an internal BMC simulator. 584 * If not, try to use the BMC device that was provided on the command 585 * line. 586 */ 587 bmc = pnv_bmc_find(&error_fatal); 588 if (!pnv->bmc) { 589 if (!bmc) { 590 if (!qtest_enabled()) { 591 warn_report("machine has no BMC device. Use '-device " 592 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " 593 "to define one"); 594 } 595 } else { 596 pnv_bmc_set_pnor(bmc, pnv->pnor); 597 pnv->bmc = bmc; 598 } 599 } 600 601 fdt = pnv_dt_create(machine); 602 603 /* Pack resulting tree */ 604 _FDT((fdt_pack(fdt))); 605 606 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 607 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 608 609 g_free(fdt); 610 } 611 612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 613 { 614 Pnv8Chip *chip8 = PNV8_CHIP(chip); 615 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 616 } 617 618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 619 { 620 Pnv8Chip *chip8 = PNV8_CHIP(chip); 621 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 622 } 623 624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 625 { 626 Pnv9Chip *chip9 = PNV9_CHIP(chip); 627 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 628 } 629 630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 631 { 632 Pnv10Chip *chip10 = PNV10_CHIP(chip); 633 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 634 } 635 636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 637 { 638 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 639 } 640 641 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 642 { 643 Pnv8Chip *chip8 = PNV8_CHIP(chip); 644 int i; 645 646 ics_pic_print_info(&chip8->psi.ics, mon); 647 for (i = 0; i < chip->num_phbs; i++) { 648 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon); 649 ics_pic_print_info(&chip8->phbs[i].lsis, mon); 650 } 651 } 652 653 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 654 { 655 Pnv9Chip *chip9 = PNV9_CHIP(chip); 656 int i, j; 657 658 pnv_xive_pic_print_info(&chip9->xive, mon); 659 pnv_psi_pic_print_info(&chip9->psi, mon); 660 661 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) { 662 PnvPhb4PecState *pec = &chip9->pecs[i]; 663 for (j = 0; j < pec->num_stacks; j++) { 664 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon); 665 } 666 } 667 } 668 669 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 670 uint32_t core_id) 671 { 672 return PNV_XSCOM_EX_BASE(core_id); 673 } 674 675 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 676 uint32_t core_id) 677 { 678 return PNV9_XSCOM_EC_BASE(core_id); 679 } 680 681 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 682 uint32_t core_id) 683 { 684 return PNV10_XSCOM_EC_BASE(core_id); 685 } 686 687 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 688 { 689 PowerPCCPUClass *ppc_default = 690 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 691 PowerPCCPUClass *ppc = 692 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 693 694 return ppc_default->pvr_match(ppc_default, ppc->pvr); 695 } 696 697 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 698 { 699 ISADevice *dev = isa_new("isa-ipmi-bt"); 700 701 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); 702 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); 703 isa_realize_and_unref(dev, bus, &error_fatal); 704 } 705 706 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon) 707 { 708 Pnv10Chip *chip10 = PNV10_CHIP(chip); 709 710 pnv_psi_pic_print_info(&chip10->psi, mon); 711 } 712 713 static void pnv_init(MachineState *machine) 714 { 715 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 716 PnvMachineState *pnv = PNV_MACHINE(machine); 717 MachineClass *mc = MACHINE_GET_CLASS(machine); 718 char *fw_filename; 719 long fw_size; 720 int i; 721 char *chip_typename; 722 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 723 DeviceState *dev; 724 725 /* allocate RAM */ 726 if (machine->ram_size < mc->default_ram_size) { 727 char *sz = size_to_str(mc->default_ram_size); 728 error_report("Invalid RAM size, should be bigger than %s", sz); 729 g_free(sz); 730 exit(EXIT_FAILURE); 731 } 732 memory_region_add_subregion(get_system_memory(), 0, machine->ram); 733 734 /* 735 * Create our simple PNOR device 736 */ 737 dev = qdev_new(TYPE_PNV_PNOR); 738 if (pnor) { 739 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); 740 } 741 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 742 pnv->pnor = PNV_PNOR(dev); 743 744 /* load skiboot firmware */ 745 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 746 if (!fw_filename) { 747 error_report("Could not find OPAL firmware '%s'", bios_name); 748 exit(1); 749 } 750 751 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); 752 if (fw_size < 0) { 753 error_report("Could not load OPAL firmware '%s'", fw_filename); 754 exit(1); 755 } 756 g_free(fw_filename); 757 758 /* load kernel */ 759 if (machine->kernel_filename) { 760 long kernel_size; 761 762 kernel_size = load_image_targphys(machine->kernel_filename, 763 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 764 if (kernel_size < 0) { 765 error_report("Could not load kernel '%s'", 766 machine->kernel_filename); 767 exit(1); 768 } 769 } 770 771 /* load initrd */ 772 if (machine->initrd_filename) { 773 pnv->initrd_base = INITRD_LOAD_ADDR; 774 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 775 pnv->initrd_base, INITRD_MAX_SIZE); 776 if (pnv->initrd_size < 0) { 777 error_report("Could not load initial ram disk '%s'", 778 machine->initrd_filename); 779 exit(1); 780 } 781 } 782 783 /* MSIs are supported on this platform */ 784 msi_nonbroken = true; 785 786 /* 787 * Check compatibility of the specified CPU with the machine 788 * default. 789 */ 790 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 791 error_report("invalid CPU model '%s' for %s machine", 792 machine->cpu_type, mc->name); 793 exit(1); 794 } 795 796 /* Create the processor chips */ 797 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 798 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 799 i, machine->cpu_type); 800 if (!object_class_by_name(chip_typename)) { 801 error_report("invalid chip model '%.*s' for %s machine", 802 i, machine->cpu_type, mc->name); 803 exit(1); 804 } 805 806 pnv->num_chips = 807 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 808 /* 809 * TODO: should we decide on how many chips we can create based 810 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 811 */ 812 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) { 813 error_report("invalid number of chips: '%d'", pnv->num_chips); 814 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n"); 815 exit(1); 816 } 817 818 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 819 for (i = 0; i < pnv->num_chips; i++) { 820 char chip_name[32]; 821 Object *chip = OBJECT(qdev_new(chip_typename)); 822 823 pnv->chips[i] = PNV_CHIP(chip); 824 825 /* 826 * TODO: put all the memory in one node on chip 0 until we find a 827 * way to specify different ranges for each chip 828 */ 829 if (i == 0) { 830 object_property_set_int(chip, "ram-size", machine->ram_size, 831 &error_fatal); 832 } 833 834 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); 835 object_property_add_child(OBJECT(pnv), chip_name, chip); 836 object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i), 837 &error_fatal); 838 object_property_set_int(chip, "nr-cores", machine->smp.cores, 839 &error_fatal); 840 object_property_set_int(chip, "nr-threads", machine->smp.threads, 841 &error_fatal); 842 /* 843 * The POWER8 machine use the XICS interrupt interface. 844 * Propagate the XICS fabric to the chip and its controllers. 845 */ 846 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 847 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); 848 } 849 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 850 object_property_set_link(chip, "xive-fabric", OBJECT(pnv), 851 &error_abort); 852 } 853 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); 854 } 855 g_free(chip_typename); 856 857 /* Instantiate ISA bus on chip 0 */ 858 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 859 860 /* Create serial port */ 861 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 862 863 /* Create an RTC ISA device too */ 864 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 865 866 /* 867 * Create the machine BMC simulator and the IPMI BT device for 868 * communication with the BMC 869 */ 870 if (defaults_enabled()) { 871 pnv->bmc = pnv_bmc_create(pnv->pnor); 872 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 873 } 874 875 /* 876 * The PNOR is mapped on the LPC FW address space by the BMC. 877 * Since we can not reach the remote BMC machine with LPC memops, 878 * map it always for now. 879 */ 880 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, 881 &pnv->pnor->mmio); 882 883 /* 884 * OpenPOWER systems use a IPMI SEL Event message to notify the 885 * host to powerdown 886 */ 887 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 888 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 889 } 890 891 /* 892 * 0:21 Reserved - Read as zeros 893 * 22:24 Chip ID 894 * 25:28 Core number 895 * 29:31 Thread ID 896 */ 897 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 898 { 899 return (chip->chip_id << 7) | (core_id << 3); 900 } 901 902 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 903 Error **errp) 904 { 905 Pnv8Chip *chip8 = PNV8_CHIP(chip); 906 Error *local_err = NULL; 907 Object *obj; 908 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 909 910 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 911 if (local_err) { 912 error_propagate(errp, local_err); 913 return; 914 } 915 916 pnv_cpu->intc = obj; 917 } 918 919 920 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 921 { 922 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 923 924 icp_reset(ICP(pnv_cpu->intc)); 925 } 926 927 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 928 { 929 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 930 931 icp_destroy(ICP(pnv_cpu->intc)); 932 pnv_cpu->intc = NULL; 933 } 934 935 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 936 Monitor *mon) 937 { 938 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 939 } 940 941 /* 942 * 0:48 Reserved - Read as zeroes 943 * 49:52 Node ID 944 * 53:55 Chip ID 945 * 56 Reserved - Read as zero 946 * 57:61 Core number 947 * 62:63 Thread ID 948 * 949 * We only care about the lower bits. uint32_t is fine for the moment. 950 */ 951 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 952 { 953 return (chip->chip_id << 8) | (core_id << 2); 954 } 955 956 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id) 957 { 958 return (chip->chip_id << 8) | (core_id << 2); 959 } 960 961 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 962 Error **errp) 963 { 964 Pnv9Chip *chip9 = PNV9_CHIP(chip); 965 Error *local_err = NULL; 966 Object *obj; 967 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 968 969 /* 970 * The core creates its interrupt presenter but the XIVE interrupt 971 * controller object is initialized afterwards. Hopefully, it's 972 * only used at runtime. 973 */ 974 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), 975 &local_err); 976 if (local_err) { 977 error_propagate(errp, local_err); 978 return; 979 } 980 981 pnv_cpu->intc = obj; 982 } 983 984 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 985 { 986 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 987 988 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 989 } 990 991 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 992 { 993 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 994 995 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 996 pnv_cpu->intc = NULL; 997 } 998 999 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1000 Monitor *mon) 1001 { 1002 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1003 } 1004 1005 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1006 Error **errp) 1007 { 1008 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1009 1010 /* Will be defined when the interrupt controller is */ 1011 pnv_cpu->intc = NULL; 1012 } 1013 1014 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1015 { 1016 ; 1017 } 1018 1019 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1020 { 1021 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1022 1023 pnv_cpu->intc = NULL; 1024 } 1025 1026 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1027 Monitor *mon) 1028 { 1029 } 1030 1031 /* 1032 * Allowed core identifiers on a POWER8 Processor Chip : 1033 * 1034 * <EX0 reserved> 1035 * EX1 - Venice only 1036 * EX2 - Venice only 1037 * EX3 - Venice only 1038 * EX4 1039 * EX5 1040 * EX6 1041 * <EX7,8 reserved> <reserved> 1042 * EX9 - Venice only 1043 * EX10 - Venice only 1044 * EX11 - Venice only 1045 * EX12 1046 * EX13 1047 * EX14 1048 * <EX15 reserved> 1049 */ 1050 #define POWER8E_CORE_MASK (0x7070ull) 1051 #define POWER8_CORE_MASK (0x7e7eull) 1052 1053 /* 1054 * POWER9 has 24 cores, ids starting at 0x0 1055 */ 1056 #define POWER9_CORE_MASK (0xffffffffffffffull) 1057 1058 1059 #define POWER10_CORE_MASK (0xffffffffffffffull) 1060 1061 static void pnv_chip_power8_instance_init(Object *obj) 1062 { 1063 PnvChip *chip = PNV_CHIP(obj); 1064 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1065 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1066 int i; 1067 1068 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1069 (Object **)&chip8->xics, 1070 object_property_allow_set_link, 1071 OBJ_PROP_LINK_STRONG); 1072 1073 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); 1074 1075 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); 1076 1077 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); 1078 1079 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); 1080 1081 for (i = 0; i < pcc->num_phbs; i++) { 1082 object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3); 1083 } 1084 1085 /* 1086 * Number of PHBs is the chip default 1087 */ 1088 chip->num_phbs = pcc->num_phbs; 1089 } 1090 1091 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1092 { 1093 PnvChip *chip = PNV_CHIP(chip8); 1094 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1095 int i, j; 1096 char *name; 1097 1098 name = g_strdup_printf("icp-%x", chip->chip_id); 1099 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1100 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 1101 g_free(name); 1102 1103 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 1104 1105 /* Map the ICP registers for each thread */ 1106 for (i = 0; i < chip->nr_cores; i++) { 1107 PnvCore *pnv_core = chip->cores[i]; 1108 int core_hwid = CPU_CORE(pnv_core)->core_id; 1109 1110 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1111 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 1112 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1113 1114 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1115 &icp->mmio); 1116 } 1117 } 1118 } 1119 1120 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1121 { 1122 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1123 PnvChip *chip = PNV_CHIP(dev); 1124 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1125 Pnv8Psi *psi8 = &chip8->psi; 1126 Error *local_err = NULL; 1127 int i; 1128 1129 assert(chip8->xics); 1130 1131 /* XSCOM bridge is first */ 1132 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err); 1133 if (local_err) { 1134 error_propagate(errp, local_err); 1135 return; 1136 } 1137 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 1138 1139 pcc->parent_realize(dev, &local_err); 1140 if (local_err) { 1141 error_propagate(errp, local_err); 1142 return; 1143 } 1144 1145 /* Processor Service Interface (PSI) Host Bridge */ 1146 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip), 1147 &error_fatal); 1148 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS, 1149 OBJECT(chip8->xics), &error_abort); 1150 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) { 1151 return; 1152 } 1153 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1154 &PNV_PSI(psi8)->xscom_regs); 1155 1156 /* Create LPC controller */ 1157 object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi), 1158 &error_abort); 1159 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); 1160 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1161 1162 chip->fw_mr = &chip8->lpc.isa_fw; 1163 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1164 (uint64_t) PNV_XSCOM_BASE(chip), 1165 PNV_XSCOM_LPC_BASE); 1166 1167 /* 1168 * Interrupt Management Area. This is the memory region holding 1169 * all the Interrupt Control Presenter (ICP) registers 1170 */ 1171 pnv_chip_icp_realize(chip8, &local_err); 1172 if (local_err) { 1173 error_propagate(errp, local_err); 1174 return; 1175 } 1176 1177 /* Create the simplified OCC model */ 1178 object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi), 1179 &error_abort); 1180 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { 1181 return; 1182 } 1183 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1184 1185 /* OCC SRAM model */ 1186 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1187 &chip8->occ.sram_regs); 1188 1189 /* HOMER */ 1190 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), 1191 &error_abort); 1192 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { 1193 return; 1194 } 1195 /* Homer Xscom region */ 1196 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1197 1198 /* Homer mmio region */ 1199 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1200 &chip8->homer.regs); 1201 1202 /* PHB3 controllers */ 1203 for (i = 0; i < chip->num_phbs; i++) { 1204 PnvPHB3 *phb = &chip8->phbs[i]; 1205 PnvPBCQState *pbcq = &phb->pbcq; 1206 1207 object_property_set_int(OBJECT(phb), "index", i, &error_fatal); 1208 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, 1209 &error_fatal); 1210 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { 1211 return; 1212 } 1213 1214 /* Populate the XSCOM address space. */ 1215 pnv_xscom_add_subregion(chip, 1216 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id, 1217 &pbcq->xscom_nest_regs); 1218 pnv_xscom_add_subregion(chip, 1219 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id, 1220 &pbcq->xscom_pci_regs); 1221 pnv_xscom_add_subregion(chip, 1222 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id, 1223 &pbcq->xscom_spci_regs); 1224 } 1225 } 1226 1227 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1228 { 1229 addr &= (PNV_XSCOM_SIZE - 1); 1230 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1231 } 1232 1233 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1234 { 1235 DeviceClass *dc = DEVICE_CLASS(klass); 1236 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1237 1238 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1239 k->cores_mask = POWER8E_CORE_MASK; 1240 k->num_phbs = 3; 1241 k->core_pir = pnv_chip_core_pir_p8; 1242 k->intc_create = pnv_chip_power8_intc_create; 1243 k->intc_reset = pnv_chip_power8_intc_reset; 1244 k->intc_destroy = pnv_chip_power8_intc_destroy; 1245 k->intc_print_info = pnv_chip_power8_intc_print_info; 1246 k->isa_create = pnv_chip_power8_isa_create; 1247 k->dt_populate = pnv_chip_power8_dt_populate; 1248 k->pic_print_info = pnv_chip_power8_pic_print_info; 1249 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1250 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1251 dc->desc = "PowerNV Chip POWER8E"; 1252 1253 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1254 &k->parent_realize); 1255 } 1256 1257 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1258 { 1259 DeviceClass *dc = DEVICE_CLASS(klass); 1260 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1261 1262 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1263 k->cores_mask = POWER8_CORE_MASK; 1264 k->num_phbs = 3; 1265 k->core_pir = pnv_chip_core_pir_p8; 1266 k->intc_create = pnv_chip_power8_intc_create; 1267 k->intc_reset = pnv_chip_power8_intc_reset; 1268 k->intc_destroy = pnv_chip_power8_intc_destroy; 1269 k->intc_print_info = pnv_chip_power8_intc_print_info; 1270 k->isa_create = pnv_chip_power8_isa_create; 1271 k->dt_populate = pnv_chip_power8_dt_populate; 1272 k->pic_print_info = pnv_chip_power8_pic_print_info; 1273 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1274 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1275 dc->desc = "PowerNV Chip POWER8"; 1276 1277 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1278 &k->parent_realize); 1279 } 1280 1281 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1282 { 1283 DeviceClass *dc = DEVICE_CLASS(klass); 1284 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1285 1286 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1287 k->cores_mask = POWER8_CORE_MASK; 1288 k->num_phbs = 3; 1289 k->core_pir = pnv_chip_core_pir_p8; 1290 k->intc_create = pnv_chip_power8_intc_create; 1291 k->intc_reset = pnv_chip_power8_intc_reset; 1292 k->intc_destroy = pnv_chip_power8_intc_destroy; 1293 k->intc_print_info = pnv_chip_power8_intc_print_info; 1294 k->isa_create = pnv_chip_power8nvl_isa_create; 1295 k->dt_populate = pnv_chip_power8_dt_populate; 1296 k->pic_print_info = pnv_chip_power8_pic_print_info; 1297 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1298 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1299 dc->desc = "PowerNV Chip POWER8NVL"; 1300 1301 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1302 &k->parent_realize); 1303 } 1304 1305 static void pnv_chip_power9_instance_init(Object *obj) 1306 { 1307 PnvChip *chip = PNV_CHIP(obj); 1308 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1309 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1310 int i; 1311 1312 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); 1313 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1314 "xive-fabric"); 1315 1316 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); 1317 1318 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); 1319 1320 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); 1321 1322 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); 1323 1324 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) { 1325 object_initialize_child(obj, "pec[*]", &chip9->pecs[i], 1326 TYPE_PNV_PHB4_PEC); 1327 } 1328 1329 /* 1330 * Number of PHBs is the chip default 1331 */ 1332 chip->num_phbs = pcc->num_phbs; 1333 } 1334 1335 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1336 { 1337 PnvChip *chip = PNV_CHIP(chip9); 1338 int i; 1339 1340 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1341 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1342 1343 for (i = 0; i < chip9->nr_quads; i++) { 1344 char eq_name[32]; 1345 PnvQuad *eq = &chip9->quads[i]; 1346 PnvCore *pnv_core = chip->cores[i * 4]; 1347 int core_id = CPU_CORE(pnv_core)->core_id; 1348 1349 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1350 object_initialize_child_with_props(OBJECT(chip), eq_name, eq, 1351 sizeof(*eq), TYPE_PNV_QUAD, 1352 &error_fatal, NULL); 1353 1354 object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal); 1355 qdev_realize(DEVICE(eq), NULL, &error_fatal); 1356 1357 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id), 1358 &eq->xscom_regs); 1359 } 1360 } 1361 1362 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp) 1363 { 1364 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1365 int i, j; 1366 int phb_id = 0; 1367 1368 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) { 1369 PnvPhb4PecState *pec = &chip9->pecs[i]; 1370 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1371 uint32_t pec_nest_base; 1372 uint32_t pec_pci_base; 1373 1374 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1375 /* 1376 * PEC0 -> 1 stack 1377 * PEC1 -> 2 stacks 1378 * PEC2 -> 3 stacks 1379 */ 1380 object_property_set_int(OBJECT(pec), "num-stacks", i + 1, 1381 &error_fatal); 1382 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1383 &error_fatal); 1384 object_property_set_link(OBJECT(pec), "system-memory", 1385 OBJECT(get_system_memory()), &error_abort); 1386 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1387 return; 1388 } 1389 1390 pec_nest_base = pecc->xscom_nest_base(pec); 1391 pec_pci_base = pecc->xscom_pci_base(pec); 1392 1393 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1394 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1395 1396 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs; 1397 j++, phb_id++) { 1398 PnvPhb4PecStack *stack = &pec->stacks[j]; 1399 Object *obj = OBJECT(&stack->phb); 1400 1401 object_property_set_int(obj, "index", phb_id, &error_fatal); 1402 object_property_set_int(obj, "chip-id", chip->chip_id, 1403 &error_fatal); 1404 object_property_set_int(obj, "version", PNV_PHB4_VERSION, 1405 &error_fatal); 1406 object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID, 1407 &error_fatal); 1408 object_property_set_link(obj, "stack", OBJECT(stack), 1409 &error_abort); 1410 if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) { 1411 return; 1412 } 1413 1414 /* Populate the XSCOM address space. */ 1415 pnv_xscom_add_subregion(chip, 1416 pec_nest_base + 0x40 * (stack->stack_no + 1), 1417 &stack->nest_regs_mr); 1418 pnv_xscom_add_subregion(chip, 1419 pec_pci_base + 0x40 * (stack->stack_no + 1), 1420 &stack->pci_regs_mr); 1421 pnv_xscom_add_subregion(chip, 1422 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 + 1423 0x40 * stack->stack_no, 1424 &stack->phb_regs_mr); 1425 } 1426 } 1427 } 1428 1429 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1430 { 1431 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1432 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1433 PnvChip *chip = PNV_CHIP(dev); 1434 Pnv9Psi *psi9 = &chip9->psi; 1435 Error *local_err = NULL; 1436 1437 /* XSCOM bridge is first */ 1438 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err); 1439 if (local_err) { 1440 error_propagate(errp, local_err); 1441 return; 1442 } 1443 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip)); 1444 1445 pcc->parent_realize(dev, &local_err); 1446 if (local_err) { 1447 error_propagate(errp, local_err); 1448 return; 1449 } 1450 1451 pnv_chip_quad_realize(chip9, &local_err); 1452 if (local_err) { 1453 error_propagate(errp, local_err); 1454 return; 1455 } 1456 1457 /* XIVE interrupt controller (POWER9) */ 1458 object_property_set_int(OBJECT(&chip9->xive), "ic-bar", 1459 PNV9_XIVE_IC_BASE(chip), &error_fatal); 1460 object_property_set_int(OBJECT(&chip9->xive), "vc-bar", 1461 PNV9_XIVE_VC_BASE(chip), &error_fatal); 1462 object_property_set_int(OBJECT(&chip9->xive), "pc-bar", 1463 PNV9_XIVE_PC_BASE(chip), &error_fatal); 1464 object_property_set_int(OBJECT(&chip9->xive), "tm-bar", 1465 PNV9_XIVE_TM_BASE(chip), &error_fatal); 1466 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), 1467 &error_abort); 1468 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { 1469 return; 1470 } 1471 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1472 &chip9->xive.xscom_regs); 1473 1474 /* Processor Service Interface (PSI) Host Bridge */ 1475 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip), 1476 &error_fatal); 1477 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) { 1478 return; 1479 } 1480 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1481 &PNV_PSI(psi9)->xscom_regs); 1482 1483 /* LPC */ 1484 object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi), 1485 &error_abort); 1486 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { 1487 return; 1488 } 1489 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1490 &chip9->lpc.xscom_regs); 1491 1492 chip->fw_mr = &chip9->lpc.isa_fw; 1493 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1494 (uint64_t) PNV9_LPCM_BASE(chip)); 1495 1496 /* Create the simplified OCC model */ 1497 object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi), 1498 &error_abort); 1499 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { 1500 return; 1501 } 1502 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1503 1504 /* OCC SRAM model */ 1505 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1506 &chip9->occ.sram_regs); 1507 1508 /* HOMER */ 1509 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), 1510 &error_abort); 1511 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { 1512 return; 1513 } 1514 /* Homer Xscom region */ 1515 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1516 1517 /* Homer mmio region */ 1518 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1519 &chip9->homer.regs); 1520 1521 /* PHBs */ 1522 pnv_chip_power9_phb_realize(chip, &local_err); 1523 if (local_err) { 1524 error_propagate(errp, local_err); 1525 return; 1526 } 1527 } 1528 1529 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1530 { 1531 addr &= (PNV9_XSCOM_SIZE - 1); 1532 return addr >> 3; 1533 } 1534 1535 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1536 { 1537 DeviceClass *dc = DEVICE_CLASS(klass); 1538 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1539 1540 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1541 k->cores_mask = POWER9_CORE_MASK; 1542 k->core_pir = pnv_chip_core_pir_p9; 1543 k->intc_create = pnv_chip_power9_intc_create; 1544 k->intc_reset = pnv_chip_power9_intc_reset; 1545 k->intc_destroy = pnv_chip_power9_intc_destroy; 1546 k->intc_print_info = pnv_chip_power9_intc_print_info; 1547 k->isa_create = pnv_chip_power9_isa_create; 1548 k->dt_populate = pnv_chip_power9_dt_populate; 1549 k->pic_print_info = pnv_chip_power9_pic_print_info; 1550 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1551 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1552 dc->desc = "PowerNV Chip POWER9"; 1553 k->num_phbs = 6; 1554 1555 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1556 &k->parent_realize); 1557 } 1558 1559 static void pnv_chip_power10_instance_init(Object *obj) 1560 { 1561 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1562 1563 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); 1564 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); 1565 } 1566 1567 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 1568 { 1569 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1570 PnvChip *chip = PNV_CHIP(dev); 1571 Pnv10Chip *chip10 = PNV10_CHIP(dev); 1572 Error *local_err = NULL; 1573 1574 /* XSCOM bridge is first */ 1575 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err); 1576 if (local_err) { 1577 error_propagate(errp, local_err); 1578 return; 1579 } 1580 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip)); 1581 1582 pcc->parent_realize(dev, &local_err); 1583 if (local_err) { 1584 error_propagate(errp, local_err); 1585 return; 1586 } 1587 1588 /* Processor Service Interface (PSI) Host Bridge */ 1589 object_property_set_int(OBJECT(&chip10->psi), "bar", 1590 PNV10_PSIHB_BASE(chip), &error_fatal); 1591 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { 1592 return; 1593 } 1594 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 1595 &PNV_PSI(&chip10->psi)->xscom_regs); 1596 1597 /* LPC */ 1598 object_property_set_link(OBJECT(&chip10->lpc), "psi", 1599 OBJECT(&chip10->psi), &error_abort); 1600 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { 1601 return; 1602 } 1603 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 1604 &chip10->lpc.xscom_regs); 1605 1606 chip->fw_mr = &chip10->lpc.isa_fw; 1607 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1608 (uint64_t) PNV10_LPCM_BASE(chip)); 1609 } 1610 1611 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 1612 { 1613 addr &= (PNV10_XSCOM_SIZE - 1); 1614 return addr >> 3; 1615 } 1616 1617 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 1618 { 1619 DeviceClass *dc = DEVICE_CLASS(klass); 1620 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1621 1622 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */ 1623 k->cores_mask = POWER10_CORE_MASK; 1624 k->core_pir = pnv_chip_core_pir_p10; 1625 k->intc_create = pnv_chip_power10_intc_create; 1626 k->intc_reset = pnv_chip_power10_intc_reset; 1627 k->intc_destroy = pnv_chip_power10_intc_destroy; 1628 k->intc_print_info = pnv_chip_power10_intc_print_info; 1629 k->isa_create = pnv_chip_power10_isa_create; 1630 k->dt_populate = pnv_chip_power10_dt_populate; 1631 k->pic_print_info = pnv_chip_power10_pic_print_info; 1632 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 1633 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 1634 dc->desc = "PowerNV Chip POWER10"; 1635 1636 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 1637 &k->parent_realize); 1638 } 1639 1640 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1641 { 1642 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1643 int cores_max; 1644 1645 /* 1646 * No custom mask for this chip, let's use the default one from * 1647 * the chip class 1648 */ 1649 if (!chip->cores_mask) { 1650 chip->cores_mask = pcc->cores_mask; 1651 } 1652 1653 /* filter alien core ids ! some are reserved */ 1654 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1655 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1656 chip->cores_mask); 1657 return; 1658 } 1659 chip->cores_mask &= pcc->cores_mask; 1660 1661 /* now that we have a sane layout, let check the number of cores */ 1662 cores_max = ctpop64(chip->cores_mask); 1663 if (chip->nr_cores > cores_max) { 1664 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1665 cores_max); 1666 return; 1667 } 1668 } 1669 1670 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1671 { 1672 Error *error = NULL; 1673 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1674 const char *typename = pnv_chip_core_typename(chip); 1675 int i, core_hwid; 1676 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1677 1678 if (!object_class_by_name(typename)) { 1679 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1680 return; 1681 } 1682 1683 /* Cores */ 1684 pnv_chip_core_sanitize(chip, &error); 1685 if (error) { 1686 error_propagate(errp, error); 1687 return; 1688 } 1689 1690 chip->cores = g_new0(PnvCore *, chip->nr_cores); 1691 1692 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1693 && (i < chip->nr_cores); core_hwid++) { 1694 char core_name[32]; 1695 PnvCore *pnv_core; 1696 uint64_t xscom_core_base; 1697 1698 if (!(chip->cores_mask & (1ull << core_hwid))) { 1699 continue; 1700 } 1701 1702 pnv_core = PNV_CORE(object_new(typename)); 1703 1704 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1705 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); 1706 chip->cores[i] = pnv_core; 1707 object_property_set_int(OBJECT(pnv_core), "nr-threads", 1708 chip->nr_threads, &error_fatal); 1709 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, 1710 core_hwid, &error_fatal); 1711 object_property_set_int(OBJECT(pnv_core), "pir", 1712 pcc->core_pir(chip, core_hwid), &error_fatal); 1713 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, 1714 &error_fatal); 1715 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), 1716 &error_abort); 1717 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); 1718 1719 /* Each core has an XSCOM MMIO region */ 1720 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 1721 1722 pnv_xscom_add_subregion(chip, xscom_core_base, 1723 &pnv_core->xscom_regs); 1724 i++; 1725 } 1726 } 1727 1728 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1729 { 1730 PnvChip *chip = PNV_CHIP(dev); 1731 Error *error = NULL; 1732 1733 /* Cores */ 1734 pnv_chip_core_realize(chip, &error); 1735 if (error) { 1736 error_propagate(errp, error); 1737 return; 1738 } 1739 } 1740 1741 static Property pnv_chip_properties[] = { 1742 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1743 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1744 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1745 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1746 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1747 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 1748 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0), 1749 DEFINE_PROP_END_OF_LIST(), 1750 }; 1751 1752 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1753 { 1754 DeviceClass *dc = DEVICE_CLASS(klass); 1755 1756 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1757 dc->realize = pnv_chip_realize; 1758 device_class_set_props(dc, pnv_chip_properties); 1759 dc->desc = "PowerNV Chip"; 1760 } 1761 1762 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 1763 { 1764 int i, j; 1765 1766 for (i = 0; i < chip->nr_cores; i++) { 1767 PnvCore *pc = chip->cores[i]; 1768 CPUCore *cc = CPU_CORE(pc); 1769 1770 for (j = 0; j < cc->nr_threads; j++) { 1771 if (ppc_cpu_pir(pc->threads[j]) == pir) { 1772 return pc->threads[j]; 1773 } 1774 } 1775 } 1776 return NULL; 1777 } 1778 1779 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1780 { 1781 PnvMachineState *pnv = PNV_MACHINE(xi); 1782 int i, j; 1783 1784 for (i = 0; i < pnv->num_chips; i++) { 1785 PnvChip *chip = pnv->chips[i]; 1786 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1787 1788 if (ics_valid_irq(&chip8->psi.ics, irq)) { 1789 return &chip8->psi.ics; 1790 } 1791 for (j = 0; j < chip->num_phbs; j++) { 1792 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) { 1793 return &chip8->phbs[j].lsis; 1794 } 1795 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) { 1796 return ICS(&chip8->phbs[j].msis); 1797 } 1798 } 1799 } 1800 return NULL; 1801 } 1802 1803 static void pnv_ics_resend(XICSFabric *xi) 1804 { 1805 PnvMachineState *pnv = PNV_MACHINE(xi); 1806 int i, j; 1807 1808 for (i = 0; i < pnv->num_chips; i++) { 1809 PnvChip *chip = pnv->chips[i]; 1810 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1811 1812 ics_resend(&chip8->psi.ics); 1813 for (j = 0; j < chip->num_phbs; j++) { 1814 ics_resend(&chip8->phbs[j].lsis); 1815 ics_resend(ICS(&chip8->phbs[j].msis)); 1816 } 1817 } 1818 } 1819 1820 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1821 { 1822 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1823 1824 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 1825 } 1826 1827 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1828 Monitor *mon) 1829 { 1830 PnvMachineState *pnv = PNV_MACHINE(obj); 1831 int i; 1832 CPUState *cs; 1833 1834 CPU_FOREACH(cs) { 1835 PowerPCCPU *cpu = POWERPC_CPU(cs); 1836 1837 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */ 1838 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu, 1839 mon); 1840 } 1841 1842 for (i = 0; i < pnv->num_chips; i++) { 1843 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 1844 } 1845 } 1846 1847 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 1848 uint8_t nvt_blk, uint32_t nvt_idx, 1849 bool cam_ignore, uint8_t priority, 1850 uint32_t logic_serv, 1851 XiveTCTXMatch *match) 1852 { 1853 PnvMachineState *pnv = PNV_MACHINE(xfb); 1854 int total_count = 0; 1855 int i; 1856 1857 for (i = 0; i < pnv->num_chips; i++) { 1858 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 1859 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 1860 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 1861 int count; 1862 1863 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 1864 priority, logic_serv, match); 1865 1866 if (count < 0) { 1867 return count; 1868 } 1869 1870 total_count += count; 1871 } 1872 1873 return total_count; 1874 } 1875 1876 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 1877 { 1878 MachineClass *mc = MACHINE_CLASS(oc); 1879 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1880 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1881 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 1882 1883 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 1884 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1885 1886 xic->icp_get = pnv_icp_get; 1887 xic->ics_get = pnv_ics_get; 1888 xic->ics_resend = pnv_ics_resend; 1889 1890 pmc->compat = compat; 1891 pmc->compat_size = sizeof(compat); 1892 } 1893 1894 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 1895 { 1896 MachineClass *mc = MACHINE_CLASS(oc); 1897 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 1898 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1899 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 1900 1901 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 1902 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 1903 xfc->match_nvt = pnv_match_nvt; 1904 1905 mc->alias = "powernv"; 1906 1907 pmc->compat = compat; 1908 pmc->compat_size = sizeof(compat); 1909 pmc->dt_power_mgt = pnv_dt_power_mgt; 1910 } 1911 1912 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 1913 { 1914 MachineClass *mc = MACHINE_CLASS(oc); 1915 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1916 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 1917 1918 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 1919 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0"); 1920 1921 pmc->compat = compat; 1922 pmc->compat_size = sizeof(compat); 1923 pmc->dt_power_mgt = pnv_dt_power_mgt; 1924 } 1925 1926 static bool pnv_machine_get_hb(Object *obj, Error **errp) 1927 { 1928 PnvMachineState *pnv = PNV_MACHINE(obj); 1929 1930 return !!pnv->fw_load_addr; 1931 } 1932 1933 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) 1934 { 1935 PnvMachineState *pnv = PNV_MACHINE(obj); 1936 1937 if (value) { 1938 pnv->fw_load_addr = 0x8000000; 1939 } 1940 } 1941 1942 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) 1943 { 1944 PowerPCCPU *cpu = POWERPC_CPU(cs); 1945 CPUPPCState *env = &cpu->env; 1946 1947 cpu_synchronize_state(cs); 1948 ppc_cpu_do_system_reset(cs); 1949 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { 1950 /* 1951 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the 1952 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 1953 * (PPC_BIT(43)). 1954 */ 1955 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { 1956 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); 1957 env->spr[SPR_SRR1] |= SRR1_WAKERESET; 1958 } 1959 } else { 1960 /* 1961 * For non-powersave system resets, SRR1[42:45] are defined to be 1962 * implementation-dependent. The POWER9 User Manual specifies that 1963 * an external (SCOM driven, which may come from a BMC nmi command or 1964 * another CPU requesting a NMI IPI) system reset exception should be 1965 * 0b0010 (PPC_BIT(44)). 1966 */ 1967 env->spr[SPR_SRR1] |= SRR1_WAKESCOM; 1968 } 1969 } 1970 1971 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) 1972 { 1973 CPUState *cs; 1974 1975 CPU_FOREACH(cs) { 1976 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL); 1977 } 1978 } 1979 1980 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1981 { 1982 MachineClass *mc = MACHINE_CLASS(oc); 1983 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1984 NMIClass *nc = NMI_CLASS(oc); 1985 1986 mc->desc = "IBM PowerNV (Non-Virtualized)"; 1987 mc->init = pnv_init; 1988 mc->reset = pnv_reset; 1989 mc->max_cpus = MAX_CPUS; 1990 /* Pnv provides a AHCI device for storage */ 1991 mc->block_default_type = IF_IDE; 1992 mc->no_parallel = 1; 1993 mc->default_boot_order = NULL; 1994 /* 1995 * RAM defaults to less than 2048 for 32-bit hosts, and large 1996 * enough to fit the maximum initrd size at it's load address 1997 */ 1998 mc->default_ram_size = 1 * GiB; 1999 mc->default_ram_id = "pnv.ram"; 2000 ispc->print_info = pnv_pic_print_info; 2001 nc->nmi_monitor_handler = pnv_nmi; 2002 2003 object_class_property_add_bool(oc, "hb-mode", 2004 pnv_machine_get_hb, pnv_machine_set_hb); 2005 object_class_property_set_description(oc, "hb-mode", 2006 "Use a hostboot like boot loader"); 2007 } 2008 2009 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 2010 { \ 2011 .name = type, \ 2012 .class_init = class_initfn, \ 2013 .parent = TYPE_PNV8_CHIP, \ 2014 } 2015 2016 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 2017 { \ 2018 .name = type, \ 2019 .class_init = class_initfn, \ 2020 .parent = TYPE_PNV9_CHIP, \ 2021 } 2022 2023 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 2024 { \ 2025 .name = type, \ 2026 .class_init = class_initfn, \ 2027 .parent = TYPE_PNV10_CHIP, \ 2028 } 2029 2030 static const TypeInfo types[] = { 2031 { 2032 .name = MACHINE_TYPE_NAME("powernv10"), 2033 .parent = TYPE_PNV_MACHINE, 2034 .class_init = pnv_machine_power10_class_init, 2035 }, 2036 { 2037 .name = MACHINE_TYPE_NAME("powernv9"), 2038 .parent = TYPE_PNV_MACHINE, 2039 .class_init = pnv_machine_power9_class_init, 2040 .interfaces = (InterfaceInfo[]) { 2041 { TYPE_XIVE_FABRIC }, 2042 { }, 2043 }, 2044 }, 2045 { 2046 .name = MACHINE_TYPE_NAME("powernv8"), 2047 .parent = TYPE_PNV_MACHINE, 2048 .class_init = pnv_machine_power8_class_init, 2049 .interfaces = (InterfaceInfo[]) { 2050 { TYPE_XICS_FABRIC }, 2051 { }, 2052 }, 2053 }, 2054 { 2055 .name = TYPE_PNV_MACHINE, 2056 .parent = TYPE_MACHINE, 2057 .abstract = true, 2058 .instance_size = sizeof(PnvMachineState), 2059 .class_init = pnv_machine_class_init, 2060 .class_size = sizeof(PnvMachineClass), 2061 .interfaces = (InterfaceInfo[]) { 2062 { TYPE_INTERRUPT_STATS_PROVIDER }, 2063 { TYPE_NMI }, 2064 { }, 2065 }, 2066 }, 2067 { 2068 .name = TYPE_PNV_CHIP, 2069 .parent = TYPE_SYS_BUS_DEVICE, 2070 .class_init = pnv_chip_class_init, 2071 .instance_size = sizeof(PnvChip), 2072 .class_size = sizeof(PnvChipClass), 2073 .abstract = true, 2074 }, 2075 2076 /* 2077 * P10 chip and variants 2078 */ 2079 { 2080 .name = TYPE_PNV10_CHIP, 2081 .parent = TYPE_PNV_CHIP, 2082 .instance_init = pnv_chip_power10_instance_init, 2083 .instance_size = sizeof(Pnv10Chip), 2084 }, 2085 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 2086 2087 /* 2088 * P9 chip and variants 2089 */ 2090 { 2091 .name = TYPE_PNV9_CHIP, 2092 .parent = TYPE_PNV_CHIP, 2093 .instance_init = pnv_chip_power9_instance_init, 2094 .instance_size = sizeof(Pnv9Chip), 2095 }, 2096 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 2097 2098 /* 2099 * P8 chip and variants 2100 */ 2101 { 2102 .name = TYPE_PNV8_CHIP, 2103 .parent = TYPE_PNV_CHIP, 2104 .instance_init = pnv_chip_power8_instance_init, 2105 .instance_size = sizeof(Pnv8Chip), 2106 }, 2107 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 2108 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 2109 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 2110 pnv_chip_power8nvl_class_init), 2111 }; 2112 2113 DEFINE_TYPES(types) 2114