xref: /openbmc/qemu/hw/ppc/pnv.c (revision ead62c75)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "exec/address-spaces.h"
42 #include "qapi/visitor.h"
43 #include "monitor/monitor.h"
44 #include "hw/intc/intc.h"
45 #include "hw/ipmi/ipmi.h"
46 #include "target/ppc/mmu-hash64.h"
47 #include "hw/pci/msi.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_xscom.h"
52 #include "hw/ppc/pnv_pnor.h"
53 
54 #include "hw/isa/isa.h"
55 #include "hw/char/serial.h"
56 #include "hw/rtc/mc146818rtc.h"
57 
58 #include <libfdt.h>
59 
60 #define FDT_MAX_SIZE            (1 * MiB)
61 
62 #define FW_FILE_NAME            "skiboot.lid"
63 #define FW_LOAD_ADDR            0x0
64 #define FW_MAX_SIZE             (16 * MiB)
65 
66 #define KERNEL_LOAD_ADDR        0x20000000
67 #define KERNEL_MAX_SIZE         (128 * MiB)
68 #define INITRD_LOAD_ADDR        0x28000000
69 #define INITRD_MAX_SIZE         (128 * MiB)
70 
71 static const char *pnv_chip_core_typename(const PnvChip *o)
72 {
73     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
74     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
75     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
76     const char *core_type = object_class_get_name(object_class_by_name(s));
77     g_free(s);
78     return core_type;
79 }
80 
81 /*
82  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
83  *     4 * 4 sockets * 12 cores * 8 threads = 1536
84  * Let's make it 2^11
85  */
86 #define MAX_CPUS                2048
87 
88 /*
89  * Memory nodes are created by hostboot, one for each range of memory
90  * that has a different "affinity". In practice, it means one range
91  * per chip.
92  */
93 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
94 {
95     char *mem_name;
96     uint64_t mem_reg_property[2];
97     int off;
98 
99     mem_reg_property[0] = cpu_to_be64(start);
100     mem_reg_property[1] = cpu_to_be64(size);
101 
102     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
103     off = fdt_add_subnode(fdt, 0, mem_name);
104     g_free(mem_name);
105 
106     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
107     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
108                        sizeof(mem_reg_property))));
109     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
110 }
111 
112 static int get_cpus_node(void *fdt)
113 {
114     int cpus_offset = fdt_path_offset(fdt, "/cpus");
115 
116     if (cpus_offset < 0) {
117         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
118         if (cpus_offset) {
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
121         }
122     }
123     _FDT(cpus_offset);
124     return cpus_offset;
125 }
126 
127 /*
128  * The PowerNV cores (and threads) need to use real HW ids and not an
129  * incremental index like it has been done on other platforms. This HW
130  * id is stored in the CPU PIR, it is used to create cpu nodes in the
131  * device tree, used in XSCOM to address cores and in interrupt
132  * servers.
133  */
134 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
135 {
136     PowerPCCPU *cpu = pc->threads[0];
137     CPUState *cs = CPU(cpu);
138     DeviceClass *dc = DEVICE_GET_CLASS(cs);
139     int smt_threads = CPU_CORE(pc)->nr_threads;
140     CPUPPCState *env = &cpu->env;
141     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
142     uint32_t servers_prop[smt_threads];
143     int i;
144     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
145                        0xffffffff, 0xffffffff};
146     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
147     uint32_t cpufreq = 1000000000;
148     uint32_t page_sizes_prop[64];
149     size_t page_sizes_prop_size;
150     const uint8_t pa_features[] = { 24, 0,
151                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
152                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
153                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
154                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (env->spr_cb[SPR_PURR].oea_read) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
238                        pa_features, sizeof(pa_features))));
239 
240     /* Build interrupt servers properties */
241     for (i = 0; i < smt_threads; i++) {
242         servers_prop[i] = cpu_to_be32(pc->pir + i);
243     }
244     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
245                        servers_prop, sizeof(servers_prop))));
246 }
247 
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
249                        uint32_t nr_threads)
250 {
251     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
252     char *name;
253     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
254     uint32_t irange[2], i, rsize;
255     uint64_t *reg;
256     int offset;
257 
258     irange[0] = cpu_to_be32(pir);
259     irange[1] = cpu_to_be32(nr_threads);
260 
261     rsize = sizeof(uint64_t) * 2 * nr_threads;
262     reg = g_malloc(rsize);
263     for (i = 0; i < nr_threads; i++) {
264         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
265         reg[i * 2 + 1] = cpu_to_be64(0x1000);
266     }
267 
268     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
269     offset = fdt_add_subnode(fdt, 0, name);
270     _FDT(offset);
271     g_free(name);
272 
273     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
274     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
275     _FDT((fdt_setprop_string(fdt, offset, "device_type",
276                               "PowerPC-External-Interrupt-Presentation")));
277     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
278     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
279                        irange, sizeof(irange))));
280     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
281     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
282     g_free(reg);
283 }
284 
285 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
286 {
287     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
288     int i;
289 
290     pnv_dt_xscom(chip, fdt, 0,
291                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
292                  cpu_to_be64(PNV_XSCOM_SIZE),
293                  compat, sizeof(compat));
294 
295     for (i = 0; i < chip->nr_cores; i++) {
296         PnvCore *pnv_core = chip->cores[i];
297 
298         pnv_dt_core(chip, pnv_core, fdt);
299 
300         /* Interrupt Control Presenters (ICP). One per core. */
301         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
302     }
303 
304     if (chip->ram_size) {
305         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
306     }
307 }
308 
309 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
310 {
311     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
312     int i;
313 
314     pnv_dt_xscom(chip, fdt, 0,
315                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
316                  cpu_to_be64(PNV9_XSCOM_SIZE),
317                  compat, sizeof(compat));
318 
319     for (i = 0; i < chip->nr_cores; i++) {
320         PnvCore *pnv_core = chip->cores[i];
321 
322         pnv_dt_core(chip, pnv_core, fdt);
323     }
324 
325     if (chip->ram_size) {
326         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
327     }
328 
329     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
330 }
331 
332 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
333 {
334     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
335     int i;
336 
337     pnv_dt_xscom(chip, fdt, 0,
338                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
339                  cpu_to_be64(PNV10_XSCOM_SIZE),
340                  compat, sizeof(compat));
341 
342     for (i = 0; i < chip->nr_cores; i++) {
343         PnvCore *pnv_core = chip->cores[i];
344 
345         pnv_dt_core(chip, pnv_core, fdt);
346     }
347 
348     if (chip->ram_size) {
349         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
350     }
351 
352     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
353 }
354 
355 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
356 {
357     uint32_t io_base = d->ioport_id;
358     uint32_t io_regs[] = {
359         cpu_to_be32(1),
360         cpu_to_be32(io_base),
361         cpu_to_be32(2)
362     };
363     char *name;
364     int node;
365 
366     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
367     node = fdt_add_subnode(fdt, lpc_off, name);
368     _FDT(node);
369     g_free(name);
370 
371     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
372     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
373 }
374 
375 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
376 {
377     const char compatible[] = "ns16550\0pnpPNP,501";
378     uint32_t io_base = d->ioport_id;
379     uint32_t io_regs[] = {
380         cpu_to_be32(1),
381         cpu_to_be32(io_base),
382         cpu_to_be32(8)
383     };
384     char *name;
385     int node;
386 
387     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
388     node = fdt_add_subnode(fdt, lpc_off, name);
389     _FDT(node);
390     g_free(name);
391 
392     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
393     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
394                       sizeof(compatible))));
395 
396     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
397     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
400                            fdt_get_phandle(fdt, lpc_off))));
401 
402     /* This is needed by Linux */
403     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
404 }
405 
406 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
407 {
408     const char compatible[] = "bt\0ipmi-bt";
409     uint32_t io_base;
410     uint32_t io_regs[] = {
411         cpu_to_be32(1),
412         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
413         cpu_to_be32(3)
414     };
415     uint32_t irq;
416     char *name;
417     int node;
418 
419     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
420     io_regs[1] = cpu_to_be32(io_base);
421 
422     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
423 
424     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
425     node = fdt_add_subnode(fdt, lpc_off, name);
426     _FDT(node);
427     g_free(name);
428 
429     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
430     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
431                       sizeof(compatible))));
432 
433     /* Mark it as reserved to avoid Linux trying to claim it */
434     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
436     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
437                            fdt_get_phandle(fdt, lpc_off))));
438 }
439 
440 typedef struct ForeachPopulateArgs {
441     void *fdt;
442     int offset;
443 } ForeachPopulateArgs;
444 
445 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
446 {
447     ForeachPopulateArgs *args = opaque;
448     ISADevice *d = ISA_DEVICE(dev);
449 
450     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
451         pnv_dt_rtc(d, args->fdt, args->offset);
452     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
453         pnv_dt_serial(d, args->fdt, args->offset);
454     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
455         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
456     } else {
457         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
458                      d->ioport_id);
459     }
460 
461     return 0;
462 }
463 
464 /*
465  * The default LPC bus of a multichip system is on chip 0. It's
466  * recognized by the firmware (skiboot) using a "primary" property.
467  */
468 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
469 {
470     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
471     ForeachPopulateArgs args = {
472         .fdt = fdt,
473         .offset = isa_offset,
474     };
475     uint32_t phandle;
476 
477     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
478 
479     phandle = qemu_fdt_alloc_phandle(fdt);
480     assert(phandle > 0);
481     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
482 
483     /*
484      * ISA devices are not necessarily parented to the ISA bus so we
485      * can not use object_child_foreach()
486      */
487     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
488                        &args);
489 }
490 
491 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
492 {
493     int off;
494 
495     off = fdt_add_subnode(fdt, 0, "ibm,opal");
496     off = fdt_add_subnode(fdt, off, "power-mgt");
497 
498     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
499 }
500 
501 static void *pnv_dt_create(MachineState *machine)
502 {
503     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
504     PnvMachineState *pnv = PNV_MACHINE(machine);
505     void *fdt;
506     char *buf;
507     int off;
508     int i;
509 
510     fdt = g_malloc0(FDT_MAX_SIZE);
511     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
512 
513     /* /qemu node */
514     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
515 
516     /* Root node */
517     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
518     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
519     _FDT((fdt_setprop_string(fdt, 0, "model",
520                              "IBM PowerNV (emulated by qemu)")));
521     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
522 
523     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
524     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
525     if (qemu_uuid_set) {
526         _FDT((fdt_property_string(fdt, "system-id", buf)));
527     }
528     g_free(buf);
529 
530     off = fdt_add_subnode(fdt, 0, "chosen");
531     if (machine->kernel_cmdline) {
532         _FDT((fdt_setprop_string(fdt, off, "bootargs",
533                                  machine->kernel_cmdline)));
534     }
535 
536     if (pnv->initrd_size) {
537         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
538         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
539 
540         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
541                                &start_prop, sizeof(start_prop))));
542         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
543                                &end_prop, sizeof(end_prop))));
544     }
545 
546     /* Populate device tree for each chip */
547     for (i = 0; i < pnv->num_chips; i++) {
548         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
549     }
550 
551     /* Populate ISA devices on chip 0 */
552     pnv_dt_isa(pnv, fdt);
553 
554     if (pnv->bmc) {
555         pnv_dt_bmc_sensors(pnv->bmc, fdt);
556     }
557 
558     /* Create an extra node for power management on machines that support it */
559     if (pmc->dt_power_mgt) {
560         pmc->dt_power_mgt(pnv, fdt);
561     }
562 
563     return fdt;
564 }
565 
566 static void pnv_powerdown_notify(Notifier *n, void *opaque)
567 {
568     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
569 
570     if (pnv->bmc) {
571         pnv_bmc_powerdown(pnv->bmc);
572     }
573 }
574 
575 static void pnv_reset(MachineState *machine)
576 {
577     PnvMachineState *pnv = PNV_MACHINE(machine);
578     IPMIBmc *bmc;
579     void *fdt;
580 
581     qemu_devices_reset();
582 
583     /*
584      * The machine should provide by default an internal BMC simulator.
585      * If not, try to use the BMC device that was provided on the command
586      * line.
587      */
588     bmc = pnv_bmc_find(&error_fatal);
589     if (!pnv->bmc) {
590         if (!bmc) {
591             if (!qtest_enabled()) {
592                 warn_report("machine has no BMC device. Use '-device "
593                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
594                             "to define one");
595             }
596         } else {
597             pnv_bmc_set_pnor(bmc, pnv->pnor);
598             pnv->bmc = bmc;
599         }
600     }
601 
602     fdt = pnv_dt_create(machine);
603 
604     /* Pack resulting tree */
605     _FDT((fdt_pack(fdt)));
606 
607     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
608     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
609 
610     g_free(fdt);
611 }
612 
613 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
614 {
615     Pnv8Chip *chip8 = PNV8_CHIP(chip);
616     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
617 }
618 
619 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
620 {
621     Pnv8Chip *chip8 = PNV8_CHIP(chip);
622     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
623 }
624 
625 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
626 {
627     Pnv9Chip *chip9 = PNV9_CHIP(chip);
628     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
629 }
630 
631 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
632 {
633     Pnv10Chip *chip10 = PNV10_CHIP(chip);
634     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
635 }
636 
637 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
638 {
639     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
640 }
641 
642 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
643 {
644     Pnv8Chip *chip8 = PNV8_CHIP(chip);
645     int i;
646 
647     ics_pic_print_info(&chip8->psi.ics, mon);
648     for (i = 0; i < chip->num_phbs; i++) {
649         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
650         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
651     }
652 }
653 
654 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
655 {
656     Pnv9Chip *chip9 = PNV9_CHIP(chip);
657     int i, j;
658 
659     pnv_xive_pic_print_info(&chip9->xive, mon);
660     pnv_psi_pic_print_info(&chip9->psi, mon);
661 
662     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
663         PnvPhb4PecState *pec = &chip9->pecs[i];
664         for (j = 0; j < pec->num_stacks; j++) {
665             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
666         }
667     }
668 }
669 
670 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
671                                                 uint32_t core_id)
672 {
673     return PNV_XSCOM_EX_BASE(core_id);
674 }
675 
676 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
677                                                 uint32_t core_id)
678 {
679     return PNV9_XSCOM_EC_BASE(core_id);
680 }
681 
682 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
683                                                  uint32_t core_id)
684 {
685     return PNV10_XSCOM_EC_BASE(core_id);
686 }
687 
688 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
689 {
690     PowerPCCPUClass *ppc_default =
691         POWERPC_CPU_CLASS(object_class_by_name(default_type));
692     PowerPCCPUClass *ppc =
693         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
694 
695     return ppc_default->pvr_match(ppc_default, ppc->pvr);
696 }
697 
698 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
699 {
700     ISADevice *dev = isa_new("isa-ipmi-bt");
701 
702     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
703     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
704     isa_realize_and_unref(dev, bus, &error_fatal);
705 }
706 
707 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
708 {
709     Pnv10Chip *chip10 = PNV10_CHIP(chip);
710 
711     pnv_psi_pic_print_info(&chip10->psi, mon);
712 }
713 
714 static void pnv_init(MachineState *machine)
715 {
716     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
717     PnvMachineState *pnv = PNV_MACHINE(machine);
718     MachineClass *mc = MACHINE_GET_CLASS(machine);
719     char *fw_filename;
720     long fw_size;
721     int i;
722     char *chip_typename;
723     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
724     DeviceState *dev;
725 
726     /* allocate RAM */
727     if (machine->ram_size < mc->default_ram_size) {
728         char *sz = size_to_str(mc->default_ram_size);
729         error_report("Invalid RAM size, should be bigger than %s", sz);
730         g_free(sz);
731         exit(EXIT_FAILURE);
732     }
733     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
734 
735     /*
736      * Create our simple PNOR device
737      */
738     dev = qdev_new(TYPE_PNV_PNOR);
739     if (pnor) {
740         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
741     }
742     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
743     pnv->pnor = PNV_PNOR(dev);
744 
745     /* load skiboot firmware  */
746     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
747     if (!fw_filename) {
748         error_report("Could not find OPAL firmware '%s'", bios_name);
749         exit(1);
750     }
751 
752     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
753     if (fw_size < 0) {
754         error_report("Could not load OPAL firmware '%s'", fw_filename);
755         exit(1);
756     }
757     g_free(fw_filename);
758 
759     /* load kernel */
760     if (machine->kernel_filename) {
761         long kernel_size;
762 
763         kernel_size = load_image_targphys(machine->kernel_filename,
764                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
765         if (kernel_size < 0) {
766             error_report("Could not load kernel '%s'",
767                          machine->kernel_filename);
768             exit(1);
769         }
770     }
771 
772     /* load initrd */
773     if (machine->initrd_filename) {
774         pnv->initrd_base = INITRD_LOAD_ADDR;
775         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
776                                   pnv->initrd_base, INITRD_MAX_SIZE);
777         if (pnv->initrd_size < 0) {
778             error_report("Could not load initial ram disk '%s'",
779                          machine->initrd_filename);
780             exit(1);
781         }
782     }
783 
784     /* MSIs are supported on this platform */
785     msi_nonbroken = true;
786 
787     /*
788      * Check compatibility of the specified CPU with the machine
789      * default.
790      */
791     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
792         error_report("invalid CPU model '%s' for %s machine",
793                      machine->cpu_type, mc->name);
794         exit(1);
795     }
796 
797     /* Create the processor chips */
798     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
799     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
800                                     i, machine->cpu_type);
801     if (!object_class_by_name(chip_typename)) {
802         error_report("invalid chip model '%.*s' for %s machine",
803                      i, machine->cpu_type, mc->name);
804         exit(1);
805     }
806 
807     pnv->num_chips =
808         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
809     /*
810      * TODO: should we decide on how many chips we can create based
811      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
812      */
813     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
814         error_report("invalid number of chips: '%d'", pnv->num_chips);
815         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
816         exit(1);
817     }
818 
819     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
820     for (i = 0; i < pnv->num_chips; i++) {
821         char chip_name[32];
822         Object *chip = OBJECT(qdev_new(chip_typename));
823 
824         pnv->chips[i] = PNV_CHIP(chip);
825 
826         /*
827          * TODO: put all the memory in one node on chip 0 until we find a
828          * way to specify different ranges for each chip
829          */
830         if (i == 0) {
831             object_property_set_int(chip, "ram-size", machine->ram_size,
832                                     &error_fatal);
833         }
834 
835         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
836         object_property_add_child(OBJECT(pnv), chip_name, chip);
837         object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
838                                 &error_fatal);
839         object_property_set_int(chip, "nr-cores", machine->smp.cores,
840                                 &error_fatal);
841         object_property_set_int(chip, "nr-threads", machine->smp.threads,
842                                 &error_fatal);
843         /*
844          * The POWER8 machine use the XICS interrupt interface.
845          * Propagate the XICS fabric to the chip and its controllers.
846          */
847         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
848             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
849         }
850         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
851             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
852                                      &error_abort);
853         }
854         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
855     }
856     g_free(chip_typename);
857 
858     /* Instantiate ISA bus on chip 0 */
859     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
860 
861     /* Create serial port */
862     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
863 
864     /* Create an RTC ISA device too */
865     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
866 
867     /*
868      * Create the machine BMC simulator and the IPMI BT device for
869      * communication with the BMC
870      */
871     if (defaults_enabled()) {
872         pnv->bmc = pnv_bmc_create(pnv->pnor);
873         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
874     }
875 
876     /*
877      * The PNOR is mapped on the LPC FW address space by the BMC.
878      * Since we can not reach the remote BMC machine with LPC memops,
879      * map it always for now.
880      */
881     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
882                                 &pnv->pnor->mmio);
883 
884     /*
885      * OpenPOWER systems use a IPMI SEL Event message to notify the
886      * host to powerdown
887      */
888     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
889     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
890 }
891 
892 /*
893  *    0:21  Reserved - Read as zeros
894  *   22:24  Chip ID
895  *   25:28  Core number
896  *   29:31  Thread ID
897  */
898 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
899 {
900     return (chip->chip_id << 7) | (core_id << 3);
901 }
902 
903 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
904                                         Error **errp)
905 {
906     Pnv8Chip *chip8 = PNV8_CHIP(chip);
907     Error *local_err = NULL;
908     Object *obj;
909     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
910 
911     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
912     if (local_err) {
913         error_propagate(errp, local_err);
914         return;
915     }
916 
917     pnv_cpu->intc = obj;
918 }
919 
920 
921 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
922 {
923     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
924 
925     icp_reset(ICP(pnv_cpu->intc));
926 }
927 
928 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
929 {
930     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
931 
932     icp_destroy(ICP(pnv_cpu->intc));
933     pnv_cpu->intc = NULL;
934 }
935 
936 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
937                                             Monitor *mon)
938 {
939     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
940 }
941 
942 /*
943  *    0:48  Reserved - Read as zeroes
944  *   49:52  Node ID
945  *   53:55  Chip ID
946  *   56     Reserved - Read as zero
947  *   57:61  Core number
948  *   62:63  Thread ID
949  *
950  * We only care about the lower bits. uint32_t is fine for the moment.
951  */
952 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
953 {
954     return (chip->chip_id << 8) | (core_id << 2);
955 }
956 
957 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
958 {
959     return (chip->chip_id << 8) | (core_id << 2);
960 }
961 
962 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
963                                         Error **errp)
964 {
965     Pnv9Chip *chip9 = PNV9_CHIP(chip);
966     Error *local_err = NULL;
967     Object *obj;
968     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
969 
970     /*
971      * The core creates its interrupt presenter but the XIVE interrupt
972      * controller object is initialized afterwards. Hopefully, it's
973      * only used at runtime.
974      */
975     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
976                            &local_err);
977     if (local_err) {
978         error_propagate(errp, local_err);
979         return;
980     }
981 
982     pnv_cpu->intc = obj;
983 }
984 
985 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
986 {
987     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
988 
989     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
990 }
991 
992 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
993 {
994     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
995 
996     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
997     pnv_cpu->intc = NULL;
998 }
999 
1000 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1001                                             Monitor *mon)
1002 {
1003     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1004 }
1005 
1006 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1007                                         Error **errp)
1008 {
1009     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1010 
1011     /* Will be defined when the interrupt controller is */
1012     pnv_cpu->intc = NULL;
1013 }
1014 
1015 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1016 {
1017     ;
1018 }
1019 
1020 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1021 {
1022     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1023 
1024     pnv_cpu->intc = NULL;
1025 }
1026 
1027 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1028                                              Monitor *mon)
1029 {
1030 }
1031 
1032 /*
1033  * Allowed core identifiers on a POWER8 Processor Chip :
1034  *
1035  * <EX0 reserved>
1036  *  EX1  - Venice only
1037  *  EX2  - Venice only
1038  *  EX3  - Venice only
1039  *  EX4
1040  *  EX5
1041  *  EX6
1042  * <EX7,8 reserved> <reserved>
1043  *  EX9  - Venice only
1044  *  EX10 - Venice only
1045  *  EX11 - Venice only
1046  *  EX12
1047  *  EX13
1048  *  EX14
1049  * <EX15 reserved>
1050  */
1051 #define POWER8E_CORE_MASK  (0x7070ull)
1052 #define POWER8_CORE_MASK   (0x7e7eull)
1053 
1054 /*
1055  * POWER9 has 24 cores, ids starting at 0x0
1056  */
1057 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1058 
1059 
1060 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1061 
1062 static void pnv_chip_power8_instance_init(Object *obj)
1063 {
1064     PnvChip *chip = PNV_CHIP(obj);
1065     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1066     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1067     int i;
1068 
1069     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1070                              (Object **)&chip8->xics,
1071                              object_property_allow_set_link,
1072                              OBJ_PROP_LINK_STRONG);
1073 
1074     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1075 
1076     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1077 
1078     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1079 
1080     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1081 
1082     for (i = 0; i < pcc->num_phbs; i++) {
1083         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1084     }
1085 
1086     /*
1087      * Number of PHBs is the chip default
1088      */
1089     chip->num_phbs = pcc->num_phbs;
1090 }
1091 
1092 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1093  {
1094     PnvChip *chip = PNV_CHIP(chip8);
1095     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1096     int i, j;
1097     char *name;
1098 
1099     name = g_strdup_printf("icp-%x", chip->chip_id);
1100     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1101     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1102     g_free(name);
1103 
1104     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1105 
1106     /* Map the ICP registers for each thread */
1107     for (i = 0; i < chip->nr_cores; i++) {
1108         PnvCore *pnv_core = chip->cores[i];
1109         int core_hwid = CPU_CORE(pnv_core)->core_id;
1110 
1111         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1112             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1113             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1114 
1115             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1116                                         &icp->mmio);
1117         }
1118     }
1119 }
1120 
1121 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1122 {
1123     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1124     PnvChip *chip = PNV_CHIP(dev);
1125     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1126     Pnv8Psi *psi8 = &chip8->psi;
1127     Error *local_err = NULL;
1128     int i;
1129 
1130     assert(chip8->xics);
1131 
1132     /* XSCOM bridge is first */
1133     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1134     if (local_err) {
1135         error_propagate(errp, local_err);
1136         return;
1137     }
1138     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1139 
1140     pcc->parent_realize(dev, &local_err);
1141     if (local_err) {
1142         error_propagate(errp, local_err);
1143         return;
1144     }
1145 
1146     /* Processor Service Interface (PSI) Host Bridge */
1147     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1148                             &error_fatal);
1149     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1150                              OBJECT(chip8->xics), &error_abort);
1151     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1152         return;
1153     }
1154     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1155                             &PNV_PSI(psi8)->xscom_regs);
1156 
1157     /* Create LPC controller */
1158     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1159                              &error_abort);
1160     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1161     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1162 
1163     chip->fw_mr = &chip8->lpc.isa_fw;
1164     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1165                                             (uint64_t) PNV_XSCOM_BASE(chip),
1166                                             PNV_XSCOM_LPC_BASE);
1167 
1168     /*
1169      * Interrupt Management Area. This is the memory region holding
1170      * all the Interrupt Control Presenter (ICP) registers
1171      */
1172     pnv_chip_icp_realize(chip8, &local_err);
1173     if (local_err) {
1174         error_propagate(errp, local_err);
1175         return;
1176     }
1177 
1178     /* Create the simplified OCC model */
1179     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1180                              &error_abort);
1181     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1182         return;
1183     }
1184     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1185 
1186     /* OCC SRAM model */
1187     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1188                                 &chip8->occ.sram_regs);
1189 
1190     /* HOMER */
1191     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1192                              &error_abort);
1193     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1194         return;
1195     }
1196     /* Homer Xscom region */
1197     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1198 
1199     /* Homer mmio region */
1200     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1201                                 &chip8->homer.regs);
1202 
1203     /* PHB3 controllers */
1204     for (i = 0; i < chip->num_phbs; i++) {
1205         PnvPHB3 *phb = &chip8->phbs[i];
1206         PnvPBCQState *pbcq = &phb->pbcq;
1207 
1208         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1209         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1210                                 &error_fatal);
1211         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1212             return;
1213         }
1214 
1215         /* Populate the XSCOM address space. */
1216         pnv_xscom_add_subregion(chip,
1217                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1218                                 &pbcq->xscom_nest_regs);
1219         pnv_xscom_add_subregion(chip,
1220                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1221                                 &pbcq->xscom_pci_regs);
1222         pnv_xscom_add_subregion(chip,
1223                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1224                                 &pbcq->xscom_spci_regs);
1225     }
1226 }
1227 
1228 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1229 {
1230     addr &= (PNV_XSCOM_SIZE - 1);
1231     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1232 }
1233 
1234 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1235 {
1236     DeviceClass *dc = DEVICE_CLASS(klass);
1237     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1238 
1239     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1240     k->cores_mask = POWER8E_CORE_MASK;
1241     k->num_phbs = 3;
1242     k->core_pir = pnv_chip_core_pir_p8;
1243     k->intc_create = pnv_chip_power8_intc_create;
1244     k->intc_reset = pnv_chip_power8_intc_reset;
1245     k->intc_destroy = pnv_chip_power8_intc_destroy;
1246     k->intc_print_info = pnv_chip_power8_intc_print_info;
1247     k->isa_create = pnv_chip_power8_isa_create;
1248     k->dt_populate = pnv_chip_power8_dt_populate;
1249     k->pic_print_info = pnv_chip_power8_pic_print_info;
1250     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1251     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1252     dc->desc = "PowerNV Chip POWER8E";
1253 
1254     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1255                                     &k->parent_realize);
1256 }
1257 
1258 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1259 {
1260     DeviceClass *dc = DEVICE_CLASS(klass);
1261     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1262 
1263     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1264     k->cores_mask = POWER8_CORE_MASK;
1265     k->num_phbs = 3;
1266     k->core_pir = pnv_chip_core_pir_p8;
1267     k->intc_create = pnv_chip_power8_intc_create;
1268     k->intc_reset = pnv_chip_power8_intc_reset;
1269     k->intc_destroy = pnv_chip_power8_intc_destroy;
1270     k->intc_print_info = pnv_chip_power8_intc_print_info;
1271     k->isa_create = pnv_chip_power8_isa_create;
1272     k->dt_populate = pnv_chip_power8_dt_populate;
1273     k->pic_print_info = pnv_chip_power8_pic_print_info;
1274     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1275     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1276     dc->desc = "PowerNV Chip POWER8";
1277 
1278     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1279                                     &k->parent_realize);
1280 }
1281 
1282 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1283 {
1284     DeviceClass *dc = DEVICE_CLASS(klass);
1285     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1286 
1287     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1288     k->cores_mask = POWER8_CORE_MASK;
1289     k->num_phbs = 3;
1290     k->core_pir = pnv_chip_core_pir_p8;
1291     k->intc_create = pnv_chip_power8_intc_create;
1292     k->intc_reset = pnv_chip_power8_intc_reset;
1293     k->intc_destroy = pnv_chip_power8_intc_destroy;
1294     k->intc_print_info = pnv_chip_power8_intc_print_info;
1295     k->isa_create = pnv_chip_power8nvl_isa_create;
1296     k->dt_populate = pnv_chip_power8_dt_populate;
1297     k->pic_print_info = pnv_chip_power8_pic_print_info;
1298     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1299     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1300     dc->desc = "PowerNV Chip POWER8NVL";
1301 
1302     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1303                                     &k->parent_realize);
1304 }
1305 
1306 static void pnv_chip_power9_instance_init(Object *obj)
1307 {
1308     PnvChip *chip = PNV_CHIP(obj);
1309     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1310     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1311     int i;
1312 
1313     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1314     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1315                               "xive-fabric");
1316 
1317     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1318 
1319     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1320 
1321     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1322 
1323     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1324 
1325     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1326         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1327                                 TYPE_PNV_PHB4_PEC);
1328     }
1329 
1330     /*
1331      * Number of PHBs is the chip default
1332      */
1333     chip->num_phbs = pcc->num_phbs;
1334 }
1335 
1336 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1337 {
1338     PnvChip *chip = PNV_CHIP(chip9);
1339     int i;
1340 
1341     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1342     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1343 
1344     for (i = 0; i < chip9->nr_quads; i++) {
1345         char eq_name[32];
1346         PnvQuad *eq = &chip9->quads[i];
1347         PnvCore *pnv_core = chip->cores[i * 4];
1348         int core_id = CPU_CORE(pnv_core)->core_id;
1349 
1350         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1351         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1352                                            sizeof(*eq), TYPE_PNV_QUAD,
1353                                            &error_fatal, NULL);
1354 
1355         object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1356         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1357 
1358         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1359                                 &eq->xscom_regs);
1360     }
1361 }
1362 
1363 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1364 {
1365     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1366     int i, j;
1367     int phb_id = 0;
1368 
1369     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1370         PnvPhb4PecState *pec = &chip9->pecs[i];
1371         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1372         uint32_t pec_nest_base;
1373         uint32_t pec_pci_base;
1374 
1375         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1376         /*
1377          * PEC0 -> 1 stack
1378          * PEC1 -> 2 stacks
1379          * PEC2 -> 3 stacks
1380          */
1381         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1382                                 &error_fatal);
1383         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1384                                 &error_fatal);
1385         object_property_set_link(OBJECT(pec), "system-memory",
1386                                  OBJECT(get_system_memory()), &error_abort);
1387         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1388             return;
1389         }
1390 
1391         pec_nest_base = pecc->xscom_nest_base(pec);
1392         pec_pci_base = pecc->xscom_pci_base(pec);
1393 
1394         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1395         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1396 
1397         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1398              j++, phb_id++) {
1399             PnvPhb4PecStack *stack = &pec->stacks[j];
1400             Object *obj = OBJECT(&stack->phb);
1401 
1402             object_property_set_int(obj, "index", phb_id, &error_fatal);
1403             object_property_set_int(obj, "chip-id", chip->chip_id,
1404                                     &error_fatal);
1405             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1406                                     &error_fatal);
1407             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1408                                     &error_fatal);
1409             object_property_set_link(obj, "stack", OBJECT(stack),
1410                                      &error_abort);
1411             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1412                 return;
1413             }
1414 
1415             /* Populate the XSCOM address space. */
1416             pnv_xscom_add_subregion(chip,
1417                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1418                                    &stack->nest_regs_mr);
1419             pnv_xscom_add_subregion(chip,
1420                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1421                                     &stack->pci_regs_mr);
1422             pnv_xscom_add_subregion(chip,
1423                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1424                                     0x40 * stack->stack_no,
1425                                     &stack->phb_regs_mr);
1426         }
1427     }
1428 }
1429 
1430 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1431 {
1432     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1433     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1434     PnvChip *chip = PNV_CHIP(dev);
1435     Pnv9Psi *psi9 = &chip9->psi;
1436     Error *local_err = NULL;
1437 
1438     /* XSCOM bridge is first */
1439     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1440     if (local_err) {
1441         error_propagate(errp, local_err);
1442         return;
1443     }
1444     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1445 
1446     pcc->parent_realize(dev, &local_err);
1447     if (local_err) {
1448         error_propagate(errp, local_err);
1449         return;
1450     }
1451 
1452     pnv_chip_quad_realize(chip9, &local_err);
1453     if (local_err) {
1454         error_propagate(errp, local_err);
1455         return;
1456     }
1457 
1458     /* XIVE interrupt controller (POWER9) */
1459     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1460                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1461     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1462                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1463     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1464                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1465     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1466                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1467     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1468                              &error_abort);
1469     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1470         return;
1471     }
1472     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1473                             &chip9->xive.xscom_regs);
1474 
1475     /* Processor Service Interface (PSI) Host Bridge */
1476     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1477                             &error_fatal);
1478     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1479         return;
1480     }
1481     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1482                             &PNV_PSI(psi9)->xscom_regs);
1483 
1484     /* LPC */
1485     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1486                              &error_abort);
1487     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1488         return;
1489     }
1490     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1491                                 &chip9->lpc.xscom_regs);
1492 
1493     chip->fw_mr = &chip9->lpc.isa_fw;
1494     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1495                                             (uint64_t) PNV9_LPCM_BASE(chip));
1496 
1497     /* Create the simplified OCC model */
1498     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1499                              &error_abort);
1500     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1501         return;
1502     }
1503     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1504 
1505     /* OCC SRAM model */
1506     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1507                                 &chip9->occ.sram_regs);
1508 
1509     /* HOMER */
1510     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1511                              &error_abort);
1512     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1513         return;
1514     }
1515     /* Homer Xscom region */
1516     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1517 
1518     /* Homer mmio region */
1519     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1520                                 &chip9->homer.regs);
1521 
1522     /* PHBs */
1523     pnv_chip_power9_phb_realize(chip, &local_err);
1524     if (local_err) {
1525         error_propagate(errp, local_err);
1526         return;
1527     }
1528 }
1529 
1530 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1531 {
1532     addr &= (PNV9_XSCOM_SIZE - 1);
1533     return addr >> 3;
1534 }
1535 
1536 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1537 {
1538     DeviceClass *dc = DEVICE_CLASS(klass);
1539     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1540 
1541     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1542     k->cores_mask = POWER9_CORE_MASK;
1543     k->core_pir = pnv_chip_core_pir_p9;
1544     k->intc_create = pnv_chip_power9_intc_create;
1545     k->intc_reset = pnv_chip_power9_intc_reset;
1546     k->intc_destroy = pnv_chip_power9_intc_destroy;
1547     k->intc_print_info = pnv_chip_power9_intc_print_info;
1548     k->isa_create = pnv_chip_power9_isa_create;
1549     k->dt_populate = pnv_chip_power9_dt_populate;
1550     k->pic_print_info = pnv_chip_power9_pic_print_info;
1551     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1552     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1553     dc->desc = "PowerNV Chip POWER9";
1554     k->num_phbs = 6;
1555 
1556     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1557                                     &k->parent_realize);
1558 }
1559 
1560 static void pnv_chip_power10_instance_init(Object *obj)
1561 {
1562     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1563 
1564     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1565     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1566 }
1567 
1568 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1569 {
1570     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1571     PnvChip *chip = PNV_CHIP(dev);
1572     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1573     Error *local_err = NULL;
1574 
1575     /* XSCOM bridge is first */
1576     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1577     if (local_err) {
1578         error_propagate(errp, local_err);
1579         return;
1580     }
1581     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1582 
1583     pcc->parent_realize(dev, &local_err);
1584     if (local_err) {
1585         error_propagate(errp, local_err);
1586         return;
1587     }
1588 
1589     /* Processor Service Interface (PSI) Host Bridge */
1590     object_property_set_int(OBJECT(&chip10->psi), "bar",
1591                             PNV10_PSIHB_BASE(chip), &error_fatal);
1592     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1593         return;
1594     }
1595     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1596                             &PNV_PSI(&chip10->psi)->xscom_regs);
1597 
1598     /* LPC */
1599     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1600                              OBJECT(&chip10->psi), &error_abort);
1601     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1602         return;
1603     }
1604     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1605                                 &chip10->lpc.xscom_regs);
1606 
1607     chip->fw_mr = &chip10->lpc.isa_fw;
1608     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1609                                             (uint64_t) PNV10_LPCM_BASE(chip));
1610 }
1611 
1612 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1613 {
1614     addr &= (PNV10_XSCOM_SIZE - 1);
1615     return addr >> 3;
1616 }
1617 
1618 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1619 {
1620     DeviceClass *dc = DEVICE_CLASS(klass);
1621     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1622 
1623     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1624     k->cores_mask = POWER10_CORE_MASK;
1625     k->core_pir = pnv_chip_core_pir_p10;
1626     k->intc_create = pnv_chip_power10_intc_create;
1627     k->intc_reset = pnv_chip_power10_intc_reset;
1628     k->intc_destroy = pnv_chip_power10_intc_destroy;
1629     k->intc_print_info = pnv_chip_power10_intc_print_info;
1630     k->isa_create = pnv_chip_power10_isa_create;
1631     k->dt_populate = pnv_chip_power10_dt_populate;
1632     k->pic_print_info = pnv_chip_power10_pic_print_info;
1633     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1634     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1635     dc->desc = "PowerNV Chip POWER10";
1636 
1637     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1638                                     &k->parent_realize);
1639 }
1640 
1641 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1642 {
1643     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1644     int cores_max;
1645 
1646     /*
1647      * No custom mask for this chip, let's use the default one from *
1648      * the chip class
1649      */
1650     if (!chip->cores_mask) {
1651         chip->cores_mask = pcc->cores_mask;
1652     }
1653 
1654     /* filter alien core ids ! some are reserved */
1655     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1656         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1657                    chip->cores_mask);
1658         return;
1659     }
1660     chip->cores_mask &= pcc->cores_mask;
1661 
1662     /* now that we have a sane layout, let check the number of cores */
1663     cores_max = ctpop64(chip->cores_mask);
1664     if (chip->nr_cores > cores_max) {
1665         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1666                    cores_max);
1667         return;
1668     }
1669 }
1670 
1671 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1672 {
1673     Error *error = NULL;
1674     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1675     const char *typename = pnv_chip_core_typename(chip);
1676     int i, core_hwid;
1677     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1678 
1679     if (!object_class_by_name(typename)) {
1680         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1681         return;
1682     }
1683 
1684     /* Cores */
1685     pnv_chip_core_sanitize(chip, &error);
1686     if (error) {
1687         error_propagate(errp, error);
1688         return;
1689     }
1690 
1691     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1692 
1693     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1694              && (i < chip->nr_cores); core_hwid++) {
1695         char core_name[32];
1696         PnvCore *pnv_core;
1697         uint64_t xscom_core_base;
1698 
1699         if (!(chip->cores_mask & (1ull << core_hwid))) {
1700             continue;
1701         }
1702 
1703         pnv_core = PNV_CORE(object_new(typename));
1704 
1705         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1706         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1707         chip->cores[i] = pnv_core;
1708         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1709                                 chip->nr_threads, &error_fatal);
1710         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1711                                 core_hwid, &error_fatal);
1712         object_property_set_int(OBJECT(pnv_core), "pir",
1713                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1714         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1715                                 &error_fatal);
1716         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1717                                  &error_abort);
1718         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1719 
1720         /* Each core has an XSCOM MMIO region */
1721         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1722 
1723         pnv_xscom_add_subregion(chip, xscom_core_base,
1724                                 &pnv_core->xscom_regs);
1725         i++;
1726     }
1727 }
1728 
1729 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1730 {
1731     PnvChip *chip = PNV_CHIP(dev);
1732     Error *error = NULL;
1733 
1734     /* Cores */
1735     pnv_chip_core_realize(chip, &error);
1736     if (error) {
1737         error_propagate(errp, error);
1738         return;
1739     }
1740 }
1741 
1742 static Property pnv_chip_properties[] = {
1743     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1744     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1745     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1746     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1747     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1748     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1749     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1750     DEFINE_PROP_END_OF_LIST(),
1751 };
1752 
1753 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1754 {
1755     DeviceClass *dc = DEVICE_CLASS(klass);
1756 
1757     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1758     dc->realize = pnv_chip_realize;
1759     device_class_set_props(dc, pnv_chip_properties);
1760     dc->desc = "PowerNV Chip";
1761 }
1762 
1763 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1764 {
1765     int i, j;
1766 
1767     for (i = 0; i < chip->nr_cores; i++) {
1768         PnvCore *pc = chip->cores[i];
1769         CPUCore *cc = CPU_CORE(pc);
1770 
1771         for (j = 0; j < cc->nr_threads; j++) {
1772             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1773                 return pc->threads[j];
1774             }
1775         }
1776     }
1777     return NULL;
1778 }
1779 
1780 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1781 {
1782     PnvMachineState *pnv = PNV_MACHINE(xi);
1783     int i, j;
1784 
1785     for (i = 0; i < pnv->num_chips; i++) {
1786         PnvChip *chip = pnv->chips[i];
1787         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1788 
1789         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1790             return &chip8->psi.ics;
1791         }
1792         for (j = 0; j < chip->num_phbs; j++) {
1793             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1794                 return &chip8->phbs[j].lsis;
1795             }
1796             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1797                 return ICS(&chip8->phbs[j].msis);
1798             }
1799         }
1800     }
1801     return NULL;
1802 }
1803 
1804 static void pnv_ics_resend(XICSFabric *xi)
1805 {
1806     PnvMachineState *pnv = PNV_MACHINE(xi);
1807     int i, j;
1808 
1809     for (i = 0; i < pnv->num_chips; i++) {
1810         PnvChip *chip = pnv->chips[i];
1811         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1812 
1813         ics_resend(&chip8->psi.ics);
1814         for (j = 0; j < chip->num_phbs; j++) {
1815             ics_resend(&chip8->phbs[j].lsis);
1816             ics_resend(ICS(&chip8->phbs[j].msis));
1817         }
1818     }
1819 }
1820 
1821 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1822 {
1823     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1824 
1825     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1826 }
1827 
1828 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1829                                Monitor *mon)
1830 {
1831     PnvMachineState *pnv = PNV_MACHINE(obj);
1832     int i;
1833     CPUState *cs;
1834 
1835     CPU_FOREACH(cs) {
1836         PowerPCCPU *cpu = POWERPC_CPU(cs);
1837 
1838         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1839         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1840                                                            mon);
1841     }
1842 
1843     for (i = 0; i < pnv->num_chips; i++) {
1844         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1845     }
1846 }
1847 
1848 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1849                          uint8_t nvt_blk, uint32_t nvt_idx,
1850                          bool cam_ignore, uint8_t priority,
1851                          uint32_t logic_serv,
1852                          XiveTCTXMatch *match)
1853 {
1854     PnvMachineState *pnv = PNV_MACHINE(xfb);
1855     int total_count = 0;
1856     int i;
1857 
1858     for (i = 0; i < pnv->num_chips; i++) {
1859         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1860         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1861         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1862         int count;
1863 
1864         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1865                                priority, logic_serv, match);
1866 
1867         if (count < 0) {
1868             return count;
1869         }
1870 
1871         total_count += count;
1872     }
1873 
1874     return total_count;
1875 }
1876 
1877 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1878 {
1879     MachineClass *mc = MACHINE_CLASS(oc);
1880     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1881     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1882     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1883 
1884     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1885     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1886 
1887     xic->icp_get = pnv_icp_get;
1888     xic->ics_get = pnv_ics_get;
1889     xic->ics_resend = pnv_ics_resend;
1890 
1891     pmc->compat = compat;
1892     pmc->compat_size = sizeof(compat);
1893 }
1894 
1895 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1896 {
1897     MachineClass *mc = MACHINE_CLASS(oc);
1898     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1899     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1900     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1901 
1902     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1903     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1904     xfc->match_nvt = pnv_match_nvt;
1905 
1906     mc->alias = "powernv";
1907 
1908     pmc->compat = compat;
1909     pmc->compat_size = sizeof(compat);
1910     pmc->dt_power_mgt = pnv_dt_power_mgt;
1911 }
1912 
1913 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1914 {
1915     MachineClass *mc = MACHINE_CLASS(oc);
1916     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1917     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1918 
1919     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1920     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1921 
1922     pmc->compat = compat;
1923     pmc->compat_size = sizeof(compat);
1924     pmc->dt_power_mgt = pnv_dt_power_mgt;
1925 }
1926 
1927 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1928 {
1929     PnvMachineState *pnv = PNV_MACHINE(obj);
1930 
1931     return !!pnv->fw_load_addr;
1932 }
1933 
1934 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1935 {
1936     PnvMachineState *pnv = PNV_MACHINE(obj);
1937 
1938     if (value) {
1939         pnv->fw_load_addr = 0x8000000;
1940     }
1941 }
1942 
1943 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1944 {
1945     PowerPCCPU *cpu = POWERPC_CPU(cs);
1946     CPUPPCState *env = &cpu->env;
1947 
1948     cpu_synchronize_state(cs);
1949     ppc_cpu_do_system_reset(cs);
1950     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1951         /*
1952          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1953          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1954          * (PPC_BIT(43)).
1955          */
1956         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1957             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1958             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1959         }
1960     } else {
1961         /*
1962          * For non-powersave system resets, SRR1[42:45] are defined to be
1963          * implementation-dependent. The POWER9 User Manual specifies that
1964          * an external (SCOM driven, which may come from a BMC nmi command or
1965          * another CPU requesting a NMI IPI) system reset exception should be
1966          * 0b0010 (PPC_BIT(44)).
1967          */
1968         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1969     }
1970 }
1971 
1972 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1973 {
1974     CPUState *cs;
1975 
1976     CPU_FOREACH(cs) {
1977         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1978     }
1979 }
1980 
1981 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1982 {
1983     MachineClass *mc = MACHINE_CLASS(oc);
1984     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1985     NMIClass *nc = NMI_CLASS(oc);
1986 
1987     mc->desc = "IBM PowerNV (Non-Virtualized)";
1988     mc->init = pnv_init;
1989     mc->reset = pnv_reset;
1990     mc->max_cpus = MAX_CPUS;
1991     /* Pnv provides a AHCI device for storage */
1992     mc->block_default_type = IF_IDE;
1993     mc->no_parallel = 1;
1994     mc->default_boot_order = NULL;
1995     /*
1996      * RAM defaults to less than 2048 for 32-bit hosts, and large
1997      * enough to fit the maximum initrd size at it's load address
1998      */
1999     mc->default_ram_size = 1 * GiB;
2000     mc->default_ram_id = "pnv.ram";
2001     ispc->print_info = pnv_pic_print_info;
2002     nc->nmi_monitor_handler = pnv_nmi;
2003 
2004     object_class_property_add_bool(oc, "hb-mode",
2005                                    pnv_machine_get_hb, pnv_machine_set_hb);
2006     object_class_property_set_description(oc, "hb-mode",
2007                               "Use a hostboot like boot loader");
2008 }
2009 
2010 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2011     {                                             \
2012         .name          = type,                    \
2013         .class_init    = class_initfn,            \
2014         .parent        = TYPE_PNV8_CHIP,          \
2015     }
2016 
2017 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2018     {                                             \
2019         .name          = type,                    \
2020         .class_init    = class_initfn,            \
2021         .parent        = TYPE_PNV9_CHIP,          \
2022     }
2023 
2024 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2025     {                                              \
2026         .name          = type,                     \
2027         .class_init    = class_initfn,             \
2028         .parent        = TYPE_PNV10_CHIP,          \
2029     }
2030 
2031 static const TypeInfo types[] = {
2032     {
2033         .name          = MACHINE_TYPE_NAME("powernv10"),
2034         .parent        = TYPE_PNV_MACHINE,
2035         .class_init    = pnv_machine_power10_class_init,
2036     },
2037     {
2038         .name          = MACHINE_TYPE_NAME("powernv9"),
2039         .parent        = TYPE_PNV_MACHINE,
2040         .class_init    = pnv_machine_power9_class_init,
2041         .interfaces = (InterfaceInfo[]) {
2042             { TYPE_XIVE_FABRIC },
2043             { },
2044         },
2045     },
2046     {
2047         .name          = MACHINE_TYPE_NAME("powernv8"),
2048         .parent        = TYPE_PNV_MACHINE,
2049         .class_init    = pnv_machine_power8_class_init,
2050         .interfaces = (InterfaceInfo[]) {
2051             { TYPE_XICS_FABRIC },
2052             { },
2053         },
2054     },
2055     {
2056         .name          = TYPE_PNV_MACHINE,
2057         .parent        = TYPE_MACHINE,
2058         .abstract       = true,
2059         .instance_size = sizeof(PnvMachineState),
2060         .class_init    = pnv_machine_class_init,
2061         .class_size    = sizeof(PnvMachineClass),
2062         .interfaces = (InterfaceInfo[]) {
2063             { TYPE_INTERRUPT_STATS_PROVIDER },
2064             { TYPE_NMI },
2065             { },
2066         },
2067     },
2068     {
2069         .name          = TYPE_PNV_CHIP,
2070         .parent        = TYPE_SYS_BUS_DEVICE,
2071         .class_init    = pnv_chip_class_init,
2072         .instance_size = sizeof(PnvChip),
2073         .class_size    = sizeof(PnvChipClass),
2074         .abstract      = true,
2075     },
2076 
2077     /*
2078      * P10 chip and variants
2079      */
2080     {
2081         .name          = TYPE_PNV10_CHIP,
2082         .parent        = TYPE_PNV_CHIP,
2083         .instance_init = pnv_chip_power10_instance_init,
2084         .instance_size = sizeof(Pnv10Chip),
2085     },
2086     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2087 
2088     /*
2089      * P9 chip and variants
2090      */
2091     {
2092         .name          = TYPE_PNV9_CHIP,
2093         .parent        = TYPE_PNV_CHIP,
2094         .instance_init = pnv_chip_power9_instance_init,
2095         .instance_size = sizeof(Pnv9Chip),
2096     },
2097     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2098 
2099     /*
2100      * P8 chip and variants
2101      */
2102     {
2103         .name          = TYPE_PNV8_CHIP,
2104         .parent        = TYPE_PNV_CHIP,
2105         .instance_init = pnv_chip_power8_instance_init,
2106         .instance_size = sizeof(Pnv8Chip),
2107     },
2108     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2109     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2110     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2111                           pnv_chip_power8nvl_class_init),
2112 };
2113 
2114 DEFINE_TYPES(types)
2115