xref: /openbmc/qemu/hw/ppc/pnv.c (revision e6a41a04)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "qemu/log.h"
36 #include "hw/ppc/fdt.h"
37 #include "hw/ppc/ppc.h"
38 #include "hw/ppc/pnv.h"
39 #include "hw/ppc/pnv_core.h"
40 #include "hw/loader.h"
41 #include "hw/nmi.h"
42 #include "exec/address-spaces.h"
43 #include "qapi/visitor.h"
44 #include "monitor/monitor.h"
45 #include "hw/intc/intc.h"
46 #include "hw/ipmi/ipmi.h"
47 #include "target/ppc/mmu-hash64.h"
48 #include "hw/pci/msi.h"
49 
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/boards.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
59 
60 #include <libfdt.h>
61 
62 #define FDT_MAX_SIZE            (1 * MiB)
63 
64 #define FW_FILE_NAME            "skiboot.lid"
65 #define FW_LOAD_ADDR            0x0
66 #define FW_MAX_SIZE             (16 * MiB)
67 
68 #define KERNEL_LOAD_ADDR        0x20000000
69 #define KERNEL_MAX_SIZE         (128 * MiB)
70 #define INITRD_LOAD_ADDR        0x28000000
71 #define INITRD_MAX_SIZE         (128 * MiB)
72 
73 static const char *pnv_chip_core_typename(const PnvChip *o)
74 {
75     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78     const char *core_type = object_class_get_name(object_class_by_name(s));
79     g_free(s);
80     return core_type;
81 }
82 
83 /*
84  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85  *     4 * 4 sockets * 12 cores * 8 threads = 1536
86  * Let's make it 2^11
87  */
88 #define MAX_CPUS                2048
89 
90 /*
91  * Memory nodes are created by hostboot, one for each range of memory
92  * that has a different "affinity". In practice, it means one range
93  * per chip.
94  */
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96 {
97     char *mem_name;
98     uint64_t mem_reg_property[2];
99     int off;
100 
101     mem_reg_property[0] = cpu_to_be64(start);
102     mem_reg_property[1] = cpu_to_be64(size);
103 
104     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105     off = fdt_add_subnode(fdt, 0, mem_name);
106     g_free(mem_name);
107 
108     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                        sizeof(mem_reg_property))));
111     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112 }
113 
114 static int get_cpus_node(void *fdt)
115 {
116     int cpus_offset = fdt_path_offset(fdt, "/cpus");
117 
118     if (cpus_offset < 0) {
119         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120         if (cpus_offset) {
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123         }
124     }
125     _FDT(cpus_offset);
126     return cpus_offset;
127 }
128 
129 /*
130  * The PowerNV cores (and threads) need to use real HW ids and not an
131  * incremental index like it has been done on other platforms. This HW
132  * id is stored in the CPU PIR, it is used to create cpu nodes in the
133  * device tree, used in XSCOM to address cores and in interrupt
134  * servers.
135  */
136 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137 {
138     PowerPCCPU *cpu = pc->threads[0];
139     CPUState *cs = CPU(cpu);
140     DeviceClass *dc = DEVICE_GET_CLASS(cs);
141     int smt_threads = CPU_CORE(pc)->nr_threads;
142     CPUPPCState *env = &cpu->env;
143     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144     uint32_t servers_prop[smt_threads];
145     int i;
146     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
147                        0xffffffff, 0xffffffff};
148     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
149     uint32_t cpufreq = 1000000000;
150     uint32_t page_sizes_prop[64];
151     size_t page_sizes_prop_size;
152     const uint8_t pa_features[] = { 24, 0,
153                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
154                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
155                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
156                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
157     int offset;
158     char *nodename;
159     int cpus_offset = get_cpus_node(fdt);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (env->spr_cb[SPR_PURR].oea_read) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
240                        pa_features, sizeof(pa_features))));
241 
242     /* Build interrupt servers properties */
243     for (i = 0; i < smt_threads; i++) {
244         servers_prop[i] = cpu_to_be32(pc->pir + i);
245     }
246     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247                        servers_prop, sizeof(servers_prop))));
248 }
249 
250 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
251                        uint32_t nr_threads)
252 {
253     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     irange[0] = cpu_to_be32(pir);
261     irange[1] = cpu_to_be32(nr_threads);
262 
263     rsize = sizeof(uint64_t) * 2 * nr_threads;
264     reg = g_malloc(rsize);
265     for (i = 0; i < nr_threads; i++) {
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
288 {
289     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
290     int i;
291 
292     pnv_dt_xscom(chip, fdt, 0,
293                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
294                  cpu_to_be64(PNV_XSCOM_SIZE),
295                  compat, sizeof(compat));
296 
297     for (i = 0; i < chip->nr_cores; i++) {
298         PnvCore *pnv_core = chip->cores[i];
299 
300         pnv_dt_core(chip, pnv_core, fdt);
301 
302         /* Interrupt Control Presenters (ICP). One per core. */
303         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
304     }
305 
306     if (chip->ram_size) {
307         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
308     }
309 }
310 
311 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
312 {
313     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
314     int i;
315 
316     pnv_dt_xscom(chip, fdt, 0,
317                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
318                  cpu_to_be64(PNV9_XSCOM_SIZE),
319                  compat, sizeof(compat));
320 
321     for (i = 0; i < chip->nr_cores; i++) {
322         PnvCore *pnv_core = chip->cores[i];
323 
324         pnv_dt_core(chip, pnv_core, fdt);
325     }
326 
327     if (chip->ram_size) {
328         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
329     }
330 
331     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
332 }
333 
334 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
335 {
336     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
337     int i;
338 
339     pnv_dt_xscom(chip, fdt, 0,
340                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
341                  cpu_to_be64(PNV10_XSCOM_SIZE),
342                  compat, sizeof(compat));
343 
344     for (i = 0; i < chip->nr_cores; i++) {
345         PnvCore *pnv_core = chip->cores[i];
346 
347         pnv_dt_core(chip, pnv_core, fdt);
348     }
349 
350     if (chip->ram_size) {
351         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
352     }
353 
354     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
355 }
356 
357 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
358 {
359     uint32_t io_base = d->ioport_id;
360     uint32_t io_regs[] = {
361         cpu_to_be32(1),
362         cpu_to_be32(io_base),
363         cpu_to_be32(2)
364     };
365     char *name;
366     int node;
367 
368     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
369     node = fdt_add_subnode(fdt, lpc_off, name);
370     _FDT(node);
371     g_free(name);
372 
373     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
374     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
375 }
376 
377 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
378 {
379     const char compatible[] = "ns16550\0pnpPNP,501";
380     uint32_t io_base = d->ioport_id;
381     uint32_t io_regs[] = {
382         cpu_to_be32(1),
383         cpu_to_be32(io_base),
384         cpu_to_be32(8)
385     };
386     char *name;
387     int node;
388 
389     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
390     node = fdt_add_subnode(fdt, lpc_off, name);
391     _FDT(node);
392     g_free(name);
393 
394     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
395     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
396                       sizeof(compatible))));
397 
398     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
399     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
401     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
402                            fdt_get_phandle(fdt, lpc_off))));
403 
404     /* This is needed by Linux */
405     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
406 }
407 
408 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
409 {
410     const char compatible[] = "bt\0ipmi-bt";
411     uint32_t io_base;
412     uint32_t io_regs[] = {
413         cpu_to_be32(1),
414         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
415         cpu_to_be32(3)
416     };
417     uint32_t irq;
418     char *name;
419     int node;
420 
421     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
422     io_regs[1] = cpu_to_be32(io_base);
423 
424     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
425 
426     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
427     node = fdt_add_subnode(fdt, lpc_off, name);
428     _FDT(node);
429     g_free(name);
430 
431     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
432     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
433                       sizeof(compatible))));
434 
435     /* Mark it as reserved to avoid Linux trying to claim it */
436     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
437     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
438     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
439                            fdt_get_phandle(fdt, lpc_off))));
440 }
441 
442 typedef struct ForeachPopulateArgs {
443     void *fdt;
444     int offset;
445 } ForeachPopulateArgs;
446 
447 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
448 {
449     ForeachPopulateArgs *args = opaque;
450     ISADevice *d = ISA_DEVICE(dev);
451 
452     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
453         pnv_dt_rtc(d, args->fdt, args->offset);
454     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
455         pnv_dt_serial(d, args->fdt, args->offset);
456     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
457         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
458     } else {
459         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
460                      d->ioport_id);
461     }
462 
463     return 0;
464 }
465 
466 /*
467  * The default LPC bus of a multichip system is on chip 0. It's
468  * recognized by the firmware (skiboot) using a "primary" property.
469  */
470 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
471 {
472     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
473     ForeachPopulateArgs args = {
474         .fdt = fdt,
475         .offset = isa_offset,
476     };
477     uint32_t phandle;
478 
479     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
480 
481     phandle = qemu_fdt_alloc_phandle(fdt);
482     assert(phandle > 0);
483     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
484 
485     /*
486      * ISA devices are not necessarily parented to the ISA bus so we
487      * can not use object_child_foreach()
488      */
489     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
490                        &args);
491 }
492 
493 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
494 {
495     int off;
496 
497     off = fdt_add_subnode(fdt, 0, "ibm,opal");
498     off = fdt_add_subnode(fdt, off, "power-mgt");
499 
500     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
501 }
502 
503 static void *pnv_dt_create(MachineState *machine)
504 {
505     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
506     PnvMachineState *pnv = PNV_MACHINE(machine);
507     void *fdt;
508     char *buf;
509     int off;
510     int i;
511 
512     fdt = g_malloc0(FDT_MAX_SIZE);
513     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
514 
515     /* /qemu node */
516     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
517 
518     /* Root node */
519     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
520     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
521     _FDT((fdt_setprop_string(fdt, 0, "model",
522                              "IBM PowerNV (emulated by qemu)")));
523     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
524 
525     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
526     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
527     if (qemu_uuid_set) {
528         _FDT((fdt_property_string(fdt, "system-id", buf)));
529     }
530     g_free(buf);
531 
532     off = fdt_add_subnode(fdt, 0, "chosen");
533     if (machine->kernel_cmdline) {
534         _FDT((fdt_setprop_string(fdt, off, "bootargs",
535                                  machine->kernel_cmdline)));
536     }
537 
538     if (pnv->initrd_size) {
539         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
540         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
541 
542         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
543                                &start_prop, sizeof(start_prop))));
544         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
545                                &end_prop, sizeof(end_prop))));
546     }
547 
548     /* Populate device tree for each chip */
549     for (i = 0; i < pnv->num_chips; i++) {
550         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
551     }
552 
553     /* Populate ISA devices on chip 0 */
554     pnv_dt_isa(pnv, fdt);
555 
556     if (pnv->bmc) {
557         pnv_dt_bmc_sensors(pnv->bmc, fdt);
558     }
559 
560     /* Create an extra node for power management on machines that support it */
561     if (pmc->dt_power_mgt) {
562         pmc->dt_power_mgt(pnv, fdt);
563     }
564 
565     return fdt;
566 }
567 
568 static void pnv_powerdown_notify(Notifier *n, void *opaque)
569 {
570     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
571 
572     if (pnv->bmc) {
573         pnv_bmc_powerdown(pnv->bmc);
574     }
575 }
576 
577 static void pnv_reset(MachineState *machine)
578 {
579     PnvMachineState *pnv = PNV_MACHINE(machine);
580     IPMIBmc *bmc;
581     void *fdt;
582 
583     qemu_devices_reset();
584 
585     /*
586      * The machine should provide by default an internal BMC simulator.
587      * If not, try to use the BMC device that was provided on the command
588      * line.
589      */
590     bmc = pnv_bmc_find(&error_fatal);
591     if (!pnv->bmc) {
592         if (!bmc) {
593             if (!qtest_enabled()) {
594                 warn_report("machine has no BMC device. Use '-device "
595                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
596                             "to define one");
597             }
598         } else {
599             pnv_bmc_set_pnor(bmc, pnv->pnor);
600             pnv->bmc = bmc;
601         }
602     }
603 
604     fdt = pnv_dt_create(machine);
605 
606     /* Pack resulting tree */
607     _FDT((fdt_pack(fdt)));
608 
609     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
610     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
611 
612     g_free(fdt);
613 }
614 
615 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
619 }
620 
621 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
622 {
623     Pnv8Chip *chip8 = PNV8_CHIP(chip);
624     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
625 }
626 
627 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
628 {
629     Pnv9Chip *chip9 = PNV9_CHIP(chip);
630     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
631 }
632 
633 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
634 {
635     Pnv10Chip *chip10 = PNV10_CHIP(chip);
636     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
637 }
638 
639 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
640 {
641     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
642 }
643 
644 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
645 {
646     Pnv8Chip *chip8 = PNV8_CHIP(chip);
647     int i;
648 
649     ics_pic_print_info(&chip8->psi.ics, mon);
650     for (i = 0; i < chip->num_phbs; i++) {
651         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
652         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
653     }
654 }
655 
656 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
657 {
658     Pnv9Chip *chip9 = PNV9_CHIP(chip);
659     int i, j;
660 
661     pnv_xive_pic_print_info(&chip9->xive, mon);
662     pnv_psi_pic_print_info(&chip9->psi, mon);
663 
664     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
665         PnvPhb4PecState *pec = &chip9->pecs[i];
666         for (j = 0; j < pec->num_stacks; j++) {
667             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
668         }
669     }
670 }
671 
672 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
673                                                 uint32_t core_id)
674 {
675     return PNV_XSCOM_EX_BASE(core_id);
676 }
677 
678 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
679                                                 uint32_t core_id)
680 {
681     return PNV9_XSCOM_EC_BASE(core_id);
682 }
683 
684 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
685                                                  uint32_t core_id)
686 {
687     return PNV10_XSCOM_EC_BASE(core_id);
688 }
689 
690 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
691 {
692     PowerPCCPUClass *ppc_default =
693         POWERPC_CPU_CLASS(object_class_by_name(default_type));
694     PowerPCCPUClass *ppc =
695         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
696 
697     return ppc_default->pvr_match(ppc_default, ppc->pvr);
698 }
699 
700 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
701 {
702     ISADevice *dev = isa_new("isa-ipmi-bt");
703 
704     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
705     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
706     isa_realize_and_unref(dev, bus, &error_fatal);
707 }
708 
709 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
710 {
711     Pnv10Chip *chip10 = PNV10_CHIP(chip);
712 
713     pnv_psi_pic_print_info(&chip10->psi, mon);
714 }
715 
716 static void pnv_init(MachineState *machine)
717 {
718     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
719     PnvMachineState *pnv = PNV_MACHINE(machine);
720     MachineClass *mc = MACHINE_GET_CLASS(machine);
721     char *fw_filename;
722     long fw_size;
723     int i;
724     char *chip_typename;
725     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
726     DeviceState *dev;
727 
728     /* allocate RAM */
729     if (machine->ram_size < mc->default_ram_size) {
730         char *sz = size_to_str(mc->default_ram_size);
731         error_report("Invalid RAM size, should be bigger than %s", sz);
732         g_free(sz);
733         exit(EXIT_FAILURE);
734     }
735     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
736 
737     /*
738      * Create our simple PNOR device
739      */
740     dev = qdev_new(TYPE_PNV_PNOR);
741     if (pnor) {
742         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
743     }
744     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
745     pnv->pnor = PNV_PNOR(dev);
746 
747     /* load skiboot firmware  */
748     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
749     if (!fw_filename) {
750         error_report("Could not find OPAL firmware '%s'", bios_name);
751         exit(1);
752     }
753 
754     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
755     if (fw_size < 0) {
756         error_report("Could not load OPAL firmware '%s'", fw_filename);
757         exit(1);
758     }
759     g_free(fw_filename);
760 
761     /* load kernel */
762     if (machine->kernel_filename) {
763         long kernel_size;
764 
765         kernel_size = load_image_targphys(machine->kernel_filename,
766                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
767         if (kernel_size < 0) {
768             error_report("Could not load kernel '%s'",
769                          machine->kernel_filename);
770             exit(1);
771         }
772     }
773 
774     /* load initrd */
775     if (machine->initrd_filename) {
776         pnv->initrd_base = INITRD_LOAD_ADDR;
777         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
778                                   pnv->initrd_base, INITRD_MAX_SIZE);
779         if (pnv->initrd_size < 0) {
780             error_report("Could not load initial ram disk '%s'",
781                          machine->initrd_filename);
782             exit(1);
783         }
784     }
785 
786     /* MSIs are supported on this platform */
787     msi_nonbroken = true;
788 
789     /*
790      * Check compatibility of the specified CPU with the machine
791      * default.
792      */
793     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
794         error_report("invalid CPU model '%s' for %s machine",
795                      machine->cpu_type, mc->name);
796         exit(1);
797     }
798 
799     /* Create the processor chips */
800     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
801     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
802                                     i, machine->cpu_type);
803     if (!object_class_by_name(chip_typename)) {
804         error_report("invalid chip model '%.*s' for %s machine",
805                      i, machine->cpu_type, mc->name);
806         exit(1);
807     }
808 
809     pnv->num_chips =
810         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
811     /*
812      * TODO: should we decide on how many chips we can create based
813      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
814      */
815     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
816         error_report("invalid number of chips: '%d'", pnv->num_chips);
817         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
818         exit(1);
819     }
820 
821     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
822     for (i = 0; i < pnv->num_chips; i++) {
823         char chip_name[32];
824         Object *chip = OBJECT(qdev_new(chip_typename));
825 
826         pnv->chips[i] = PNV_CHIP(chip);
827 
828         /*
829          * TODO: put all the memory in one node on chip 0 until we find a
830          * way to specify different ranges for each chip
831          */
832         if (i == 0) {
833             object_property_set_int(chip, "ram-size", machine->ram_size,
834                                     &error_fatal);
835         }
836 
837         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
838         object_property_add_child(OBJECT(pnv), chip_name, chip);
839         object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
840                                 &error_fatal);
841         object_property_set_int(chip, "nr-cores", machine->smp.cores,
842                                 &error_fatal);
843         object_property_set_int(chip, "nr-threads", machine->smp.threads,
844                                 &error_fatal);
845         /*
846          * The POWER8 machine use the XICS interrupt interface.
847          * Propagate the XICS fabric to the chip and its controllers.
848          */
849         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
850             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
851         }
852         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
853             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
854                                      &error_abort);
855         }
856         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
857     }
858     g_free(chip_typename);
859 
860     /* Instantiate ISA bus on chip 0 */
861     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
862 
863     /* Create serial port */
864     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
865 
866     /* Create an RTC ISA device too */
867     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
868 
869     /*
870      * Create the machine BMC simulator and the IPMI BT device for
871      * communication with the BMC
872      */
873     if (defaults_enabled()) {
874         pnv->bmc = pnv_bmc_create(pnv->pnor);
875         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
876     }
877 
878     /*
879      * The PNOR is mapped on the LPC FW address space by the BMC.
880      * Since we can not reach the remote BMC machine with LPC memops,
881      * map it always for now.
882      */
883     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
884                                 &pnv->pnor->mmio);
885 
886     /*
887      * OpenPOWER systems use a IPMI SEL Event message to notify the
888      * host to powerdown
889      */
890     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
891     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
892 }
893 
894 /*
895  *    0:21  Reserved - Read as zeros
896  *   22:24  Chip ID
897  *   25:28  Core number
898  *   29:31  Thread ID
899  */
900 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
901 {
902     return (chip->chip_id << 7) | (core_id << 3);
903 }
904 
905 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
906                                         Error **errp)
907 {
908     Pnv8Chip *chip8 = PNV8_CHIP(chip);
909     Error *local_err = NULL;
910     Object *obj;
911     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
912 
913     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
914     if (local_err) {
915         error_propagate(errp, local_err);
916         return;
917     }
918 
919     pnv_cpu->intc = obj;
920 }
921 
922 
923 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
924 {
925     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
926 
927     icp_reset(ICP(pnv_cpu->intc));
928 }
929 
930 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
931 {
932     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
933 
934     icp_destroy(ICP(pnv_cpu->intc));
935     pnv_cpu->intc = NULL;
936 }
937 
938 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
939                                             Monitor *mon)
940 {
941     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
942 }
943 
944 /*
945  *    0:48  Reserved - Read as zeroes
946  *   49:52  Node ID
947  *   53:55  Chip ID
948  *   56     Reserved - Read as zero
949  *   57:61  Core number
950  *   62:63  Thread ID
951  *
952  * We only care about the lower bits. uint32_t is fine for the moment.
953  */
954 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
955 {
956     return (chip->chip_id << 8) | (core_id << 2);
957 }
958 
959 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
960 {
961     return (chip->chip_id << 8) | (core_id << 2);
962 }
963 
964 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
965                                         Error **errp)
966 {
967     Pnv9Chip *chip9 = PNV9_CHIP(chip);
968     Error *local_err = NULL;
969     Object *obj;
970     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
971 
972     /*
973      * The core creates its interrupt presenter but the XIVE interrupt
974      * controller object is initialized afterwards. Hopefully, it's
975      * only used at runtime.
976      */
977     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
978                            &local_err);
979     if (local_err) {
980         error_propagate(errp, local_err);
981         return;
982     }
983 
984     pnv_cpu->intc = obj;
985 }
986 
987 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
988 {
989     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
990 
991     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
992 }
993 
994 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
995 {
996     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
997 
998     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
999     pnv_cpu->intc = NULL;
1000 }
1001 
1002 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1003                                             Monitor *mon)
1004 {
1005     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1006 }
1007 
1008 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1009                                         Error **errp)
1010 {
1011     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1012 
1013     /* Will be defined when the interrupt controller is */
1014     pnv_cpu->intc = NULL;
1015 }
1016 
1017 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1018 {
1019     ;
1020 }
1021 
1022 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1023 {
1024     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1025 
1026     pnv_cpu->intc = NULL;
1027 }
1028 
1029 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1030                                              Monitor *mon)
1031 {
1032 }
1033 
1034 /*
1035  * Allowed core identifiers on a POWER8 Processor Chip :
1036  *
1037  * <EX0 reserved>
1038  *  EX1  - Venice only
1039  *  EX2  - Venice only
1040  *  EX3  - Venice only
1041  *  EX4
1042  *  EX5
1043  *  EX6
1044  * <EX7,8 reserved> <reserved>
1045  *  EX9  - Venice only
1046  *  EX10 - Venice only
1047  *  EX11 - Venice only
1048  *  EX12
1049  *  EX13
1050  *  EX14
1051  * <EX15 reserved>
1052  */
1053 #define POWER8E_CORE_MASK  (0x7070ull)
1054 #define POWER8_CORE_MASK   (0x7e7eull)
1055 
1056 /*
1057  * POWER9 has 24 cores, ids starting at 0x0
1058  */
1059 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1060 
1061 
1062 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1063 
1064 static void pnv_chip_power8_instance_init(Object *obj)
1065 {
1066     PnvChip *chip = PNV_CHIP(obj);
1067     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1068     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1069     int i;
1070 
1071     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1072                              (Object **)&chip8->xics,
1073                              object_property_allow_set_link,
1074                              OBJ_PROP_LINK_STRONG);
1075 
1076     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1077 
1078     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1079 
1080     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1081 
1082     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1083 
1084     for (i = 0; i < pcc->num_phbs; i++) {
1085         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1086     }
1087 
1088     /*
1089      * Number of PHBs is the chip default
1090      */
1091     chip->num_phbs = pcc->num_phbs;
1092 }
1093 
1094 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1095  {
1096     PnvChip *chip = PNV_CHIP(chip8);
1097     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1098     int i, j;
1099     char *name;
1100 
1101     name = g_strdup_printf("icp-%x", chip->chip_id);
1102     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1103     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1104     g_free(name);
1105 
1106     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1107 
1108     /* Map the ICP registers for each thread */
1109     for (i = 0; i < chip->nr_cores; i++) {
1110         PnvCore *pnv_core = chip->cores[i];
1111         int core_hwid = CPU_CORE(pnv_core)->core_id;
1112 
1113         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1114             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1115             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1116 
1117             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1118                                         &icp->mmio);
1119         }
1120     }
1121 }
1122 
1123 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1124 {
1125     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1126     PnvChip *chip = PNV_CHIP(dev);
1127     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1128     Pnv8Psi *psi8 = &chip8->psi;
1129     Error *local_err = NULL;
1130     int i;
1131 
1132     assert(chip8->xics);
1133 
1134     /* XSCOM bridge is first */
1135     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1136     if (local_err) {
1137         error_propagate(errp, local_err);
1138         return;
1139     }
1140     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1141 
1142     pcc->parent_realize(dev, &local_err);
1143     if (local_err) {
1144         error_propagate(errp, local_err);
1145         return;
1146     }
1147 
1148     /* Processor Service Interface (PSI) Host Bridge */
1149     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1150                             &error_fatal);
1151     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1152                              OBJECT(chip8->xics), &error_abort);
1153     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1154         return;
1155     }
1156     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1157                             &PNV_PSI(psi8)->xscom_regs);
1158 
1159     /* Create LPC controller */
1160     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1161                              &error_abort);
1162     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1163     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1164 
1165     chip->fw_mr = &chip8->lpc.isa_fw;
1166     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1167                                             (uint64_t) PNV_XSCOM_BASE(chip),
1168                                             PNV_XSCOM_LPC_BASE);
1169 
1170     /*
1171      * Interrupt Management Area. This is the memory region holding
1172      * all the Interrupt Control Presenter (ICP) registers
1173      */
1174     pnv_chip_icp_realize(chip8, &local_err);
1175     if (local_err) {
1176         error_propagate(errp, local_err);
1177         return;
1178     }
1179 
1180     /* Create the simplified OCC model */
1181     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1182                              &error_abort);
1183     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1184         return;
1185     }
1186     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1187 
1188     /* OCC SRAM model */
1189     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1190                                 &chip8->occ.sram_regs);
1191 
1192     /* HOMER */
1193     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1194                              &error_abort);
1195     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1196         return;
1197     }
1198     /* Homer Xscom region */
1199     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1200 
1201     /* Homer mmio region */
1202     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1203                                 &chip8->homer.regs);
1204 
1205     /* PHB3 controllers */
1206     for (i = 0; i < chip->num_phbs; i++) {
1207         PnvPHB3 *phb = &chip8->phbs[i];
1208         PnvPBCQState *pbcq = &phb->pbcq;
1209 
1210         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1211         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1212                                 &error_fatal);
1213         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1214             return;
1215         }
1216 
1217         /* Populate the XSCOM address space. */
1218         pnv_xscom_add_subregion(chip,
1219                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1220                                 &pbcq->xscom_nest_regs);
1221         pnv_xscom_add_subregion(chip,
1222                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1223                                 &pbcq->xscom_pci_regs);
1224         pnv_xscom_add_subregion(chip,
1225                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1226                                 &pbcq->xscom_spci_regs);
1227     }
1228 }
1229 
1230 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1231 {
1232     addr &= (PNV_XSCOM_SIZE - 1);
1233     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1234 }
1235 
1236 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1237 {
1238     DeviceClass *dc = DEVICE_CLASS(klass);
1239     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1240 
1241     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1242     k->cores_mask = POWER8E_CORE_MASK;
1243     k->num_phbs = 3;
1244     k->core_pir = pnv_chip_core_pir_p8;
1245     k->intc_create = pnv_chip_power8_intc_create;
1246     k->intc_reset = pnv_chip_power8_intc_reset;
1247     k->intc_destroy = pnv_chip_power8_intc_destroy;
1248     k->intc_print_info = pnv_chip_power8_intc_print_info;
1249     k->isa_create = pnv_chip_power8_isa_create;
1250     k->dt_populate = pnv_chip_power8_dt_populate;
1251     k->pic_print_info = pnv_chip_power8_pic_print_info;
1252     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1253     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1254     dc->desc = "PowerNV Chip POWER8E";
1255 
1256     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1257                                     &k->parent_realize);
1258 }
1259 
1260 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1261 {
1262     DeviceClass *dc = DEVICE_CLASS(klass);
1263     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1264 
1265     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1266     k->cores_mask = POWER8_CORE_MASK;
1267     k->num_phbs = 3;
1268     k->core_pir = pnv_chip_core_pir_p8;
1269     k->intc_create = pnv_chip_power8_intc_create;
1270     k->intc_reset = pnv_chip_power8_intc_reset;
1271     k->intc_destroy = pnv_chip_power8_intc_destroy;
1272     k->intc_print_info = pnv_chip_power8_intc_print_info;
1273     k->isa_create = pnv_chip_power8_isa_create;
1274     k->dt_populate = pnv_chip_power8_dt_populate;
1275     k->pic_print_info = pnv_chip_power8_pic_print_info;
1276     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1277     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1278     dc->desc = "PowerNV Chip POWER8";
1279 
1280     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1281                                     &k->parent_realize);
1282 }
1283 
1284 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1285 {
1286     DeviceClass *dc = DEVICE_CLASS(klass);
1287     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1288 
1289     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1290     k->cores_mask = POWER8_CORE_MASK;
1291     k->num_phbs = 3;
1292     k->core_pir = pnv_chip_core_pir_p8;
1293     k->intc_create = pnv_chip_power8_intc_create;
1294     k->intc_reset = pnv_chip_power8_intc_reset;
1295     k->intc_destroy = pnv_chip_power8_intc_destroy;
1296     k->intc_print_info = pnv_chip_power8_intc_print_info;
1297     k->isa_create = pnv_chip_power8nvl_isa_create;
1298     k->dt_populate = pnv_chip_power8_dt_populate;
1299     k->pic_print_info = pnv_chip_power8_pic_print_info;
1300     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1301     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1302     dc->desc = "PowerNV Chip POWER8NVL";
1303 
1304     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1305                                     &k->parent_realize);
1306 }
1307 
1308 static void pnv_chip_power9_instance_init(Object *obj)
1309 {
1310     PnvChip *chip = PNV_CHIP(obj);
1311     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1312     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1313     int i;
1314 
1315     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1316     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1317                               "xive-fabric");
1318 
1319     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1320 
1321     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1322 
1323     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1324 
1325     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1326 
1327     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1328         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1329                                 TYPE_PNV_PHB4_PEC);
1330     }
1331 
1332     /*
1333      * Number of PHBs is the chip default
1334      */
1335     chip->num_phbs = pcc->num_phbs;
1336 }
1337 
1338 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1339 {
1340     PnvChip *chip = PNV_CHIP(chip9);
1341     int i;
1342 
1343     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1344     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1345 
1346     for (i = 0; i < chip9->nr_quads; i++) {
1347         char eq_name[32];
1348         PnvQuad *eq = &chip9->quads[i];
1349         PnvCore *pnv_core = chip->cores[i * 4];
1350         int core_id = CPU_CORE(pnv_core)->core_id;
1351 
1352         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1353         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1354                                            sizeof(*eq), TYPE_PNV_QUAD,
1355                                            &error_fatal, NULL);
1356 
1357         object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1358         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1359 
1360         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1361                                 &eq->xscom_regs);
1362     }
1363 }
1364 
1365 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1366 {
1367     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1368     int i, j;
1369     int phb_id = 0;
1370 
1371     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1372         PnvPhb4PecState *pec = &chip9->pecs[i];
1373         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1374         uint32_t pec_nest_base;
1375         uint32_t pec_pci_base;
1376 
1377         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1378         /*
1379          * PEC0 -> 1 stack
1380          * PEC1 -> 2 stacks
1381          * PEC2 -> 3 stacks
1382          */
1383         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1384                                 &error_fatal);
1385         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1386                                 &error_fatal);
1387         object_property_set_link(OBJECT(pec), "system-memory",
1388                                  OBJECT(get_system_memory()), &error_abort);
1389         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1390             return;
1391         }
1392 
1393         pec_nest_base = pecc->xscom_nest_base(pec);
1394         pec_pci_base = pecc->xscom_pci_base(pec);
1395 
1396         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1397         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1398 
1399         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1400              j++, phb_id++) {
1401             PnvPhb4PecStack *stack = &pec->stacks[j];
1402             Object *obj = OBJECT(&stack->phb);
1403 
1404             object_property_set_int(obj, "index", phb_id, &error_fatal);
1405             object_property_set_int(obj, "chip-id", chip->chip_id,
1406                                     &error_fatal);
1407             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1408                                     &error_fatal);
1409             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1410                                     &error_fatal);
1411             object_property_set_link(obj, "stack", OBJECT(stack),
1412                                      &error_abort);
1413             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1414                 return;
1415             }
1416 
1417             /* Populate the XSCOM address space. */
1418             pnv_xscom_add_subregion(chip,
1419                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1420                                    &stack->nest_regs_mr);
1421             pnv_xscom_add_subregion(chip,
1422                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1423                                     &stack->pci_regs_mr);
1424             pnv_xscom_add_subregion(chip,
1425                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1426                                     0x40 * stack->stack_no,
1427                                     &stack->phb_regs_mr);
1428         }
1429     }
1430 }
1431 
1432 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1433 {
1434     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1435     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1436     PnvChip *chip = PNV_CHIP(dev);
1437     Pnv9Psi *psi9 = &chip9->psi;
1438     Error *local_err = NULL;
1439 
1440     /* XSCOM bridge is first */
1441     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1442     if (local_err) {
1443         error_propagate(errp, local_err);
1444         return;
1445     }
1446     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1447 
1448     pcc->parent_realize(dev, &local_err);
1449     if (local_err) {
1450         error_propagate(errp, local_err);
1451         return;
1452     }
1453 
1454     pnv_chip_quad_realize(chip9, &local_err);
1455     if (local_err) {
1456         error_propagate(errp, local_err);
1457         return;
1458     }
1459 
1460     /* XIVE interrupt controller (POWER9) */
1461     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1462                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1463     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1464                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1465     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1466                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1467     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1468                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1469     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1470                              &error_abort);
1471     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1472         return;
1473     }
1474     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1475                             &chip9->xive.xscom_regs);
1476 
1477     /* Processor Service Interface (PSI) Host Bridge */
1478     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1479                             &error_fatal);
1480     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1481         return;
1482     }
1483     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1484                             &PNV_PSI(psi9)->xscom_regs);
1485 
1486     /* LPC */
1487     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1488                              &error_abort);
1489     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1490         return;
1491     }
1492     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1493                                 &chip9->lpc.xscom_regs);
1494 
1495     chip->fw_mr = &chip9->lpc.isa_fw;
1496     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1497                                             (uint64_t) PNV9_LPCM_BASE(chip));
1498 
1499     /* Create the simplified OCC model */
1500     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1501                              &error_abort);
1502     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1503         return;
1504     }
1505     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1506 
1507     /* OCC SRAM model */
1508     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1509                                 &chip9->occ.sram_regs);
1510 
1511     /* HOMER */
1512     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1513                              &error_abort);
1514     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1515         return;
1516     }
1517     /* Homer Xscom region */
1518     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1519 
1520     /* Homer mmio region */
1521     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1522                                 &chip9->homer.regs);
1523 
1524     /* PHBs */
1525     pnv_chip_power9_phb_realize(chip, &local_err);
1526     if (local_err) {
1527         error_propagate(errp, local_err);
1528         return;
1529     }
1530 }
1531 
1532 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1533 {
1534     addr &= (PNV9_XSCOM_SIZE - 1);
1535     return addr >> 3;
1536 }
1537 
1538 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1539 {
1540     DeviceClass *dc = DEVICE_CLASS(klass);
1541     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1542 
1543     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1544     k->cores_mask = POWER9_CORE_MASK;
1545     k->core_pir = pnv_chip_core_pir_p9;
1546     k->intc_create = pnv_chip_power9_intc_create;
1547     k->intc_reset = pnv_chip_power9_intc_reset;
1548     k->intc_destroy = pnv_chip_power9_intc_destroy;
1549     k->intc_print_info = pnv_chip_power9_intc_print_info;
1550     k->isa_create = pnv_chip_power9_isa_create;
1551     k->dt_populate = pnv_chip_power9_dt_populate;
1552     k->pic_print_info = pnv_chip_power9_pic_print_info;
1553     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1554     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1555     dc->desc = "PowerNV Chip POWER9";
1556     k->num_phbs = 6;
1557 
1558     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1559                                     &k->parent_realize);
1560 }
1561 
1562 static void pnv_chip_power10_instance_init(Object *obj)
1563 {
1564     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1565 
1566     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1567     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1568 }
1569 
1570 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1571 {
1572     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1573     PnvChip *chip = PNV_CHIP(dev);
1574     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1575     Error *local_err = NULL;
1576 
1577     /* XSCOM bridge is first */
1578     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1579     if (local_err) {
1580         error_propagate(errp, local_err);
1581         return;
1582     }
1583     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1584 
1585     pcc->parent_realize(dev, &local_err);
1586     if (local_err) {
1587         error_propagate(errp, local_err);
1588         return;
1589     }
1590 
1591     /* Processor Service Interface (PSI) Host Bridge */
1592     object_property_set_int(OBJECT(&chip10->psi), "bar",
1593                             PNV10_PSIHB_BASE(chip), &error_fatal);
1594     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1595         return;
1596     }
1597     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1598                             &PNV_PSI(&chip10->psi)->xscom_regs);
1599 
1600     /* LPC */
1601     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1602                              OBJECT(&chip10->psi), &error_abort);
1603     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1604         return;
1605     }
1606     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1607                                 &chip10->lpc.xscom_regs);
1608 
1609     chip->fw_mr = &chip10->lpc.isa_fw;
1610     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1611                                             (uint64_t) PNV10_LPCM_BASE(chip));
1612 }
1613 
1614 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1615 {
1616     addr &= (PNV10_XSCOM_SIZE - 1);
1617     return addr >> 3;
1618 }
1619 
1620 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1621 {
1622     DeviceClass *dc = DEVICE_CLASS(klass);
1623     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1624 
1625     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1626     k->cores_mask = POWER10_CORE_MASK;
1627     k->core_pir = pnv_chip_core_pir_p10;
1628     k->intc_create = pnv_chip_power10_intc_create;
1629     k->intc_reset = pnv_chip_power10_intc_reset;
1630     k->intc_destroy = pnv_chip_power10_intc_destroy;
1631     k->intc_print_info = pnv_chip_power10_intc_print_info;
1632     k->isa_create = pnv_chip_power10_isa_create;
1633     k->dt_populate = pnv_chip_power10_dt_populate;
1634     k->pic_print_info = pnv_chip_power10_pic_print_info;
1635     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1636     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1637     dc->desc = "PowerNV Chip POWER10";
1638 
1639     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1640                                     &k->parent_realize);
1641 }
1642 
1643 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1644 {
1645     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1646     int cores_max;
1647 
1648     /*
1649      * No custom mask for this chip, let's use the default one from *
1650      * the chip class
1651      */
1652     if (!chip->cores_mask) {
1653         chip->cores_mask = pcc->cores_mask;
1654     }
1655 
1656     /* filter alien core ids ! some are reserved */
1657     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1658         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1659                    chip->cores_mask);
1660         return;
1661     }
1662     chip->cores_mask &= pcc->cores_mask;
1663 
1664     /* now that we have a sane layout, let check the number of cores */
1665     cores_max = ctpop64(chip->cores_mask);
1666     if (chip->nr_cores > cores_max) {
1667         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1668                    cores_max);
1669         return;
1670     }
1671 }
1672 
1673 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1674 {
1675     Error *error = NULL;
1676     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1677     const char *typename = pnv_chip_core_typename(chip);
1678     int i, core_hwid;
1679     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1680 
1681     if (!object_class_by_name(typename)) {
1682         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1683         return;
1684     }
1685 
1686     /* Cores */
1687     pnv_chip_core_sanitize(chip, &error);
1688     if (error) {
1689         error_propagate(errp, error);
1690         return;
1691     }
1692 
1693     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1694 
1695     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1696              && (i < chip->nr_cores); core_hwid++) {
1697         char core_name[32];
1698         PnvCore *pnv_core;
1699         uint64_t xscom_core_base;
1700 
1701         if (!(chip->cores_mask & (1ull << core_hwid))) {
1702             continue;
1703         }
1704 
1705         pnv_core = PNV_CORE(object_new(typename));
1706 
1707         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1708         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1709         chip->cores[i] = pnv_core;
1710         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1711                                 chip->nr_threads, &error_fatal);
1712         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1713                                 core_hwid, &error_fatal);
1714         object_property_set_int(OBJECT(pnv_core), "pir",
1715                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1716         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1717                                 &error_fatal);
1718         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1719                                  &error_abort);
1720         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1721 
1722         /* Each core has an XSCOM MMIO region */
1723         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1724 
1725         pnv_xscom_add_subregion(chip, xscom_core_base,
1726                                 &pnv_core->xscom_regs);
1727         i++;
1728     }
1729 }
1730 
1731 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1732 {
1733     PnvChip *chip = PNV_CHIP(dev);
1734     Error *error = NULL;
1735 
1736     /* Cores */
1737     pnv_chip_core_realize(chip, &error);
1738     if (error) {
1739         error_propagate(errp, error);
1740         return;
1741     }
1742 }
1743 
1744 static Property pnv_chip_properties[] = {
1745     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1746     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1747     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1748     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1749     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1750     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1751     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1752     DEFINE_PROP_END_OF_LIST(),
1753 };
1754 
1755 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1756 {
1757     DeviceClass *dc = DEVICE_CLASS(klass);
1758 
1759     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1760     dc->realize = pnv_chip_realize;
1761     device_class_set_props(dc, pnv_chip_properties);
1762     dc->desc = "PowerNV Chip";
1763 }
1764 
1765 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1766 {
1767     int i, j;
1768 
1769     for (i = 0; i < chip->nr_cores; i++) {
1770         PnvCore *pc = chip->cores[i];
1771         CPUCore *cc = CPU_CORE(pc);
1772 
1773         for (j = 0; j < cc->nr_threads; j++) {
1774             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1775                 return pc->threads[j];
1776             }
1777         }
1778     }
1779     return NULL;
1780 }
1781 
1782 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1783 {
1784     PnvMachineState *pnv = PNV_MACHINE(xi);
1785     int i, j;
1786 
1787     for (i = 0; i < pnv->num_chips; i++) {
1788         PnvChip *chip = pnv->chips[i];
1789         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1790 
1791         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1792             return &chip8->psi.ics;
1793         }
1794         for (j = 0; j < chip->num_phbs; j++) {
1795             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1796                 return &chip8->phbs[j].lsis;
1797             }
1798             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1799                 return ICS(&chip8->phbs[j].msis);
1800             }
1801         }
1802     }
1803     return NULL;
1804 }
1805 
1806 static void pnv_ics_resend(XICSFabric *xi)
1807 {
1808     PnvMachineState *pnv = PNV_MACHINE(xi);
1809     int i, j;
1810 
1811     for (i = 0; i < pnv->num_chips; i++) {
1812         PnvChip *chip = pnv->chips[i];
1813         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1814 
1815         ics_resend(&chip8->psi.ics);
1816         for (j = 0; j < chip->num_phbs; j++) {
1817             ics_resend(&chip8->phbs[j].lsis);
1818             ics_resend(ICS(&chip8->phbs[j].msis));
1819         }
1820     }
1821 }
1822 
1823 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1824 {
1825     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1826 
1827     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1828 }
1829 
1830 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1831                                Monitor *mon)
1832 {
1833     PnvMachineState *pnv = PNV_MACHINE(obj);
1834     int i;
1835     CPUState *cs;
1836 
1837     CPU_FOREACH(cs) {
1838         PowerPCCPU *cpu = POWERPC_CPU(cs);
1839 
1840         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1841         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1842                                                            mon);
1843     }
1844 
1845     for (i = 0; i < pnv->num_chips; i++) {
1846         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1847     }
1848 }
1849 
1850 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1851                          uint8_t nvt_blk, uint32_t nvt_idx,
1852                          bool cam_ignore, uint8_t priority,
1853                          uint32_t logic_serv,
1854                          XiveTCTXMatch *match)
1855 {
1856     PnvMachineState *pnv = PNV_MACHINE(xfb);
1857     int total_count = 0;
1858     int i;
1859 
1860     for (i = 0; i < pnv->num_chips; i++) {
1861         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1862         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1863         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1864         int count;
1865 
1866         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1867                                priority, logic_serv, match);
1868 
1869         if (count < 0) {
1870             return count;
1871         }
1872 
1873         total_count += count;
1874     }
1875 
1876     return total_count;
1877 }
1878 
1879 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1880 {
1881     MachineClass *mc = MACHINE_CLASS(oc);
1882     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1883     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1884     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1885 
1886     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1887     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1888 
1889     xic->icp_get = pnv_icp_get;
1890     xic->ics_get = pnv_ics_get;
1891     xic->ics_resend = pnv_ics_resend;
1892 
1893     pmc->compat = compat;
1894     pmc->compat_size = sizeof(compat);
1895 }
1896 
1897 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1898 {
1899     MachineClass *mc = MACHINE_CLASS(oc);
1900     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1901     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1902     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1903 
1904     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1905     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1906     xfc->match_nvt = pnv_match_nvt;
1907 
1908     mc->alias = "powernv";
1909 
1910     pmc->compat = compat;
1911     pmc->compat_size = sizeof(compat);
1912     pmc->dt_power_mgt = pnv_dt_power_mgt;
1913 }
1914 
1915 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1916 {
1917     MachineClass *mc = MACHINE_CLASS(oc);
1918     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1919     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1920 
1921     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1922     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1923 
1924     pmc->compat = compat;
1925     pmc->compat_size = sizeof(compat);
1926     pmc->dt_power_mgt = pnv_dt_power_mgt;
1927 }
1928 
1929 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1930 {
1931     PnvMachineState *pnv = PNV_MACHINE(obj);
1932 
1933     return !!pnv->fw_load_addr;
1934 }
1935 
1936 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1937 {
1938     PnvMachineState *pnv = PNV_MACHINE(obj);
1939 
1940     if (value) {
1941         pnv->fw_load_addr = 0x8000000;
1942     }
1943 }
1944 
1945 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1946 {
1947     PowerPCCPU *cpu = POWERPC_CPU(cs);
1948     CPUPPCState *env = &cpu->env;
1949 
1950     cpu_synchronize_state(cs);
1951     ppc_cpu_do_system_reset(cs);
1952     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1953         /*
1954          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1955          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1956          * (PPC_BIT(43)).
1957          */
1958         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1959             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1960             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1961         }
1962     } else {
1963         /*
1964          * For non-powersave system resets, SRR1[42:45] are defined to be
1965          * implementation-dependent. The POWER9 User Manual specifies that
1966          * an external (SCOM driven, which may come from a BMC nmi command or
1967          * another CPU requesting a NMI IPI) system reset exception should be
1968          * 0b0010 (PPC_BIT(44)).
1969          */
1970         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1971     }
1972 }
1973 
1974 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1975 {
1976     CPUState *cs;
1977 
1978     CPU_FOREACH(cs) {
1979         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1980     }
1981 }
1982 
1983 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1984 {
1985     MachineClass *mc = MACHINE_CLASS(oc);
1986     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1987     NMIClass *nc = NMI_CLASS(oc);
1988 
1989     mc->desc = "IBM PowerNV (Non-Virtualized)";
1990     mc->init = pnv_init;
1991     mc->reset = pnv_reset;
1992     mc->max_cpus = MAX_CPUS;
1993     /* Pnv provides a AHCI device for storage */
1994     mc->block_default_type = IF_IDE;
1995     mc->no_parallel = 1;
1996     mc->default_boot_order = NULL;
1997     /*
1998      * RAM defaults to less than 2048 for 32-bit hosts, and large
1999      * enough to fit the maximum initrd size at it's load address
2000      */
2001     mc->default_ram_size = 1 * GiB;
2002     mc->default_ram_id = "pnv.ram";
2003     ispc->print_info = pnv_pic_print_info;
2004     nc->nmi_monitor_handler = pnv_nmi;
2005 
2006     object_class_property_add_bool(oc, "hb-mode",
2007                                    pnv_machine_get_hb, pnv_machine_set_hb);
2008     object_class_property_set_description(oc, "hb-mode",
2009                               "Use a hostboot like boot loader");
2010 }
2011 
2012 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2013     {                                             \
2014         .name          = type,                    \
2015         .class_init    = class_initfn,            \
2016         .parent        = TYPE_PNV8_CHIP,          \
2017     }
2018 
2019 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2020     {                                             \
2021         .name          = type,                    \
2022         .class_init    = class_initfn,            \
2023         .parent        = TYPE_PNV9_CHIP,          \
2024     }
2025 
2026 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2027     {                                              \
2028         .name          = type,                     \
2029         .class_init    = class_initfn,             \
2030         .parent        = TYPE_PNV10_CHIP,          \
2031     }
2032 
2033 static const TypeInfo types[] = {
2034     {
2035         .name          = MACHINE_TYPE_NAME("powernv10"),
2036         .parent        = TYPE_PNV_MACHINE,
2037         .class_init    = pnv_machine_power10_class_init,
2038     },
2039     {
2040         .name          = MACHINE_TYPE_NAME("powernv9"),
2041         .parent        = TYPE_PNV_MACHINE,
2042         .class_init    = pnv_machine_power9_class_init,
2043         .interfaces = (InterfaceInfo[]) {
2044             { TYPE_XIVE_FABRIC },
2045             { },
2046         },
2047     },
2048     {
2049         .name          = MACHINE_TYPE_NAME("powernv8"),
2050         .parent        = TYPE_PNV_MACHINE,
2051         .class_init    = pnv_machine_power8_class_init,
2052         .interfaces = (InterfaceInfo[]) {
2053             { TYPE_XICS_FABRIC },
2054             { },
2055         },
2056     },
2057     {
2058         .name          = TYPE_PNV_MACHINE,
2059         .parent        = TYPE_MACHINE,
2060         .abstract       = true,
2061         .instance_size = sizeof(PnvMachineState),
2062         .class_init    = pnv_machine_class_init,
2063         .class_size    = sizeof(PnvMachineClass),
2064         .interfaces = (InterfaceInfo[]) {
2065             { TYPE_INTERRUPT_STATS_PROVIDER },
2066             { TYPE_NMI },
2067             { },
2068         },
2069     },
2070     {
2071         .name          = TYPE_PNV_CHIP,
2072         .parent        = TYPE_SYS_BUS_DEVICE,
2073         .class_init    = pnv_chip_class_init,
2074         .instance_size = sizeof(PnvChip),
2075         .class_size    = sizeof(PnvChipClass),
2076         .abstract      = true,
2077     },
2078 
2079     /*
2080      * P10 chip and variants
2081      */
2082     {
2083         .name          = TYPE_PNV10_CHIP,
2084         .parent        = TYPE_PNV_CHIP,
2085         .instance_init = pnv_chip_power10_instance_init,
2086         .instance_size = sizeof(Pnv10Chip),
2087     },
2088     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2089 
2090     /*
2091      * P9 chip and variants
2092      */
2093     {
2094         .name          = TYPE_PNV9_CHIP,
2095         .parent        = TYPE_PNV_CHIP,
2096         .instance_init = pnv_chip_power9_instance_init,
2097         .instance_size = sizeof(Pnv9Chip),
2098     },
2099     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2100 
2101     /*
2102      * P8 chip and variants
2103      */
2104     {
2105         .name          = TYPE_PNV8_CHIP,
2106         .parent        = TYPE_PNV_CHIP,
2107         .instance_init = pnv_chip_power8_instance_init,
2108         .instance_size = sizeof(Pnv8Chip),
2109     },
2110     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2111     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2112     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2113                           pnv_chip_power8nvl_class_init),
2114 };
2115 
2116 DEFINE_TYPES(types)
2117