xref: /openbmc/qemu/hw/ppc/pnv.c (revision e0091133)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static PnvPhb4PecState *pnv_phb4_get_pec(PnvChip *chip, PnvPHB4 *phb,
285                                          Error **errp)
286 {
287     PnvPHB *phb_base = phb->phb_base;
288     PnvPhb4PecState *pecs = NULL;
289     int chip_id = phb->chip_id;
290     int index = phb->phb_id;
291     int i, j;
292 
293     if (phb_base->version == 4) {
294         Pnv9Chip *chip9 = PNV9_CHIP(chip);
295 
296         pecs = chip9->pecs;
297     } else if (phb_base->version == 5) {
298         Pnv10Chip *chip10 = PNV10_CHIP(chip);
299 
300         pecs = chip10->pecs;
301     } else {
302         g_assert_not_reached();
303     }
304 
305     for (i = 0; i < chip->num_pecs; i++) {
306         /*
307          * For each PEC, check the amount of phbs it supports
308          * and see if the given phb4 index matches an index.
309          */
310         PnvPhb4PecState *pec = &pecs[i];
311 
312         for (j = 0; j < pec->num_phbs; j++) {
313             if (index == pnv_phb4_pec_get_phb_id(pec, j)) {
314                 return pec;
315             }
316         }
317     }
318     error_setg(errp,
319                "pnv-phb4 chip-id %d index %d didn't match any existing PEC",
320                chip_id, index);
321 
322     return NULL;
323 }
324 
325 /*
326  * Adds a PnvPHB to the chip. Returns the parent obj of the
327  * PHB which varies with each version (phb version 3 is parented
328  * by the chip, version 4 and 5 are parented by the PEC
329  * device).
330  *
331  * TODO: for version 3 we're still parenting the PHB with the
332  * chip. We should parent with a (so far not implemented)
333  * PHB3 PEC device.
334  */
335 Object *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb, Error **errp)
336 {
337     if (phb->version == 3) {
338         Pnv8Chip *chip8 = PNV8_CHIP(chip);
339 
340         phb->chip = chip;
341 
342         chip8->phbs[chip8->num_phbs] = phb;
343         chip8->num_phbs++;
344 
345         return OBJECT(chip);
346     }
347 
348     phb->pec = pnv_phb4_get_pec(chip, PNV_PHB4(phb->backend), errp);
349 
350     return OBJECT(phb->pec);
351 }
352 
353 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
354 {
355     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
356     int i;
357 
358     pnv_dt_xscom(chip, fdt, 0,
359                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
360                  cpu_to_be64(PNV_XSCOM_SIZE),
361                  compat, sizeof(compat));
362 
363     for (i = 0; i < chip->nr_cores; i++) {
364         PnvCore *pnv_core = chip->cores[i];
365 
366         pnv_dt_core(chip, pnv_core, fdt);
367 
368         /* Interrupt Control Presenters (ICP). One per core. */
369         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
370     }
371 
372     if (chip->ram_size) {
373         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
374     }
375 }
376 
377 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
378 {
379     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
380     int i;
381 
382     pnv_dt_xscom(chip, fdt, 0,
383                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
384                  cpu_to_be64(PNV9_XSCOM_SIZE),
385                  compat, sizeof(compat));
386 
387     for (i = 0; i < chip->nr_cores; i++) {
388         PnvCore *pnv_core = chip->cores[i];
389 
390         pnv_dt_core(chip, pnv_core, fdt);
391     }
392 
393     if (chip->ram_size) {
394         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
395     }
396 
397     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
398 }
399 
400 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
401 {
402     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
403     int i;
404 
405     pnv_dt_xscom(chip, fdt, 0,
406                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
407                  cpu_to_be64(PNV10_XSCOM_SIZE),
408                  compat, sizeof(compat));
409 
410     for (i = 0; i < chip->nr_cores; i++) {
411         PnvCore *pnv_core = chip->cores[i];
412 
413         pnv_dt_core(chip, pnv_core, fdt);
414     }
415 
416     if (chip->ram_size) {
417         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
418     }
419 
420     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
421 }
422 
423 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
424 {
425     uint32_t io_base = d->ioport_id;
426     uint32_t io_regs[] = {
427         cpu_to_be32(1),
428         cpu_to_be32(io_base),
429         cpu_to_be32(2)
430     };
431     char *name;
432     int node;
433 
434     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
435     node = fdt_add_subnode(fdt, lpc_off, name);
436     _FDT(node);
437     g_free(name);
438 
439     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
440     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
441 }
442 
443 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
444 {
445     const char compatible[] = "ns16550\0pnpPNP,501";
446     uint32_t io_base = d->ioport_id;
447     uint32_t io_regs[] = {
448         cpu_to_be32(1),
449         cpu_to_be32(io_base),
450         cpu_to_be32(8)
451     };
452     uint32_t irq;
453     char *name;
454     int node;
455 
456     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
457 
458     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
459     node = fdt_add_subnode(fdt, lpc_off, name);
460     _FDT(node);
461     g_free(name);
462 
463     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
464     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
465                       sizeof(compatible))));
466 
467     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
468     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
469     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
470     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
471                            fdt_get_phandle(fdt, lpc_off))));
472 
473     /* This is needed by Linux */
474     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
475 }
476 
477 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
478 {
479     const char compatible[] = "bt\0ipmi-bt";
480     uint32_t io_base;
481     uint32_t io_regs[] = {
482         cpu_to_be32(1),
483         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
484         cpu_to_be32(3)
485     };
486     uint32_t irq;
487     char *name;
488     int node;
489 
490     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
491     io_regs[1] = cpu_to_be32(io_base);
492 
493     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     /* Mark it as reserved to avoid Linux trying to claim it */
505     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 }
510 
511 typedef struct ForeachPopulateArgs {
512     void *fdt;
513     int offset;
514 } ForeachPopulateArgs;
515 
516 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
517 {
518     ForeachPopulateArgs *args = opaque;
519     ISADevice *d = ISA_DEVICE(dev);
520 
521     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
522         pnv_dt_rtc(d, args->fdt, args->offset);
523     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
524         pnv_dt_serial(d, args->fdt, args->offset);
525     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
526         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
527     } else {
528         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
529                      d->ioport_id);
530     }
531 
532     return 0;
533 }
534 
535 /*
536  * The default LPC bus of a multichip system is on chip 0. It's
537  * recognized by the firmware (skiboot) using a "primary" property.
538  */
539 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
540 {
541     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
542     ForeachPopulateArgs args = {
543         .fdt = fdt,
544         .offset = isa_offset,
545     };
546     uint32_t phandle;
547 
548     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
549 
550     phandle = qemu_fdt_alloc_phandle(fdt);
551     assert(phandle > 0);
552     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
553 
554     /*
555      * ISA devices are not necessarily parented to the ISA bus so we
556      * can not use object_child_foreach()
557      */
558     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
559                        &args);
560 }
561 
562 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
563 {
564     int off;
565 
566     off = fdt_add_subnode(fdt, 0, "ibm,opal");
567     off = fdt_add_subnode(fdt, off, "power-mgt");
568 
569     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
570 }
571 
572 static void *pnv_dt_create(MachineState *machine)
573 {
574     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
575     PnvMachineState *pnv = PNV_MACHINE(machine);
576     void *fdt;
577     char *buf;
578     int off;
579     int i;
580 
581     fdt = g_malloc0(FDT_MAX_SIZE);
582     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
583 
584     /* /qemu node */
585     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
586 
587     /* Root node */
588     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
589     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
590     _FDT((fdt_setprop_string(fdt, 0, "model",
591                              "IBM PowerNV (emulated by qemu)")));
592     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
593 
594     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
595     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
596     if (qemu_uuid_set) {
597         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
598     }
599     g_free(buf);
600 
601     off = fdt_add_subnode(fdt, 0, "chosen");
602     if (machine->kernel_cmdline) {
603         _FDT((fdt_setprop_string(fdt, off, "bootargs",
604                                  machine->kernel_cmdline)));
605     }
606 
607     if (pnv->initrd_size) {
608         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
609         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
610 
611         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
612                                &start_prop, sizeof(start_prop))));
613         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
614                                &end_prop, sizeof(end_prop))));
615     }
616 
617     /* Populate device tree for each chip */
618     for (i = 0; i < pnv->num_chips; i++) {
619         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
620     }
621 
622     /* Populate ISA devices on chip 0 */
623     pnv_dt_isa(pnv, fdt);
624 
625     if (pnv->bmc) {
626         pnv_dt_bmc_sensors(pnv->bmc, fdt);
627     }
628 
629     /* Create an extra node for power management on machines that support it */
630     if (pmc->dt_power_mgt) {
631         pmc->dt_power_mgt(pnv, fdt);
632     }
633 
634     return fdt;
635 }
636 
637 static void pnv_powerdown_notify(Notifier *n, void *opaque)
638 {
639     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
640 
641     if (pnv->bmc) {
642         pnv_bmc_powerdown(pnv->bmc);
643     }
644 }
645 
646 static void pnv_reset(MachineState *machine, ShutdownCause reason)
647 {
648     PnvMachineState *pnv = PNV_MACHINE(machine);
649     IPMIBmc *bmc;
650     void *fdt;
651 
652     qemu_devices_reset(reason);
653 
654     /*
655      * The machine should provide by default an internal BMC simulator.
656      * If not, try to use the BMC device that was provided on the command
657      * line.
658      */
659     bmc = pnv_bmc_find(&error_fatal);
660     if (!pnv->bmc) {
661         if (!bmc) {
662             if (!qtest_enabled()) {
663                 warn_report("machine has no BMC device. Use '-device "
664                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
665                             "to define one");
666             }
667         } else {
668             pnv_bmc_set_pnor(bmc, pnv->pnor);
669             pnv->bmc = bmc;
670         }
671     }
672 
673     fdt = pnv_dt_create(machine);
674 
675     /* Pack resulting tree */
676     _FDT((fdt_pack(fdt)));
677 
678     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
679     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
680 
681     /*
682      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
683      * the existing machine->fdt to avoid leaking it during
684      * a reset.
685      */
686     g_free(machine->fdt);
687     machine->fdt = fdt;
688 }
689 
690 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
691 {
692     Pnv8Chip *chip8 = PNV8_CHIP(chip);
693     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
694 
695     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
696     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
697 }
698 
699 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
700 {
701     Pnv8Chip *chip8 = PNV8_CHIP(chip);
702     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
703 
704     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
705     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
706 }
707 
708 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
709 {
710     Pnv9Chip *chip9 = PNV9_CHIP(chip);
711     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
712 
713     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
714     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
715 }
716 
717 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
718 {
719     Pnv10Chip *chip10 = PNV10_CHIP(chip);
720     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
721 
722     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
723     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
724 }
725 
726 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
727 {
728     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
729 }
730 
731 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
732 {
733     Pnv8Chip *chip8 = PNV8_CHIP(chip);
734     int i;
735 
736     ics_pic_print_info(&chip8->psi.ics, mon);
737 
738     for (i = 0; i < chip8->num_phbs; i++) {
739         PnvPHB *phb = chip8->phbs[i];
740         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
741 
742         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
743         ics_pic_print_info(&phb3->lsis, mon);
744     }
745 }
746 
747 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
748 {
749     Monitor *mon = opaque;
750     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
751 
752     if (!phb) {
753         return 0;
754     }
755 
756     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
757 
758     return 0;
759 }
760 
761 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
762 {
763     Pnv9Chip *chip9 = PNV9_CHIP(chip);
764 
765     pnv_xive_pic_print_info(&chip9->xive, mon);
766     pnv_psi_pic_print_info(&chip9->psi, mon);
767 
768     object_child_foreach_recursive(OBJECT(chip),
769                          pnv_chip_power9_pic_print_info_child, mon);
770 }
771 
772 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
773                                                 uint32_t core_id)
774 {
775     return PNV_XSCOM_EX_BASE(core_id);
776 }
777 
778 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
779                                                 uint32_t core_id)
780 {
781     return PNV9_XSCOM_EC_BASE(core_id);
782 }
783 
784 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
785                                                  uint32_t core_id)
786 {
787     return PNV10_XSCOM_EC_BASE(core_id);
788 }
789 
790 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
791 {
792     PowerPCCPUClass *ppc_default =
793         POWERPC_CPU_CLASS(object_class_by_name(default_type));
794     PowerPCCPUClass *ppc =
795         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
796 
797     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
798 }
799 
800 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
801 {
802     ISADevice *dev = isa_new("isa-ipmi-bt");
803 
804     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
805     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
806     isa_realize_and_unref(dev, bus, &error_fatal);
807 }
808 
809 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
810 {
811     Pnv10Chip *chip10 = PNV10_CHIP(chip);
812 
813     pnv_xive2_pic_print_info(&chip10->xive, mon);
814     pnv_psi_pic_print_info(&chip10->psi, mon);
815 
816     object_child_foreach_recursive(OBJECT(chip),
817                          pnv_chip_power9_pic_print_info_child, mon);
818 }
819 
820 /* Always give the first 1GB to chip 0 else we won't boot */
821 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
822 {
823     MachineState *machine = MACHINE(pnv);
824     uint64_t ram_per_chip;
825 
826     assert(machine->ram_size >= 1 * GiB);
827 
828     ram_per_chip = machine->ram_size / pnv->num_chips;
829     if (ram_per_chip >= 1 * GiB) {
830         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
831     }
832 
833     assert(pnv->num_chips > 1);
834 
835     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
836     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
837 }
838 
839 static void pnv_init(MachineState *machine)
840 {
841     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
842     PnvMachineState *pnv = PNV_MACHINE(machine);
843     MachineClass *mc = MACHINE_GET_CLASS(machine);
844     char *fw_filename;
845     long fw_size;
846     uint64_t chip_ram_start = 0;
847     int i;
848     char *chip_typename;
849     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
850     DeviceState *dev;
851 
852     if (kvm_enabled()) {
853         error_report("The powernv machine does not work with KVM acceleration");
854         exit(EXIT_FAILURE);
855     }
856 
857     /* allocate RAM */
858     if (machine->ram_size < mc->default_ram_size) {
859         char *sz = size_to_str(mc->default_ram_size);
860         error_report("Invalid RAM size, should be bigger than %s", sz);
861         g_free(sz);
862         exit(EXIT_FAILURE);
863     }
864     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
865 
866     /*
867      * Create our simple PNOR device
868      */
869     dev = qdev_new(TYPE_PNV_PNOR);
870     if (pnor) {
871         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
872     }
873     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
874     pnv->pnor = PNV_PNOR(dev);
875 
876     /* load skiboot firmware  */
877     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
878     if (!fw_filename) {
879         error_report("Could not find OPAL firmware '%s'", bios_name);
880         exit(1);
881     }
882 
883     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
884     if (fw_size < 0) {
885         error_report("Could not load OPAL firmware '%s'", fw_filename);
886         exit(1);
887     }
888     g_free(fw_filename);
889 
890     /* load kernel */
891     if (machine->kernel_filename) {
892         long kernel_size;
893 
894         kernel_size = load_image_targphys(machine->kernel_filename,
895                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
896         if (kernel_size < 0) {
897             error_report("Could not load kernel '%s'",
898                          machine->kernel_filename);
899             exit(1);
900         }
901     }
902 
903     /* load initrd */
904     if (machine->initrd_filename) {
905         pnv->initrd_base = INITRD_LOAD_ADDR;
906         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
907                                   pnv->initrd_base, INITRD_MAX_SIZE);
908         if (pnv->initrd_size < 0) {
909             error_report("Could not load initial ram disk '%s'",
910                          machine->initrd_filename);
911             exit(1);
912         }
913     }
914 
915     /* MSIs are supported on this platform */
916     msi_nonbroken = true;
917 
918     /*
919      * Check compatibility of the specified CPU with the machine
920      * default.
921      */
922     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
923         error_report("invalid CPU model '%s' for %s machine",
924                      machine->cpu_type, mc->name);
925         exit(1);
926     }
927 
928     /* Create the processor chips */
929     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
930     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
931                                     i, machine->cpu_type);
932     if (!object_class_by_name(chip_typename)) {
933         error_report("invalid chip model '%.*s' for %s machine",
934                      i, machine->cpu_type, mc->name);
935         exit(1);
936     }
937 
938     pnv->num_chips =
939         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
940     /*
941      * TODO: should we decide on how many chips we can create based
942      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
943      */
944     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
945         error_report("invalid number of chips: '%d'", pnv->num_chips);
946         error_printf(
947             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
948         exit(1);
949     }
950 
951     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
952     for (i = 0; i < pnv->num_chips; i++) {
953         char chip_name[32];
954         Object *chip = OBJECT(qdev_new(chip_typename));
955         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
956 
957         pnv->chips[i] = PNV_CHIP(chip);
958 
959         /* Distribute RAM among the chips  */
960         object_property_set_int(chip, "ram-start", chip_ram_start,
961                                 &error_fatal);
962         object_property_set_int(chip, "ram-size", chip_ram_size,
963                                 &error_fatal);
964         chip_ram_start += chip_ram_size;
965 
966         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
967         object_property_add_child(OBJECT(pnv), chip_name, chip);
968         object_property_set_int(chip, "chip-id", i, &error_fatal);
969         object_property_set_int(chip, "nr-cores", machine->smp.cores,
970                                 &error_fatal);
971         object_property_set_int(chip, "nr-threads", machine->smp.threads,
972                                 &error_fatal);
973         /*
974          * The POWER8 machine use the XICS interrupt interface.
975          * Propagate the XICS fabric to the chip and its controllers.
976          */
977         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
978             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
979         }
980         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
981             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
982                                      &error_abort);
983         }
984         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
985     }
986     g_free(chip_typename);
987 
988     /* Instantiate ISA bus on chip 0 */
989     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
990 
991     /* Create serial port */
992     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
993 
994     /* Create an RTC ISA device too */
995     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
996 
997     /*
998      * Create the machine BMC simulator and the IPMI BT device for
999      * communication with the BMC
1000      */
1001     if (defaults_enabled()) {
1002         pnv->bmc = pnv_bmc_create(pnv->pnor);
1003         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1004     }
1005 
1006     /*
1007      * The PNOR is mapped on the LPC FW address space by the BMC.
1008      * Since we can not reach the remote BMC machine with LPC memops,
1009      * map it always for now.
1010      */
1011     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1012                                 &pnv->pnor->mmio);
1013 
1014     /*
1015      * OpenPOWER systems use a IPMI SEL Event message to notify the
1016      * host to powerdown
1017      */
1018     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1019     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1020 }
1021 
1022 /*
1023  *    0:21  Reserved - Read as zeros
1024  *   22:24  Chip ID
1025  *   25:28  Core number
1026  *   29:31  Thread ID
1027  */
1028 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
1029 {
1030     return (chip->chip_id << 7) | (core_id << 3);
1031 }
1032 
1033 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1034                                         Error **errp)
1035 {
1036     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1037     Error *local_err = NULL;
1038     Object *obj;
1039     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1040 
1041     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1042     if (local_err) {
1043         error_propagate(errp, local_err);
1044         return;
1045     }
1046 
1047     pnv_cpu->intc = obj;
1048 }
1049 
1050 
1051 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1052 {
1053     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1054 
1055     icp_reset(ICP(pnv_cpu->intc));
1056 }
1057 
1058 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1059 {
1060     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1061 
1062     icp_destroy(ICP(pnv_cpu->intc));
1063     pnv_cpu->intc = NULL;
1064 }
1065 
1066 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1067                                             Monitor *mon)
1068 {
1069     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1070 }
1071 
1072 /*
1073  *    0:48  Reserved - Read as zeroes
1074  *   49:52  Node ID
1075  *   53:55  Chip ID
1076  *   56     Reserved - Read as zero
1077  *   57:61  Core number
1078  *   62:63  Thread ID
1079  *
1080  * We only care about the lower bits. uint32_t is fine for the moment.
1081  */
1082 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1083 {
1084     return (chip->chip_id << 8) | (core_id << 2);
1085 }
1086 
1087 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1088 {
1089     return (chip->chip_id << 8) | (core_id << 2);
1090 }
1091 
1092 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1093                                         Error **errp)
1094 {
1095     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1096     Error *local_err = NULL;
1097     Object *obj;
1098     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1099 
1100     /*
1101      * The core creates its interrupt presenter but the XIVE interrupt
1102      * controller object is initialized afterwards. Hopefully, it's
1103      * only used at runtime.
1104      */
1105     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1106                            &local_err);
1107     if (local_err) {
1108         error_propagate(errp, local_err);
1109         return;
1110     }
1111 
1112     pnv_cpu->intc = obj;
1113 }
1114 
1115 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1116 {
1117     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1118 
1119     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1120 }
1121 
1122 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1123 {
1124     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1125 
1126     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1127     pnv_cpu->intc = NULL;
1128 }
1129 
1130 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1131                                             Monitor *mon)
1132 {
1133     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1134 }
1135 
1136 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1137                                         Error **errp)
1138 {
1139     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1140     Error *local_err = NULL;
1141     Object *obj;
1142     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1143 
1144     /*
1145      * The core creates its interrupt presenter but the XIVE2 interrupt
1146      * controller object is initialized afterwards. Hopefully, it's
1147      * only used at runtime.
1148      */
1149     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1150                            &local_err);
1151     if (local_err) {
1152         error_propagate(errp, local_err);
1153         return;
1154     }
1155 
1156     pnv_cpu->intc = obj;
1157 }
1158 
1159 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1160 {
1161     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1162 
1163     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1164 }
1165 
1166 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1167 {
1168     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1169 
1170     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1171     pnv_cpu->intc = NULL;
1172 }
1173 
1174 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1175                                              Monitor *mon)
1176 {
1177     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1178 }
1179 
1180 /*
1181  * Allowed core identifiers on a POWER8 Processor Chip :
1182  *
1183  * <EX0 reserved>
1184  *  EX1  - Venice only
1185  *  EX2  - Venice only
1186  *  EX3  - Venice only
1187  *  EX4
1188  *  EX5
1189  *  EX6
1190  * <EX7,8 reserved> <reserved>
1191  *  EX9  - Venice only
1192  *  EX10 - Venice only
1193  *  EX11 - Venice only
1194  *  EX12
1195  *  EX13
1196  *  EX14
1197  * <EX15 reserved>
1198  */
1199 #define POWER8E_CORE_MASK  (0x7070ull)
1200 #define POWER8_CORE_MASK   (0x7e7eull)
1201 
1202 /*
1203  * POWER9 has 24 cores, ids starting at 0x0
1204  */
1205 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1206 
1207 
1208 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1209 
1210 static void pnv_chip_power8_instance_init(Object *obj)
1211 {
1212     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1213     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1214     int i;
1215 
1216     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1217                              (Object **)&chip8->xics,
1218                              object_property_allow_set_link,
1219                              OBJ_PROP_LINK_STRONG);
1220 
1221     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1222 
1223     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1224 
1225     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1226 
1227     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1228 
1229     if (defaults_enabled()) {
1230         chip8->num_phbs = pcc->num_phbs;
1231 
1232         for (i = 0; i < chip8->num_phbs; i++) {
1233             Object *phb = object_new(TYPE_PNV_PHB);
1234 
1235             /*
1236              * We need the chip to parent the PHB to allow the DT
1237              * to build correctly (via pnv_xscom_dt()).
1238              *
1239              * TODO: the PHB should be parented by a PEC device that, at
1240              * this moment, is not modelled powernv8/phb3.
1241              */
1242             object_property_add_child(obj, "phb[*]", phb);
1243             chip8->phbs[i] = PNV_PHB(phb);
1244         }
1245     }
1246 
1247 }
1248 
1249 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1250  {
1251     PnvChip *chip = PNV_CHIP(chip8);
1252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1253     int i, j;
1254     char *name;
1255 
1256     name = g_strdup_printf("icp-%x", chip->chip_id);
1257     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1258     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1259     g_free(name);
1260 
1261     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1262 
1263     /* Map the ICP registers for each thread */
1264     for (i = 0; i < chip->nr_cores; i++) {
1265         PnvCore *pnv_core = chip->cores[i];
1266         int core_hwid = CPU_CORE(pnv_core)->core_id;
1267 
1268         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1269             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1270             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1271 
1272             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1273                                         &icp->mmio);
1274         }
1275     }
1276 }
1277 
1278 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1279 {
1280     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1281     PnvChip *chip = PNV_CHIP(dev);
1282     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1283     Pnv8Psi *psi8 = &chip8->psi;
1284     Error *local_err = NULL;
1285     int i;
1286 
1287     assert(chip8->xics);
1288 
1289     /* XSCOM bridge is first */
1290     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1291     if (local_err) {
1292         error_propagate(errp, local_err);
1293         return;
1294     }
1295     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1296 
1297     pcc->parent_realize(dev, &local_err);
1298     if (local_err) {
1299         error_propagate(errp, local_err);
1300         return;
1301     }
1302 
1303     /* Processor Service Interface (PSI) Host Bridge */
1304     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1305                             &error_fatal);
1306     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1307                              OBJECT(chip8->xics), &error_abort);
1308     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1309         return;
1310     }
1311     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1312                             &PNV_PSI(psi8)->xscom_regs);
1313 
1314     /* Create LPC controller */
1315     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1316     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1317 
1318     chip->fw_mr = &chip8->lpc.isa_fw;
1319     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1320                                             (uint64_t) PNV_XSCOM_BASE(chip),
1321                                             PNV_XSCOM_LPC_BASE);
1322 
1323     /*
1324      * Interrupt Management Area. This is the memory region holding
1325      * all the Interrupt Control Presenter (ICP) registers
1326      */
1327     pnv_chip_icp_realize(chip8, &local_err);
1328     if (local_err) {
1329         error_propagate(errp, local_err);
1330         return;
1331     }
1332 
1333     /* Create the simplified OCC model */
1334     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1335         return;
1336     }
1337     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1338     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1339                           qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1340 
1341     /* OCC SRAM model */
1342     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1343                                 &chip8->occ.sram_regs);
1344 
1345     /* HOMER */
1346     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1347                              &error_abort);
1348     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1349         return;
1350     }
1351     /* Homer Xscom region */
1352     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1353 
1354     /* Homer mmio region */
1355     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1356                                 &chip8->homer.regs);
1357 
1358     /* PHB controllers */
1359     for (i = 0; i < chip8->num_phbs; i++) {
1360         PnvPHB *phb = chip8->phbs[i];
1361 
1362         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1363         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1364                                 &error_fatal);
1365         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1366                                  &error_fatal);
1367         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1368             return;
1369         }
1370     }
1371 }
1372 
1373 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1374 {
1375     addr &= (PNV_XSCOM_SIZE - 1);
1376     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1377 }
1378 
1379 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1380 {
1381     DeviceClass *dc = DEVICE_CLASS(klass);
1382     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1383 
1384     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1385     k->cores_mask = POWER8E_CORE_MASK;
1386     k->num_phbs = 3;
1387     k->core_pir = pnv_chip_core_pir_p8;
1388     k->intc_create = pnv_chip_power8_intc_create;
1389     k->intc_reset = pnv_chip_power8_intc_reset;
1390     k->intc_destroy = pnv_chip_power8_intc_destroy;
1391     k->intc_print_info = pnv_chip_power8_intc_print_info;
1392     k->isa_create = pnv_chip_power8_isa_create;
1393     k->dt_populate = pnv_chip_power8_dt_populate;
1394     k->pic_print_info = pnv_chip_power8_pic_print_info;
1395     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1396     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1397     dc->desc = "PowerNV Chip POWER8E";
1398 
1399     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1400                                     &k->parent_realize);
1401 }
1402 
1403 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1404 {
1405     DeviceClass *dc = DEVICE_CLASS(klass);
1406     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1407 
1408     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1409     k->cores_mask = POWER8_CORE_MASK;
1410     k->num_phbs = 3;
1411     k->core_pir = pnv_chip_core_pir_p8;
1412     k->intc_create = pnv_chip_power8_intc_create;
1413     k->intc_reset = pnv_chip_power8_intc_reset;
1414     k->intc_destroy = pnv_chip_power8_intc_destroy;
1415     k->intc_print_info = pnv_chip_power8_intc_print_info;
1416     k->isa_create = pnv_chip_power8_isa_create;
1417     k->dt_populate = pnv_chip_power8_dt_populate;
1418     k->pic_print_info = pnv_chip_power8_pic_print_info;
1419     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1420     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1421     dc->desc = "PowerNV Chip POWER8";
1422 
1423     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1424                                     &k->parent_realize);
1425 }
1426 
1427 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1428 {
1429     DeviceClass *dc = DEVICE_CLASS(klass);
1430     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1431 
1432     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1433     k->cores_mask = POWER8_CORE_MASK;
1434     k->num_phbs = 4;
1435     k->core_pir = pnv_chip_core_pir_p8;
1436     k->intc_create = pnv_chip_power8_intc_create;
1437     k->intc_reset = pnv_chip_power8_intc_reset;
1438     k->intc_destroy = pnv_chip_power8_intc_destroy;
1439     k->intc_print_info = pnv_chip_power8_intc_print_info;
1440     k->isa_create = pnv_chip_power8nvl_isa_create;
1441     k->dt_populate = pnv_chip_power8_dt_populate;
1442     k->pic_print_info = pnv_chip_power8_pic_print_info;
1443     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1444     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1445     dc->desc = "PowerNV Chip POWER8NVL";
1446 
1447     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1448                                     &k->parent_realize);
1449 }
1450 
1451 static void pnv_chip_power9_instance_init(Object *obj)
1452 {
1453     PnvChip *chip = PNV_CHIP(obj);
1454     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1455     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1456     int i;
1457 
1458     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1459     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1460                               "xive-fabric");
1461 
1462     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1463 
1464     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1465 
1466     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1467 
1468     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1469 
1470     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1471 
1472     /* Number of PECs is the chip default */
1473     chip->num_pecs = pcc->num_pecs;
1474 
1475     for (i = 0; i < chip->num_pecs; i++) {
1476         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1477                                 TYPE_PNV_PHB4_PEC);
1478     }
1479 }
1480 
1481 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1482                                       PnvCore *pnv_core)
1483 {
1484     char eq_name[32];
1485     int core_id = CPU_CORE(pnv_core)->core_id;
1486 
1487     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1488     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1489                                        sizeof(*eq), TYPE_PNV_QUAD,
1490                                        &error_fatal, NULL);
1491 
1492     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1493     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1494 }
1495 
1496 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1497 {
1498     PnvChip *chip = PNV_CHIP(chip9);
1499     int i;
1500 
1501     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1502     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1503 
1504     for (i = 0; i < chip9->nr_quads; i++) {
1505         PnvQuad *eq = &chip9->quads[i];
1506 
1507         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1508 
1509         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1510                                 &eq->xscom_regs);
1511     }
1512 }
1513 
1514 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1515 {
1516     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1517     int i;
1518 
1519     for (i = 0; i < chip->num_pecs; i++) {
1520         PnvPhb4PecState *pec = &chip9->pecs[i];
1521         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1522         uint32_t pec_nest_base;
1523         uint32_t pec_pci_base;
1524 
1525         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1526         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1527                                 &error_fatal);
1528         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1529                                  &error_fatal);
1530         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1531             return;
1532         }
1533 
1534         pec_nest_base = pecc->xscom_nest_base(pec);
1535         pec_pci_base = pecc->xscom_pci_base(pec);
1536 
1537         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1538         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1539     }
1540 }
1541 
1542 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1543 {
1544     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1545     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1546     PnvChip *chip = PNV_CHIP(dev);
1547     Pnv9Psi *psi9 = &chip9->psi;
1548     Error *local_err = NULL;
1549 
1550     /* XSCOM bridge is first */
1551     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1552     if (local_err) {
1553         error_propagate(errp, local_err);
1554         return;
1555     }
1556     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1557 
1558     pcc->parent_realize(dev, &local_err);
1559     if (local_err) {
1560         error_propagate(errp, local_err);
1561         return;
1562     }
1563 
1564     pnv_chip_quad_realize(chip9, &local_err);
1565     if (local_err) {
1566         error_propagate(errp, local_err);
1567         return;
1568     }
1569 
1570     /* XIVE interrupt controller (POWER9) */
1571     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1572                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1573     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1574                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1575     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1576                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1577     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1578                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1579     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1580                              &error_abort);
1581     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1582         return;
1583     }
1584     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1585                             &chip9->xive.xscom_regs);
1586 
1587     /* Processor Service Interface (PSI) Host Bridge */
1588     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1589                             &error_fatal);
1590     /* This is the only device with 4k ESB pages */
1591     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1592                             &error_fatal);
1593     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1594         return;
1595     }
1596     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1597                             &PNV_PSI(psi9)->xscom_regs);
1598 
1599     /* LPC */
1600     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1601         return;
1602     }
1603     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1604                                 &chip9->lpc.xscom_regs);
1605 
1606     chip->fw_mr = &chip9->lpc.isa_fw;
1607     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1608                                             (uint64_t) PNV9_LPCM_BASE(chip));
1609 
1610     /* Create the simplified OCC model */
1611     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1612         return;
1613     }
1614     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1615     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1616                               DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1617 
1618     /* OCC SRAM model */
1619     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1620                                 &chip9->occ.sram_regs);
1621 
1622     /* SBE */
1623     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1624         return;
1625     }
1626     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1627                             &chip9->sbe.xscom_ctrl_regs);
1628     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1629                             &chip9->sbe.xscom_mbox_regs);
1630     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1631                               DEVICE(&chip9->psi), PSIHB9_IRQ_PSU));
1632 
1633     /* HOMER */
1634     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1635                              &error_abort);
1636     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1637         return;
1638     }
1639     /* Homer Xscom region */
1640     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1641 
1642     /* Homer mmio region */
1643     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1644                                 &chip9->homer.regs);
1645 
1646     /* PEC PHBs */
1647     pnv_chip_power9_pec_realize(chip, &local_err);
1648     if (local_err) {
1649         error_propagate(errp, local_err);
1650         return;
1651     }
1652 }
1653 
1654 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1655 {
1656     addr &= (PNV9_XSCOM_SIZE - 1);
1657     return addr >> 3;
1658 }
1659 
1660 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1661 {
1662     DeviceClass *dc = DEVICE_CLASS(klass);
1663     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1664 
1665     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1666     k->cores_mask = POWER9_CORE_MASK;
1667     k->core_pir = pnv_chip_core_pir_p9;
1668     k->intc_create = pnv_chip_power9_intc_create;
1669     k->intc_reset = pnv_chip_power9_intc_reset;
1670     k->intc_destroy = pnv_chip_power9_intc_destroy;
1671     k->intc_print_info = pnv_chip_power9_intc_print_info;
1672     k->isa_create = pnv_chip_power9_isa_create;
1673     k->dt_populate = pnv_chip_power9_dt_populate;
1674     k->pic_print_info = pnv_chip_power9_pic_print_info;
1675     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1676     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1677     dc->desc = "PowerNV Chip POWER9";
1678     k->num_pecs = PNV9_CHIP_MAX_PEC;
1679 
1680     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1681                                     &k->parent_realize);
1682 }
1683 
1684 static void pnv_chip_power10_instance_init(Object *obj)
1685 {
1686     PnvChip *chip = PNV_CHIP(obj);
1687     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1688     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1689     int i;
1690 
1691     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1692     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1693                               "xive-fabric");
1694     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1695     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1696     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1697     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1698     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1699 
1700     chip->num_pecs = pcc->num_pecs;
1701 
1702     for (i = 0; i < chip->num_pecs; i++) {
1703         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1704                                 TYPE_PNV_PHB5_PEC);
1705     }
1706 }
1707 
1708 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1709 {
1710     PnvChip *chip = PNV_CHIP(chip10);
1711     int i;
1712 
1713     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1714     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1715 
1716     for (i = 0; i < chip10->nr_quads; i++) {
1717         PnvQuad *eq = &chip10->quads[i];
1718 
1719         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1720 
1721         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1722                                 &eq->xscom_regs);
1723     }
1724 }
1725 
1726 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1727 {
1728     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1729     int i;
1730 
1731     for (i = 0; i < chip->num_pecs; i++) {
1732         PnvPhb4PecState *pec = &chip10->pecs[i];
1733         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1734         uint32_t pec_nest_base;
1735         uint32_t pec_pci_base;
1736 
1737         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1738         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1739                                 &error_fatal);
1740         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1741                                  &error_fatal);
1742         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1743             return;
1744         }
1745 
1746         pec_nest_base = pecc->xscom_nest_base(pec);
1747         pec_pci_base = pecc->xscom_pci_base(pec);
1748 
1749         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1750         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1751     }
1752 }
1753 
1754 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1755 {
1756     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1757     PnvChip *chip = PNV_CHIP(dev);
1758     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1759     Error *local_err = NULL;
1760 
1761     /* XSCOM bridge is first */
1762     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1763     if (local_err) {
1764         error_propagate(errp, local_err);
1765         return;
1766     }
1767     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1768 
1769     pcc->parent_realize(dev, &local_err);
1770     if (local_err) {
1771         error_propagate(errp, local_err);
1772         return;
1773     }
1774 
1775     pnv_chip_power10_quad_realize(chip10, &local_err);
1776     if (local_err) {
1777         error_propagate(errp, local_err);
1778         return;
1779     }
1780 
1781     /* XIVE2 interrupt controller (POWER10) */
1782     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1783                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1784     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1785                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1786     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1787                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1788     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1789                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1790     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1791                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1792     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1793                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1794     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1795                              &error_abort);
1796     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1797         return;
1798     }
1799     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1800                             &chip10->xive.xscom_regs);
1801 
1802     /* Processor Service Interface (PSI) Host Bridge */
1803     object_property_set_int(OBJECT(&chip10->psi), "bar",
1804                             PNV10_PSIHB_BASE(chip), &error_fatal);
1805     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1806     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1807                             &error_fatal);
1808     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1809         return;
1810     }
1811     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1812                             &PNV_PSI(&chip10->psi)->xscom_regs);
1813 
1814     /* LPC */
1815     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1816         return;
1817     }
1818     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1819                                 &chip10->lpc.xscom_regs);
1820 
1821     chip->fw_mr = &chip10->lpc.isa_fw;
1822     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1823                                             (uint64_t) PNV10_LPCM_BASE(chip));
1824 
1825     /* Create the simplified OCC model */
1826     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1827         return;
1828     }
1829     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1830                             &chip10->occ.xscom_regs);
1831     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1832                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1833 
1834     /* OCC SRAM model */
1835     memory_region_add_subregion(get_system_memory(),
1836                                 PNV10_OCC_SENSOR_BASE(chip),
1837                                 &chip10->occ.sram_regs);
1838 
1839     /* SBE */
1840     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1841         return;
1842     }
1843     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1844                             &chip10->sbe.xscom_ctrl_regs);
1845     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1846                             &chip10->sbe.xscom_mbox_regs);
1847     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1848                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1849 
1850     /* HOMER */
1851     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1852                              &error_abort);
1853     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1854         return;
1855     }
1856     /* Homer Xscom region */
1857     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1858                             &chip10->homer.pba_regs);
1859 
1860     /* Homer mmio region */
1861     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1862                                 &chip10->homer.regs);
1863 
1864     /* PHBs */
1865     pnv_chip_power10_phb_realize(chip, &local_err);
1866     if (local_err) {
1867         error_propagate(errp, local_err);
1868         return;
1869     }
1870 }
1871 
1872 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1873 {
1874     addr &= (PNV10_XSCOM_SIZE - 1);
1875     return addr >> 3;
1876 }
1877 
1878 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1879 {
1880     DeviceClass *dc = DEVICE_CLASS(klass);
1881     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1882 
1883     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1884     k->cores_mask = POWER10_CORE_MASK;
1885     k->core_pir = pnv_chip_core_pir_p10;
1886     k->intc_create = pnv_chip_power10_intc_create;
1887     k->intc_reset = pnv_chip_power10_intc_reset;
1888     k->intc_destroy = pnv_chip_power10_intc_destroy;
1889     k->intc_print_info = pnv_chip_power10_intc_print_info;
1890     k->isa_create = pnv_chip_power10_isa_create;
1891     k->dt_populate = pnv_chip_power10_dt_populate;
1892     k->pic_print_info = pnv_chip_power10_pic_print_info;
1893     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1894     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1895     dc->desc = "PowerNV Chip POWER10";
1896     k->num_pecs = PNV10_CHIP_MAX_PEC;
1897 
1898     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1899                                     &k->parent_realize);
1900 }
1901 
1902 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1903 {
1904     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1905     int cores_max;
1906 
1907     /*
1908      * No custom mask for this chip, let's use the default one from *
1909      * the chip class
1910      */
1911     if (!chip->cores_mask) {
1912         chip->cores_mask = pcc->cores_mask;
1913     }
1914 
1915     /* filter alien core ids ! some are reserved */
1916     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1917         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1918                    chip->cores_mask);
1919         return;
1920     }
1921     chip->cores_mask &= pcc->cores_mask;
1922 
1923     /* now that we have a sane layout, let check the number of cores */
1924     cores_max = ctpop64(chip->cores_mask);
1925     if (chip->nr_cores > cores_max) {
1926         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1927                    cores_max);
1928         return;
1929     }
1930 }
1931 
1932 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1933 {
1934     Error *error = NULL;
1935     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1936     const char *typename = pnv_chip_core_typename(chip);
1937     int i, core_hwid;
1938     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1939 
1940     if (!object_class_by_name(typename)) {
1941         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1942         return;
1943     }
1944 
1945     /* Cores */
1946     pnv_chip_core_sanitize(chip, &error);
1947     if (error) {
1948         error_propagate(errp, error);
1949         return;
1950     }
1951 
1952     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1953 
1954     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1955              && (i < chip->nr_cores); core_hwid++) {
1956         char core_name[32];
1957         PnvCore *pnv_core;
1958         uint64_t xscom_core_base;
1959 
1960         if (!(chip->cores_mask & (1ull << core_hwid))) {
1961             continue;
1962         }
1963 
1964         pnv_core = PNV_CORE(object_new(typename));
1965 
1966         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1967         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1968         chip->cores[i] = pnv_core;
1969         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1970                                 chip->nr_threads, &error_fatal);
1971         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1972                                 core_hwid, &error_fatal);
1973         object_property_set_int(OBJECT(pnv_core), "pir",
1974                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1975         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1976                                 &error_fatal);
1977         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1978                                  &error_abort);
1979         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1980 
1981         /* Each core has an XSCOM MMIO region */
1982         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1983 
1984         pnv_xscom_add_subregion(chip, xscom_core_base,
1985                                 &pnv_core->xscom_regs);
1986         i++;
1987     }
1988 }
1989 
1990 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1991 {
1992     PnvChip *chip = PNV_CHIP(dev);
1993     Error *error = NULL;
1994 
1995     /* Cores */
1996     pnv_chip_core_realize(chip, &error);
1997     if (error) {
1998         error_propagate(errp, error);
1999         return;
2000     }
2001 }
2002 
2003 static Property pnv_chip_properties[] = {
2004     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2005     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2006     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2007     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2008     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2009     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2010     DEFINE_PROP_END_OF_LIST(),
2011 };
2012 
2013 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2014 {
2015     DeviceClass *dc = DEVICE_CLASS(klass);
2016 
2017     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2018     dc->realize = pnv_chip_realize;
2019     device_class_set_props(dc, pnv_chip_properties);
2020     dc->desc = "PowerNV Chip";
2021 }
2022 
2023 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2024 {
2025     int i, j;
2026 
2027     for (i = 0; i < chip->nr_cores; i++) {
2028         PnvCore *pc = chip->cores[i];
2029         CPUCore *cc = CPU_CORE(pc);
2030 
2031         for (j = 0; j < cc->nr_threads; j++) {
2032             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2033                 return pc->threads[j];
2034             }
2035         }
2036     }
2037     return NULL;
2038 }
2039 
2040 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2041 {
2042     PnvMachineState *pnv = PNV_MACHINE(xi);
2043     int i, j;
2044 
2045     for (i = 0; i < pnv->num_chips; i++) {
2046         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2047 
2048         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2049             return &chip8->psi.ics;
2050         }
2051 
2052         for (j = 0; j < chip8->num_phbs; j++) {
2053             PnvPHB *phb = chip8->phbs[j];
2054             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2055 
2056             if (ics_valid_irq(&phb3->lsis, irq)) {
2057                 return &phb3->lsis;
2058             }
2059 
2060             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2061                 return ICS(&phb3->msis);
2062             }
2063         }
2064     }
2065     return NULL;
2066 }
2067 
2068 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2069 {
2070     int i;
2071 
2072     for (i = 0; i < pnv->num_chips; i++) {
2073         PnvChip *chip = pnv->chips[i];
2074         if (chip->chip_id == chip_id) {
2075             return chip;
2076         }
2077     }
2078     return NULL;
2079 }
2080 
2081 static void pnv_ics_resend(XICSFabric *xi)
2082 {
2083     PnvMachineState *pnv = PNV_MACHINE(xi);
2084     int i, j;
2085 
2086     for (i = 0; i < pnv->num_chips; i++) {
2087         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2088 
2089         ics_resend(&chip8->psi.ics);
2090 
2091         for (j = 0; j < chip8->num_phbs; j++) {
2092             PnvPHB *phb = chip8->phbs[j];
2093             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2094 
2095             ics_resend(&phb3->lsis);
2096             ics_resend(ICS(&phb3->msis));
2097         }
2098     }
2099 }
2100 
2101 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2102 {
2103     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2104 
2105     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2106 }
2107 
2108 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2109                                Monitor *mon)
2110 {
2111     PnvMachineState *pnv = PNV_MACHINE(obj);
2112     int i;
2113     CPUState *cs;
2114 
2115     CPU_FOREACH(cs) {
2116         PowerPCCPU *cpu = POWERPC_CPU(cs);
2117 
2118         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2119         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2120                                                            mon);
2121     }
2122 
2123     for (i = 0; i < pnv->num_chips; i++) {
2124         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2125     }
2126 }
2127 
2128 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2129                          uint8_t nvt_blk, uint32_t nvt_idx,
2130                          bool cam_ignore, uint8_t priority,
2131                          uint32_t logic_serv,
2132                          XiveTCTXMatch *match)
2133 {
2134     PnvMachineState *pnv = PNV_MACHINE(xfb);
2135     int total_count = 0;
2136     int i;
2137 
2138     for (i = 0; i < pnv->num_chips; i++) {
2139         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2140         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2141         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2142         int count;
2143 
2144         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2145                                priority, logic_serv, match);
2146 
2147         if (count < 0) {
2148             return count;
2149         }
2150 
2151         total_count += count;
2152     }
2153 
2154     return total_count;
2155 }
2156 
2157 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2158                                 uint8_t nvt_blk, uint32_t nvt_idx,
2159                                 bool cam_ignore, uint8_t priority,
2160                                 uint32_t logic_serv,
2161                                 XiveTCTXMatch *match)
2162 {
2163     PnvMachineState *pnv = PNV_MACHINE(xfb);
2164     int total_count = 0;
2165     int i;
2166 
2167     for (i = 0; i < pnv->num_chips; i++) {
2168         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2169         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2170         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2171         int count;
2172 
2173         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2174                                priority, logic_serv, match);
2175 
2176         if (count < 0) {
2177             return count;
2178         }
2179 
2180         total_count += count;
2181     }
2182 
2183     return total_count;
2184 }
2185 
2186 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2187 {
2188     MachineClass *mc = MACHINE_CLASS(oc);
2189     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2190     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2191     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2192 
2193     static GlobalProperty phb_compat[] = {
2194         { TYPE_PNV_PHB, "version", "3" },
2195         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2196     };
2197 
2198     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2199     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2200     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2201 
2202     xic->icp_get = pnv_icp_get;
2203     xic->ics_get = pnv_ics_get;
2204     xic->ics_resend = pnv_ics_resend;
2205 
2206     pmc->compat = compat;
2207     pmc->compat_size = sizeof(compat);
2208 
2209     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2210 }
2211 
2212 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2213 {
2214     MachineClass *mc = MACHINE_CLASS(oc);
2215     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2216     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2217     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2218 
2219     static GlobalProperty phb_compat[] = {
2220         { TYPE_PNV_PHB, "version", "4" },
2221         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2222     };
2223 
2224     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2225     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
2226     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2227 
2228     xfc->match_nvt = pnv_match_nvt;
2229 
2230     mc->alias = "powernv";
2231 
2232     pmc->compat = compat;
2233     pmc->compat_size = sizeof(compat);
2234     pmc->dt_power_mgt = pnv_dt_power_mgt;
2235 
2236     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2237 }
2238 
2239 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2240 {
2241     MachineClass *mc = MACHINE_CLASS(oc);
2242     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2243     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2244     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2245 
2246     static GlobalProperty phb_compat[] = {
2247         { TYPE_PNV_PHB, "version", "5" },
2248         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2249     };
2250 
2251     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2252     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2253     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2254 
2255     pmc->compat = compat;
2256     pmc->compat_size = sizeof(compat);
2257     pmc->dt_power_mgt = pnv_dt_power_mgt;
2258 
2259     xfc->match_nvt = pnv10_xive_match_nvt;
2260 
2261     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2262 }
2263 
2264 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2265 {
2266     PnvMachineState *pnv = PNV_MACHINE(obj);
2267 
2268     return !!pnv->fw_load_addr;
2269 }
2270 
2271 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2272 {
2273     PnvMachineState *pnv = PNV_MACHINE(obj);
2274 
2275     if (value) {
2276         pnv->fw_load_addr = 0x8000000;
2277     }
2278 }
2279 
2280 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2281 {
2282     PowerPCCPU *cpu = POWERPC_CPU(cs);
2283     CPUPPCState *env = &cpu->env;
2284 
2285     cpu_synchronize_state(cs);
2286     ppc_cpu_do_system_reset(cs);
2287     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2288         /*
2289          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2290          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2291          * (PPC_BIT(43)).
2292          */
2293         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2294             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2295             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2296         }
2297     } else {
2298         /*
2299          * For non-powersave system resets, SRR1[42:45] are defined to be
2300          * implementation-dependent. The POWER9 User Manual specifies that
2301          * an external (SCOM driven, which may come from a BMC nmi command or
2302          * another CPU requesting a NMI IPI) system reset exception should be
2303          * 0b0010 (PPC_BIT(44)).
2304          */
2305         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2306     }
2307 }
2308 
2309 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2310 {
2311     CPUState *cs;
2312 
2313     CPU_FOREACH(cs) {
2314         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2315     }
2316 }
2317 
2318 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2319 {
2320     MachineClass *mc = MACHINE_CLASS(oc);
2321     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2322     NMIClass *nc = NMI_CLASS(oc);
2323 
2324     mc->desc = "IBM PowerNV (Non-Virtualized)";
2325     mc->init = pnv_init;
2326     mc->reset = pnv_reset;
2327     mc->max_cpus = MAX_CPUS;
2328     /* Pnv provides a AHCI device for storage */
2329     mc->block_default_type = IF_IDE;
2330     mc->no_parallel = 1;
2331     mc->default_boot_order = NULL;
2332     /*
2333      * RAM defaults to less than 2048 for 32-bit hosts, and large
2334      * enough to fit the maximum initrd size at it's load address
2335      */
2336     mc->default_ram_size = 1 * GiB;
2337     mc->default_ram_id = "pnv.ram";
2338     ispc->print_info = pnv_pic_print_info;
2339     nc->nmi_monitor_handler = pnv_nmi;
2340 
2341     object_class_property_add_bool(oc, "hb-mode",
2342                                    pnv_machine_get_hb, pnv_machine_set_hb);
2343     object_class_property_set_description(oc, "hb-mode",
2344                               "Use a hostboot like boot loader");
2345 }
2346 
2347 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2348     {                                             \
2349         .name          = type,                    \
2350         .class_init    = class_initfn,            \
2351         .parent        = TYPE_PNV8_CHIP,          \
2352     }
2353 
2354 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2355     {                                             \
2356         .name          = type,                    \
2357         .class_init    = class_initfn,            \
2358         .parent        = TYPE_PNV9_CHIP,          \
2359     }
2360 
2361 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2362     {                                              \
2363         .name          = type,                     \
2364         .class_init    = class_initfn,             \
2365         .parent        = TYPE_PNV10_CHIP,          \
2366     }
2367 
2368 static const TypeInfo types[] = {
2369     {
2370         .name          = MACHINE_TYPE_NAME("powernv10"),
2371         .parent        = TYPE_PNV_MACHINE,
2372         .class_init    = pnv_machine_power10_class_init,
2373         .interfaces = (InterfaceInfo[]) {
2374             { TYPE_XIVE_FABRIC },
2375             { },
2376         },
2377     },
2378     {
2379         .name          = MACHINE_TYPE_NAME("powernv9"),
2380         .parent        = TYPE_PNV_MACHINE,
2381         .class_init    = pnv_machine_power9_class_init,
2382         .interfaces = (InterfaceInfo[]) {
2383             { TYPE_XIVE_FABRIC },
2384             { },
2385         },
2386     },
2387     {
2388         .name          = MACHINE_TYPE_NAME("powernv8"),
2389         .parent        = TYPE_PNV_MACHINE,
2390         .class_init    = pnv_machine_power8_class_init,
2391         .interfaces = (InterfaceInfo[]) {
2392             { TYPE_XICS_FABRIC },
2393             { },
2394         },
2395     },
2396     {
2397         .name          = TYPE_PNV_MACHINE,
2398         .parent        = TYPE_MACHINE,
2399         .abstract       = true,
2400         .instance_size = sizeof(PnvMachineState),
2401         .class_init    = pnv_machine_class_init,
2402         .class_size    = sizeof(PnvMachineClass),
2403         .interfaces = (InterfaceInfo[]) {
2404             { TYPE_INTERRUPT_STATS_PROVIDER },
2405             { TYPE_NMI },
2406             { },
2407         },
2408     },
2409     {
2410         .name          = TYPE_PNV_CHIP,
2411         .parent        = TYPE_SYS_BUS_DEVICE,
2412         .class_init    = pnv_chip_class_init,
2413         .instance_size = sizeof(PnvChip),
2414         .class_size    = sizeof(PnvChipClass),
2415         .abstract      = true,
2416     },
2417 
2418     /*
2419      * P10 chip and variants
2420      */
2421     {
2422         .name          = TYPE_PNV10_CHIP,
2423         .parent        = TYPE_PNV_CHIP,
2424         .instance_init = pnv_chip_power10_instance_init,
2425         .instance_size = sizeof(Pnv10Chip),
2426     },
2427     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2428 
2429     /*
2430      * P9 chip and variants
2431      */
2432     {
2433         .name          = TYPE_PNV9_CHIP,
2434         .parent        = TYPE_PNV_CHIP,
2435         .instance_init = pnv_chip_power9_instance_init,
2436         .instance_size = sizeof(Pnv9Chip),
2437     },
2438     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2439 
2440     /*
2441      * P8 chip and variants
2442      */
2443     {
2444         .name          = TYPE_PNV8_CHIP,
2445         .parent        = TYPE_PNV_CHIP,
2446         .instance_init = pnv_chip_power8_instance_init,
2447         .instance_size = sizeof(Pnv8Chip),
2448     },
2449     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2450     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2451     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2452                           pnv_chip_power8nvl_class_init),
2453 };
2454 
2455 DEFINE_TYPES(types)
2456