xref: /openbmc/qemu/hw/ppc/pnv.c (revision dd77c49e742a9c3d872fdc742f34c354173dd8ca)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "qapi/type-helpers.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
147     int i;
148     uint32_t pir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 
246     return offset;
247 }
248 
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
250                        uint32_t nr_threads)
251 {
252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
253     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
254     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
255     char *name;
256     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
257     uint32_t irange[2], i, rsize;
258     uint64_t *reg;
259     int offset;
260 
261     irange[0] = cpu_to_be32(pir);
262     irange[1] = cpu_to_be32(nr_threads);
263 
264     rsize = sizeof(uint64_t) * 2 * nr_threads;
265     reg = g_malloc(rsize);
266     for (i = 0; i < nr_threads; i++) {
267         /* We know P8 PIR is linear with thread id */
268         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
269         reg[i * 2 + 1] = cpu_to_be64(0x1000);
270     }
271 
272     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
273     offset = fdt_add_subnode(fdt, 0, name);
274     _FDT(offset);
275     g_free(name);
276 
277     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
278     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
279     _FDT((fdt_setprop_string(fdt, offset, "device_type",
280                               "PowerPC-External-Interrupt-Presentation")));
281     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
282     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
283                        irange, sizeof(irange))));
284     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
285     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
286     g_free(reg);
287 }
288 
289 /*
290  * Adds a PnvPHB to the chip on P8.
291  * Implemented here, like for defaults PHBs
292  */
293 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 {
295     Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 
297     phb->chip = chip;
298 
299     chip8->phbs[chip8->num_phbs] = phb;
300     chip8->num_phbs++;
301     return chip;
302 }
303 
304 /*
305  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
306  * HTM is always enabled because TCG does implement HTM, it's just a
307  * degenerate implementation.
308  */
309 static const uint8_t pa_features_207[] = { 24, 0,
310                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
311                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
312                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
313                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 
315 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 {
317     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
318     int i;
319 
320     pnv_dt_xscom(chip, fdt, 0,
321                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
322                  cpu_to_be64(PNV_XSCOM_SIZE),
323                  compat, sizeof(compat));
324 
325     for (i = 0; i < chip->nr_cores; i++) {
326         PnvCore *pnv_core = chip->cores[i];
327         int offset;
328 
329         offset = pnv_dt_core(chip, pnv_core, fdt);
330 
331         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
332                            pa_features_207, sizeof(pa_features_207))));
333 
334         /* Interrupt Control Presenters (ICP). One per core. */
335         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
336     }
337 
338     if (chip->ram_size) {
339         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
340     }
341 }
342 
343 /*
344  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345  */
346 static const uint8_t pa_features_300[] = { 66, 0,
347     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
348     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
349     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
350     /* 6: DS207 */
351     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
352     /* 16: Vector */
353     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
354     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
356     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
358     /* 32: LE atomic, 34: EBB + ext EBB */
359     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
360     /* 40: Radix MMU */
361     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
362     /* 42: PM, 44: PC RA, 46: SC vec'd */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
364     /* 48: SIMD, 50: QP BFP, 52: String */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
366     /* 54: DecFP, 56: DecI, 58: SHA */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
368     /* 60: NM atomic, 62: RNG */
369     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
370 };
371 
372 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 {
374     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
375     int i;
376 
377     pnv_dt_xscom(chip, fdt, 0,
378                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
379                  cpu_to_be64(PNV9_XSCOM_SIZE),
380                  compat, sizeof(compat));
381 
382     for (i = 0; i < chip->nr_cores; i++) {
383         PnvCore *pnv_core = chip->cores[i];
384         int offset;
385 
386         offset = pnv_dt_core(chip, pnv_core, fdt);
387 
388         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
389                            pa_features_300, sizeof(pa_features_300))));
390     }
391 
392     if (chip->ram_size) {
393         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
394     }
395 
396     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
397 }
398 
399 /*
400  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
401  * always disables copy/paste.
402  */
403 static const uint8_t pa_features_31[] = { 74, 0,
404     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
405     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
406     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
407     /* 6: DS207 */
408     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
409     /* 16: Vector */
410     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
411     /* 18: Vec. Scalar, 20: Vec. XOR */
412     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
413     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
414     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
415     /* 32: LE atomic, 34: EBB + ext EBB */
416     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
417     /* 40: Radix MMU */
418     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
419     /* 42: PM, 44: PC RA, 46: SC vec'd */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
421     /* 48: SIMD, 50: QP BFP, 52: String */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
423     /* 54: DecFP, 56: DecI, 58: SHA */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
425     /* 60: NM atomic, 62: RNG */
426     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
427     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
428     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
429     /* 72: [P]HASHST/[P]HASHCHK */
430     0x80, 0x00,                         /* 72 - 73 */
431 };
432 
433 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 {
435     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
436     int i;
437 
438     pnv_dt_xscom(chip, fdt, 0,
439                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
440                  cpu_to_be64(PNV10_XSCOM_SIZE),
441                  compat, sizeof(compat));
442 
443     for (i = 0; i < chip->nr_cores; i++) {
444         PnvCore *pnv_core = chip->cores[i];
445         int offset;
446 
447         offset = pnv_dt_core(chip, pnv_core, fdt);
448 
449         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
450                            pa_features_31, sizeof(pa_features_31))));
451     }
452 
453     if (chip->ram_size) {
454         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
455     }
456 
457     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
458 }
459 
460 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 {
462     uint32_t io_base = d->ioport_id;
463     uint32_t io_regs[] = {
464         cpu_to_be32(1),
465         cpu_to_be32(io_base),
466         cpu_to_be32(2)
467     };
468     char *name;
469     int node;
470 
471     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
472     node = fdt_add_subnode(fdt, lpc_off, name);
473     _FDT(node);
474     g_free(name);
475 
476     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
477     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
478 }
479 
480 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 {
482     const char compatible[] = "ns16550\0pnpPNP,501";
483     uint32_t io_base = d->ioport_id;
484     uint32_t io_regs[] = {
485         cpu_to_be32(1),
486         cpu_to_be32(io_base),
487         cpu_to_be32(8)
488     };
489     uint32_t irq;
490     char *name;
491     int node;
492 
493     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
505     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 
510     /* This is needed by Linux */
511     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
512 }
513 
514 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "bt\0ipmi-bt";
517     uint32_t io_base;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
521         cpu_to_be32(3)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
528     io_regs[1] = cpu_to_be32(io_base);
529 
530     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 
532     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
533     node = fdt_add_subnode(fdt, lpc_off, name);
534     _FDT(node);
535     g_free(name);
536 
537     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
538     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
539                       sizeof(compatible))));
540 
541     /* Mark it as reserved to avoid Linux trying to claim it */
542     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
544     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
545                            fdt_get_phandle(fdt, lpc_off))));
546 }
547 
548 typedef struct ForeachPopulateArgs {
549     void *fdt;
550     int offset;
551 } ForeachPopulateArgs;
552 
553 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 {
555     ForeachPopulateArgs *args = opaque;
556     ISADevice *d = ISA_DEVICE(dev);
557 
558     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
559         pnv_dt_rtc(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
561         pnv_dt_serial(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
563         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
564     } else {
565         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
566                      d->ioport_id);
567     }
568 
569     return 0;
570 }
571 
572 /*
573  * The default LPC bus of a multichip system is on chip 0. It's
574  * recognized by the firmware (skiboot) using a "primary" property.
575  */
576 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 {
578     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
579     ForeachPopulateArgs args = {
580         .fdt = fdt,
581         .offset = isa_offset,
582     };
583     uint32_t phandle;
584 
585     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 
587     phandle = qemu_fdt_alloc_phandle(fdt);
588     assert(phandle > 0);
589     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
590 
591     /*
592      * ISA devices are not necessarily parented to the ISA bus so we
593      * can not use object_child_foreach()
594      */
595     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
596                        &args);
597 }
598 
599 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 {
601     int off;
602 
603     off = fdt_add_subnode(fdt, 0, "ibm,opal");
604     off = fdt_add_subnode(fdt, off, "power-mgt");
605 
606     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
607 }
608 
609 static void *pnv_dt_create(MachineState *machine)
610 {
611     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
612     PnvMachineState *pnv = PNV_MACHINE(machine);
613     void *fdt;
614     char *buf;
615     int off;
616     int i;
617 
618     fdt = g_malloc0(FDT_MAX_SIZE);
619     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 
621     /* /qemu node */
622     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 
624     /* Root node */
625     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
626     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
627     _FDT((fdt_setprop_string(fdt, 0, "model",
628                              "IBM PowerNV (emulated by qemu)")));
629     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 
631     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
632     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
633     if (qemu_uuid_set) {
634         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635     }
636     g_free(buf);
637 
638     off = fdt_add_subnode(fdt, 0, "chosen");
639     if (machine->kernel_cmdline) {
640         _FDT((fdt_setprop_string(fdt, off, "bootargs",
641                                  machine->kernel_cmdline)));
642     }
643 
644     if (pnv->initrd_size) {
645         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
646         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
649                                &start_prop, sizeof(start_prop))));
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
651                                &end_prop, sizeof(end_prop))));
652     }
653 
654     /* Populate device tree for each chip */
655     for (i = 0; i < pnv->num_chips; i++) {
656         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
657     }
658 
659     /* Populate ISA devices on chip 0 */
660     pnv_dt_isa(pnv, fdt);
661 
662     if (pnv->bmc) {
663         pnv_dt_bmc_sensors(pnv->bmc, fdt);
664     }
665 
666     /* Create an extra node for power management on machines that support it */
667     if (pmc->dt_power_mgt) {
668         pmc->dt_power_mgt(pnv, fdt);
669     }
670 
671     return fdt;
672 }
673 
674 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 {
676     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 
678     if (pnv->bmc) {
679         pnv_bmc_powerdown(pnv->bmc);
680     }
681 }
682 
683 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 {
685     PnvMachineState *pnv = PNV_MACHINE(machine);
686     IPMIBmc *bmc;
687     void *fdt;
688 
689     qemu_devices_reset(reason);
690 
691     /*
692      * The machine should provide by default an internal BMC simulator.
693      * If not, try to use the BMC device that was provided on the command
694      * line.
695      */
696     bmc = pnv_bmc_find(&error_fatal);
697     if (!pnv->bmc) {
698         if (!bmc) {
699             if (!qtest_enabled()) {
700                 warn_report("machine has no BMC device. Use '-device "
701                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
702                             "to define one");
703             }
704         } else {
705             pnv_bmc_set_pnor(bmc, pnv->pnor);
706             pnv->bmc = bmc;
707         }
708     }
709 
710     fdt = pnv_dt_create(machine);
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
716     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
717 
718     /*
719      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
720      * the existing machine->fdt to avoid leaking it during
721      * a reset.
722      */
723     g_free(machine->fdt);
724     machine->fdt = fdt;
725 }
726 
727 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 {
729     Pnv8Chip *chip8 = PNV8_CHIP(chip);
730     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 
732     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
733     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
734 }
735 
736 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 {
738     Pnv8Chip *chip8 = PNV8_CHIP(chip);
739     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 
741     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 
750     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
751     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
752 }
753 
754 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 {
756     Pnv10Chip *chip10 = PNV10_CHIP(chip);
757     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 
759     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
760     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
761 }
762 
763 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 {
765     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
766 }
767 
768 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 {
770     Pnv8Chip *chip8 = PNV8_CHIP(chip);
771     int i;
772 
773     g_autoptr(GString) buf = g_string_new("");
774     g_autoptr(HumanReadableText) info = NULL;
775 
776     ics_pic_print_info(&chip8->psi.ics, buf);
777 
778     for (i = 0; i < chip8->num_phbs; i++) {
779         PnvPHB *phb = chip8->phbs[i];
780         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
781 
782         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
783         ics_pic_print_info(&phb3->lsis, buf);
784     }
785 
786     info = human_readable_text_from_str(buf);
787     monitor_puts(mon, info->human_readable_text);
788 }
789 
790 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
791 {
792     Monitor *mon = opaque;
793     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
794 
795     if (!phb) {
796         return 0;
797     }
798 
799     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
800 
801     return 0;
802 }
803 
804 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
805 {
806     Pnv9Chip *chip9 = PNV9_CHIP(chip);
807 
808     pnv_xive_pic_print_info(&chip9->xive, mon);
809     pnv_psi_pic_print_info(&chip9->psi, mon);
810 
811     object_child_foreach_recursive(OBJECT(chip),
812                          pnv_chip_power9_pic_print_info_child, mon);
813 }
814 
815 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
816                                                 uint32_t core_id)
817 {
818     return PNV_XSCOM_EX_BASE(core_id);
819 }
820 
821 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
822                                                 uint32_t core_id)
823 {
824     return PNV9_XSCOM_EC_BASE(core_id);
825 }
826 
827 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
828                                                  uint32_t core_id)
829 {
830     return PNV10_XSCOM_EC_BASE(core_id);
831 }
832 
833 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
834 {
835     PowerPCCPUClass *ppc_default =
836         POWERPC_CPU_CLASS(object_class_by_name(default_type));
837     PowerPCCPUClass *ppc =
838         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
839 
840     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
841 }
842 
843 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
844 {
845     ISADevice *dev = isa_new("isa-ipmi-bt");
846 
847     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
848     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
849     isa_realize_and_unref(dev, bus, &error_fatal);
850 }
851 
852 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
853 {
854     Pnv10Chip *chip10 = PNV10_CHIP(chip);
855 
856     pnv_xive2_pic_print_info(&chip10->xive, mon);
857     pnv_psi_pic_print_info(&chip10->psi, mon);
858 
859     object_child_foreach_recursive(OBJECT(chip),
860                          pnv_chip_power9_pic_print_info_child, mon);
861 }
862 
863 /* Always give the first 1GB to chip 0 else we won't boot */
864 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
865 {
866     MachineState *machine = MACHINE(pnv);
867     uint64_t ram_per_chip;
868 
869     assert(machine->ram_size >= 1 * GiB);
870 
871     ram_per_chip = machine->ram_size / pnv->num_chips;
872     if (ram_per_chip >= 1 * GiB) {
873         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
874     }
875 
876     assert(pnv->num_chips > 1);
877 
878     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
879     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
880 }
881 
882 static void pnv_init(MachineState *machine)
883 {
884     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
885     PnvMachineState *pnv = PNV_MACHINE(machine);
886     MachineClass *mc = MACHINE_GET_CLASS(machine);
887     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
888     char *fw_filename;
889     long fw_size;
890     uint64_t chip_ram_start = 0;
891     int i;
892     char *chip_typename;
893     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
894     DeviceState *dev;
895 
896     if (kvm_enabled()) {
897         error_report("machine %s does not support the KVM accelerator",
898                      mc->name);
899         exit(EXIT_FAILURE);
900     }
901 
902     /* allocate RAM */
903     if (machine->ram_size < mc->default_ram_size) {
904         char *sz = size_to_str(mc->default_ram_size);
905         error_report("Invalid RAM size, should be bigger than %s", sz);
906         g_free(sz);
907         exit(EXIT_FAILURE);
908     }
909     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
910 
911     /*
912      * Create our simple PNOR device
913      */
914     dev = qdev_new(TYPE_PNV_PNOR);
915     if (pnor) {
916         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
917     }
918     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
919     pnv->pnor = PNV_PNOR(dev);
920 
921     /* load skiboot firmware  */
922     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
923     if (!fw_filename) {
924         error_report("Could not find OPAL firmware '%s'", bios_name);
925         exit(1);
926     }
927 
928     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
929     if (fw_size < 0) {
930         error_report("Could not load OPAL firmware '%s'", fw_filename);
931         exit(1);
932     }
933     g_free(fw_filename);
934 
935     /* load kernel */
936     if (machine->kernel_filename) {
937         long kernel_size;
938 
939         kernel_size = load_image_targphys(machine->kernel_filename,
940                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
941         if (kernel_size < 0) {
942             error_report("Could not load kernel '%s'",
943                          machine->kernel_filename);
944             exit(1);
945         }
946     }
947 
948     /* load initrd */
949     if (machine->initrd_filename) {
950         pnv->initrd_base = INITRD_LOAD_ADDR;
951         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
952                                   pnv->initrd_base, INITRD_MAX_SIZE);
953         if (pnv->initrd_size < 0) {
954             error_report("Could not load initial ram disk '%s'",
955                          machine->initrd_filename);
956             exit(1);
957         }
958     }
959 
960     /* MSIs are supported on this platform */
961     msi_nonbroken = true;
962 
963     /*
964      * Check compatibility of the specified CPU with the machine
965      * default.
966      */
967     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
968         error_report("invalid CPU model '%s' for %s machine",
969                      machine->cpu_type, mc->name);
970         exit(1);
971     }
972 
973     /* Create the processor chips */
974     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
975     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
976                                     i, machine->cpu_type);
977     if (!object_class_by_name(chip_typename)) {
978         error_report("invalid chip model '%.*s' for %s machine",
979                      i, machine->cpu_type, mc->name);
980         exit(1);
981     }
982 
983     pnv->num_chips =
984         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
985 
986     if (machine->smp.threads > 8) {
987         error_report("Cannot support more than 8 threads/core "
988                      "on a powernv machine");
989         exit(1);
990     }
991     if (!is_power_of_2(machine->smp.threads)) {
992         error_report("Cannot support %d threads/core on a powernv"
993                      "machine because it must be a power of 2",
994                      machine->smp.threads);
995         exit(1);
996     }
997     /*
998      * TODO: should we decide on how many chips we can create based
999      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1000      */
1001     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1002         error_report("invalid number of chips: '%d'", pnv->num_chips);
1003         error_printf(
1004             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1005         exit(1);
1006     }
1007 
1008     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1009     for (i = 0; i < pnv->num_chips; i++) {
1010         char chip_name[32];
1011         Object *chip = OBJECT(qdev_new(chip_typename));
1012         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1013 
1014         pnv->chips[i] = PNV_CHIP(chip);
1015 
1016         /* Distribute RAM among the chips  */
1017         object_property_set_int(chip, "ram-start", chip_ram_start,
1018                                 &error_fatal);
1019         object_property_set_int(chip, "ram-size", chip_ram_size,
1020                                 &error_fatal);
1021         chip_ram_start += chip_ram_size;
1022 
1023         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1024         object_property_add_child(OBJECT(pnv), chip_name, chip);
1025         object_property_set_int(chip, "chip-id", i, &error_fatal);
1026         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1027                                 &error_fatal);
1028         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1029                                 &error_fatal);
1030         /*
1031          * The POWER8 machine use the XICS interrupt interface.
1032          * Propagate the XICS fabric to the chip and its controllers.
1033          */
1034         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1035             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1036         }
1037         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1038             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1039                                      &error_abort);
1040         }
1041         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1042     }
1043     g_free(chip_typename);
1044 
1045     /* Instantiate ISA bus on chip 0 */
1046     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1047 
1048     /* Create serial port */
1049     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1050 
1051     /* Create an RTC ISA device too */
1052     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1053 
1054     /*
1055      * Create the machine BMC simulator and the IPMI BT device for
1056      * communication with the BMC
1057      */
1058     if (defaults_enabled()) {
1059         pnv->bmc = pnv_bmc_create(pnv->pnor);
1060         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1061     }
1062 
1063     /*
1064      * The PNOR is mapped on the LPC FW address space by the BMC.
1065      * Since we can not reach the remote BMC machine with LPC memops,
1066      * map it always for now.
1067      */
1068     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1069                                 &pnv->pnor->mmio);
1070 
1071     /*
1072      * OpenPOWER systems use a IPMI SEL Event message to notify the
1073      * host to powerdown
1074      */
1075     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1076     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1077 
1078     /*
1079      * Create/Connect any machine-specific I2C devices
1080      */
1081     if (pmc->i2c_init) {
1082         pmc->i2c_init(pnv);
1083     }
1084 }
1085 
1086 /*
1087  *    0:21  Reserved - Read as zeros
1088  *   22:24  Chip ID
1089  *   25:28  Core number
1090  *   29:31  Thread ID
1091  */
1092 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1093                                 uint32_t thread_id)
1094 {
1095     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1096 }
1097 
1098 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1099                                         Error **errp)
1100 {
1101     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1102     Error *local_err = NULL;
1103     Object *obj;
1104     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1105 
1106     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1107     if (local_err) {
1108         error_propagate(errp, local_err);
1109         return;
1110     }
1111 
1112     pnv_cpu->intc = obj;
1113 }
1114 
1115 
1116 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1117 {
1118     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119 
1120     icp_reset(ICP(pnv_cpu->intc));
1121 }
1122 
1123 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1124 {
1125     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1126 
1127     icp_destroy(ICP(pnv_cpu->intc));
1128     pnv_cpu->intc = NULL;
1129 }
1130 
1131 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1132                                             Monitor *mon)
1133 {
1134     g_autoptr(GString) buf = g_string_new("");
1135     g_autoptr(HumanReadableText) info = NULL;
1136 
1137     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1138 
1139     info = human_readable_text_from_str(buf);
1140     monitor_puts(mon, info->human_readable_text);
1141 }
1142 
1143 /*
1144  *    0:48  Reserved - Read as zeroes
1145  *   49:52  Node ID
1146  *   53:55  Chip ID
1147  *   56     Reserved - Read as zero
1148  *   57:61  Core number
1149  *   62:63  Thread ID
1150  *
1151  * We only care about the lower bits. uint32_t is fine for the moment.
1152  */
1153 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1154                                 uint32_t thread_id)
1155 {
1156     if (chip->nr_threads == 8) {
1157         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1158                (thread_id >> 1);
1159     } else {
1160         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1161     }
1162 }
1163 
1164 /*
1165  *    0:48  Reserved - Read as zeroes
1166  *   49:52  Node ID
1167  *   53:55  Chip ID
1168  *   56     Reserved - Read as zero
1169  *   57:59  Quad ID
1170  *   60     Core Chiplet Pair ID
1171  *   61:63  Thread/Core Chiplet ID t0-t2
1172  *
1173  * We only care about the lower bits. uint32_t is fine for the moment.
1174  */
1175 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1176                                  uint32_t thread_id)
1177 {
1178     if (chip->nr_threads == 8) {
1179         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1180                ((core_id % 2) << 3) | thread_id;
1181     } else {
1182         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1183     }
1184 }
1185 
1186 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1187                                         Error **errp)
1188 {
1189     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1190     Error *local_err = NULL;
1191     Object *obj;
1192     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1193 
1194     /*
1195      * The core creates its interrupt presenter but the XIVE interrupt
1196      * controller object is initialized afterwards. Hopefully, it's
1197      * only used at runtime.
1198      */
1199     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1200                            &local_err);
1201     if (local_err) {
1202         error_propagate(errp, local_err);
1203         return;
1204     }
1205 
1206     pnv_cpu->intc = obj;
1207 }
1208 
1209 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1210 {
1211     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1212 
1213     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1214 }
1215 
1216 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1217 {
1218     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1219 
1220     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1221     pnv_cpu->intc = NULL;
1222 }
1223 
1224 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1225                                             Monitor *mon)
1226 {
1227     g_autoptr(GString) buf = g_string_new("");
1228     g_autoptr(HumanReadableText) info = NULL;
1229 
1230     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1231 
1232     info = human_readable_text_from_str(buf);
1233     monitor_puts(mon, info->human_readable_text);
1234 }
1235 
1236 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1237                                         Error **errp)
1238 {
1239     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1240     Error *local_err = NULL;
1241     Object *obj;
1242     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1243 
1244     /*
1245      * The core creates its interrupt presenter but the XIVE2 interrupt
1246      * controller object is initialized afterwards. Hopefully, it's
1247      * only used at runtime.
1248      */
1249     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1250                            &local_err);
1251     if (local_err) {
1252         error_propagate(errp, local_err);
1253         return;
1254     }
1255 
1256     pnv_cpu->intc = obj;
1257 }
1258 
1259 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1260 {
1261     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1262 
1263     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1264 }
1265 
1266 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1267 {
1268     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1269 
1270     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1271     pnv_cpu->intc = NULL;
1272 }
1273 
1274 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1275                                              Monitor *mon)
1276 {
1277     g_autoptr(GString) buf = g_string_new("");
1278     g_autoptr(HumanReadableText) info = NULL;
1279 
1280     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1281 
1282     info = human_readable_text_from_str(buf);
1283     monitor_puts(mon, info->human_readable_text);
1284 }
1285 
1286 /*
1287  * Allowed core identifiers on a POWER8 Processor Chip :
1288  *
1289  * <EX0 reserved>
1290  *  EX1  - Venice only
1291  *  EX2  - Venice only
1292  *  EX3  - Venice only
1293  *  EX4
1294  *  EX5
1295  *  EX6
1296  * <EX7,8 reserved> <reserved>
1297  *  EX9  - Venice only
1298  *  EX10 - Venice only
1299  *  EX11 - Venice only
1300  *  EX12
1301  *  EX13
1302  *  EX14
1303  * <EX15 reserved>
1304  */
1305 #define POWER8E_CORE_MASK  (0x7070ull)
1306 #define POWER8_CORE_MASK   (0x7e7eull)
1307 
1308 /*
1309  * POWER9 has 24 cores, ids starting at 0x0
1310  */
1311 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1312 
1313 
1314 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1315 
1316 static void pnv_chip_power8_instance_init(Object *obj)
1317 {
1318     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1319     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1320     int i;
1321 
1322     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1323                              (Object **)&chip8->xics,
1324                              object_property_allow_set_link,
1325                              OBJ_PROP_LINK_STRONG);
1326 
1327     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1328 
1329     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1330 
1331     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1332 
1333     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1334 
1335     if (defaults_enabled()) {
1336         chip8->num_phbs = pcc->num_phbs;
1337 
1338         for (i = 0; i < chip8->num_phbs; i++) {
1339             Object *phb = object_new(TYPE_PNV_PHB);
1340 
1341             /*
1342              * We need the chip to parent the PHB to allow the DT
1343              * to build correctly (via pnv_xscom_dt()).
1344              *
1345              * TODO: the PHB should be parented by a PEC device that, at
1346              * this moment, is not modelled powernv8/phb3.
1347              */
1348             object_property_add_child(obj, "phb[*]", phb);
1349             chip8->phbs[i] = PNV_PHB(phb);
1350         }
1351     }
1352 
1353 }
1354 
1355 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1356  {
1357     PnvChip *chip = PNV_CHIP(chip8);
1358     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1359     int i, j;
1360     char *name;
1361 
1362     name = g_strdup_printf("icp-%x", chip->chip_id);
1363     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1364     g_free(name);
1365     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1366                                 &chip8->icp_mmio);
1367 
1368     /* Map the ICP registers for each thread */
1369     for (i = 0; i < chip->nr_cores; i++) {
1370         PnvCore *pnv_core = chip->cores[i];
1371         int core_hwid = CPU_CORE(pnv_core)->core_id;
1372 
1373         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1374             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1375             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1376 
1377             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1378                                         &icp->mmio);
1379         }
1380     }
1381 }
1382 
1383 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1384 {
1385     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1386     PnvChip *chip = PNV_CHIP(dev);
1387     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1388     Pnv8Psi *psi8 = &chip8->psi;
1389     Error *local_err = NULL;
1390     int i;
1391 
1392     assert(chip8->xics);
1393 
1394     /* XSCOM bridge is first */
1395     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1396 
1397     pcc->parent_realize(dev, &local_err);
1398     if (local_err) {
1399         error_propagate(errp, local_err);
1400         return;
1401     }
1402 
1403     /* Processor Service Interface (PSI) Host Bridge */
1404     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1405                             &error_fatal);
1406     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1407                              OBJECT(chip8->xics), &error_abort);
1408     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1409         return;
1410     }
1411     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1412                             &PNV_PSI(psi8)->xscom_regs);
1413 
1414     /* Create LPC controller */
1415     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1416     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1417 
1418     chip->fw_mr = &chip8->lpc.isa_fw;
1419     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1420                                             (uint64_t) PNV_XSCOM_BASE(chip),
1421                                             PNV_XSCOM_LPC_BASE);
1422 
1423     /*
1424      * Interrupt Management Area. This is the memory region holding
1425      * all the Interrupt Control Presenter (ICP) registers
1426      */
1427     pnv_chip_icp_realize(chip8, &local_err);
1428     if (local_err) {
1429         error_propagate(errp, local_err);
1430         return;
1431     }
1432 
1433     /* Create the simplified OCC model */
1434     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1435         return;
1436     }
1437     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1438     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1439                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1440 
1441     /* OCC SRAM model */
1442     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1443                                 &chip8->occ.sram_regs);
1444 
1445     /* HOMER */
1446     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1447                              &error_abort);
1448     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1449         return;
1450     }
1451     /* Homer Xscom region */
1452     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1453 
1454     /* Homer mmio region */
1455     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1456                                 &chip8->homer.regs);
1457 
1458     /* PHB controllers */
1459     for (i = 0; i < chip8->num_phbs; i++) {
1460         PnvPHB *phb = chip8->phbs[i];
1461 
1462         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1463         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1464                                 &error_fatal);
1465         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1466                                  &error_fatal);
1467         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1468             return;
1469         }
1470     }
1471 }
1472 
1473 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1474 {
1475     addr &= (PNV_XSCOM_SIZE - 1);
1476     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1477 }
1478 
1479 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1480 {
1481     DeviceClass *dc = DEVICE_CLASS(klass);
1482     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1483 
1484     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1485     k->cores_mask = POWER8E_CORE_MASK;
1486     k->num_phbs = 3;
1487     k->chip_pir = pnv_chip_pir_p8;
1488     k->intc_create = pnv_chip_power8_intc_create;
1489     k->intc_reset = pnv_chip_power8_intc_reset;
1490     k->intc_destroy = pnv_chip_power8_intc_destroy;
1491     k->intc_print_info = pnv_chip_power8_intc_print_info;
1492     k->isa_create = pnv_chip_power8_isa_create;
1493     k->dt_populate = pnv_chip_power8_dt_populate;
1494     k->pic_print_info = pnv_chip_power8_pic_print_info;
1495     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1496     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1497     dc->desc = "PowerNV Chip POWER8E";
1498 
1499     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1500                                     &k->parent_realize);
1501 }
1502 
1503 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1504 {
1505     DeviceClass *dc = DEVICE_CLASS(klass);
1506     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1507 
1508     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1509     k->cores_mask = POWER8_CORE_MASK;
1510     k->num_phbs = 3;
1511     k->chip_pir = pnv_chip_pir_p8;
1512     k->intc_create = pnv_chip_power8_intc_create;
1513     k->intc_reset = pnv_chip_power8_intc_reset;
1514     k->intc_destroy = pnv_chip_power8_intc_destroy;
1515     k->intc_print_info = pnv_chip_power8_intc_print_info;
1516     k->isa_create = pnv_chip_power8_isa_create;
1517     k->dt_populate = pnv_chip_power8_dt_populate;
1518     k->pic_print_info = pnv_chip_power8_pic_print_info;
1519     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1520     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1521     dc->desc = "PowerNV Chip POWER8";
1522 
1523     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1524                                     &k->parent_realize);
1525 }
1526 
1527 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1528 {
1529     DeviceClass *dc = DEVICE_CLASS(klass);
1530     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1531 
1532     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1533     k->cores_mask = POWER8_CORE_MASK;
1534     k->num_phbs = 4;
1535     k->chip_pir = pnv_chip_pir_p8;
1536     k->intc_create = pnv_chip_power8_intc_create;
1537     k->intc_reset = pnv_chip_power8_intc_reset;
1538     k->intc_destroy = pnv_chip_power8_intc_destroy;
1539     k->intc_print_info = pnv_chip_power8_intc_print_info;
1540     k->isa_create = pnv_chip_power8nvl_isa_create;
1541     k->dt_populate = pnv_chip_power8_dt_populate;
1542     k->pic_print_info = pnv_chip_power8_pic_print_info;
1543     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1544     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1545     dc->desc = "PowerNV Chip POWER8NVL";
1546 
1547     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1548                                     &k->parent_realize);
1549 }
1550 
1551 static void pnv_chip_power9_instance_init(Object *obj)
1552 {
1553     PnvChip *chip = PNV_CHIP(obj);
1554     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1555     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1556     int i;
1557 
1558     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1559     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1560                               "xive-fabric");
1561 
1562     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1563 
1564     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1565 
1566     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1567 
1568     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1569 
1570     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1571 
1572     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1573 
1574     /* Number of PECs is the chip default */
1575     chip->num_pecs = pcc->num_pecs;
1576 
1577     for (i = 0; i < chip->num_pecs; i++) {
1578         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1579                                 TYPE_PNV_PHB4_PEC);
1580     }
1581 
1582     for (i = 0; i < pcc->i2c_num_engines; i++) {
1583         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1584     }
1585 }
1586 
1587 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1588                                       PnvCore *pnv_core,
1589                                       const char *type)
1590 {
1591     char eq_name[32];
1592     int core_id = CPU_CORE(pnv_core)->core_id;
1593 
1594     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1595     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1596                                        sizeof(*eq), type,
1597                                        &error_fatal, NULL);
1598 
1599     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1600     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1601 }
1602 
1603 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1604 {
1605     PnvChip *chip = PNV_CHIP(chip9);
1606     int i;
1607 
1608     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1609     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1610 
1611     for (i = 0; i < chip9->nr_quads; i++) {
1612         PnvQuad *eq = &chip9->quads[i];
1613 
1614         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1615                                   PNV_QUAD_TYPE_NAME("power9"));
1616 
1617         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1618                                 &eq->xscom_regs);
1619     }
1620 }
1621 
1622 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1623 {
1624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1625     int i;
1626 
1627     for (i = 0; i < chip->num_pecs; i++) {
1628         PnvPhb4PecState *pec = &chip9->pecs[i];
1629         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1630         uint32_t pec_nest_base;
1631         uint32_t pec_pci_base;
1632 
1633         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1634         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1635                                 &error_fatal);
1636         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1637                                  &error_fatal);
1638         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1639             return;
1640         }
1641 
1642         pec_nest_base = pecc->xscom_nest_base(pec);
1643         pec_pci_base = pecc->xscom_pci_base(pec);
1644 
1645         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1646         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1647     }
1648 }
1649 
1650 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1651 {
1652     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1653     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1654     PnvChip *chip = PNV_CHIP(dev);
1655     Pnv9Psi *psi9 = &chip9->psi;
1656     Error *local_err = NULL;
1657     int i;
1658 
1659     /* XSCOM bridge is first */
1660     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1661 
1662     pcc->parent_realize(dev, &local_err);
1663     if (local_err) {
1664         error_propagate(errp, local_err);
1665         return;
1666     }
1667 
1668     pnv_chip_quad_realize(chip9, &local_err);
1669     if (local_err) {
1670         error_propagate(errp, local_err);
1671         return;
1672     }
1673 
1674     /* XIVE interrupt controller (POWER9) */
1675     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1676                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1677     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1678                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1679     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1680                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1681     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1682                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1683     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1684                              &error_abort);
1685     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1686         return;
1687     }
1688     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1689                             &chip9->xive.xscom_regs);
1690 
1691     /* Processor Service Interface (PSI) Host Bridge */
1692     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1693                             &error_fatal);
1694     /* This is the only device with 4k ESB pages */
1695     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1696                             &error_fatal);
1697     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1698         return;
1699     }
1700     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1701                             &PNV_PSI(psi9)->xscom_regs);
1702 
1703     /* LPC */
1704     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1705         return;
1706     }
1707     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1708                                 &chip9->lpc.xscom_regs);
1709 
1710     chip->fw_mr = &chip9->lpc.isa_fw;
1711     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1712                                             (uint64_t) PNV9_LPCM_BASE(chip));
1713 
1714     /* ChipTOD */
1715     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1716                              chip->chip_id == 0, &error_abort);
1717     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1718                              chip->chip_id == 1, &error_abort);
1719     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1720                              &error_abort);
1721     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1722         return;
1723     }
1724     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1725                             &chip9->chiptod.xscom_regs);
1726 
1727     /* Create the simplified OCC model */
1728     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1729         return;
1730     }
1731     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1732     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1733                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1734 
1735     /* OCC SRAM model */
1736     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1737                                 &chip9->occ.sram_regs);
1738 
1739     /* SBE */
1740     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1741         return;
1742     }
1743     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1744                             &chip9->sbe.xscom_ctrl_regs);
1745     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1746                             &chip9->sbe.xscom_mbox_regs);
1747     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1748                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1749 
1750     /* HOMER */
1751     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1752                              &error_abort);
1753     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1754         return;
1755     }
1756     /* Homer Xscom region */
1757     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1758 
1759     /* Homer mmio region */
1760     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1761                                 &chip9->homer.regs);
1762 
1763     /* PEC PHBs */
1764     pnv_chip_power9_pec_realize(chip, &local_err);
1765     if (local_err) {
1766         error_propagate(errp, local_err);
1767         return;
1768     }
1769 
1770     /*
1771      * I2C
1772      */
1773     for (i = 0; i < pcc->i2c_num_engines; i++) {
1774         Object *obj =  OBJECT(&chip9->i2c[i]);
1775 
1776         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1777         object_property_set_int(obj, "num-busses",
1778                                 pcc->i2c_ports_per_engine[i],
1779                                 &error_fatal);
1780         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1781         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1782             return;
1783         }
1784         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1785                                 (chip9->i2c[i].engine - 1) *
1786                                         PNV9_XSCOM_I2CM_SIZE,
1787                                 &chip9->i2c[i].xscom_regs);
1788         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1789                               qdev_get_gpio_in(DEVICE(psi9),
1790                                                PSIHB9_IRQ_SBE_I2C));
1791     }
1792 }
1793 
1794 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1795 {
1796     addr &= (PNV9_XSCOM_SIZE - 1);
1797     return addr >> 3;
1798 }
1799 
1800 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1801 {
1802     DeviceClass *dc = DEVICE_CLASS(klass);
1803     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1804     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1805 
1806     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1807     k->cores_mask = POWER9_CORE_MASK;
1808     k->chip_pir = pnv_chip_pir_p9;
1809     k->intc_create = pnv_chip_power9_intc_create;
1810     k->intc_reset = pnv_chip_power9_intc_reset;
1811     k->intc_destroy = pnv_chip_power9_intc_destroy;
1812     k->intc_print_info = pnv_chip_power9_intc_print_info;
1813     k->isa_create = pnv_chip_power9_isa_create;
1814     k->dt_populate = pnv_chip_power9_dt_populate;
1815     k->pic_print_info = pnv_chip_power9_pic_print_info;
1816     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1817     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1818     dc->desc = "PowerNV Chip POWER9";
1819     k->num_pecs = PNV9_CHIP_MAX_PEC;
1820     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1821     k->i2c_ports_per_engine = i2c_ports_per_engine;
1822 
1823     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1824                                     &k->parent_realize);
1825 }
1826 
1827 static void pnv_chip_power10_instance_init(Object *obj)
1828 {
1829     PnvChip *chip = PNV_CHIP(obj);
1830     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1831     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1832     int i;
1833 
1834     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1835     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1836                               "xive-fabric");
1837     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1838     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1839     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1840                             TYPE_PNV10_CHIPTOD);
1841     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1842     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1843     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1844     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1845                             TYPE_PNV_N1_CHIPLET);
1846 
1847     chip->num_pecs = pcc->num_pecs;
1848 
1849     for (i = 0; i < chip->num_pecs; i++) {
1850         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1851                                 TYPE_PNV_PHB5_PEC);
1852     }
1853 
1854     for (i = 0; i < pcc->i2c_num_engines; i++) {
1855         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1856     }
1857 }
1858 
1859 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1860 {
1861     PnvChip *chip = PNV_CHIP(chip10);
1862     int i;
1863 
1864     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1865     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1866 
1867     for (i = 0; i < chip10->nr_quads; i++) {
1868         PnvQuad *eq = &chip10->quads[i];
1869 
1870         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1871                                   PNV_QUAD_TYPE_NAME("power10"));
1872 
1873         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1874                                 &eq->xscom_regs);
1875 
1876         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1877                                 &eq->xscom_qme_regs);
1878     }
1879 }
1880 
1881 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1882 {
1883     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1884     int i;
1885 
1886     for (i = 0; i < chip->num_pecs; i++) {
1887         PnvPhb4PecState *pec = &chip10->pecs[i];
1888         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1889         uint32_t pec_nest_base;
1890         uint32_t pec_pci_base;
1891 
1892         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1893         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1894                                 &error_fatal);
1895         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1896                                  &error_fatal);
1897         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1898             return;
1899         }
1900 
1901         pec_nest_base = pecc->xscom_nest_base(pec);
1902         pec_pci_base = pecc->xscom_pci_base(pec);
1903 
1904         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1905         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1906     }
1907 }
1908 
1909 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1910 {
1911     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1912     PnvChip *chip = PNV_CHIP(dev);
1913     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1914     Error *local_err = NULL;
1915     int i;
1916 
1917     /* XSCOM bridge is first */
1918     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1919 
1920     pcc->parent_realize(dev, &local_err);
1921     if (local_err) {
1922         error_propagate(errp, local_err);
1923         return;
1924     }
1925 
1926     pnv_chip_power10_quad_realize(chip10, &local_err);
1927     if (local_err) {
1928         error_propagate(errp, local_err);
1929         return;
1930     }
1931 
1932     /* XIVE2 interrupt controller (POWER10) */
1933     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1934                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1935     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1936                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1937     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1938                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1939     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1940                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1941     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1942                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1943     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1944                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1945     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1946                              &error_abort);
1947     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1948         return;
1949     }
1950     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1951                             &chip10->xive.xscom_regs);
1952 
1953     /* Processor Service Interface (PSI) Host Bridge */
1954     object_property_set_int(OBJECT(&chip10->psi), "bar",
1955                             PNV10_PSIHB_BASE(chip), &error_fatal);
1956     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1957     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1958                             &error_fatal);
1959     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1960         return;
1961     }
1962     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1963                             &PNV_PSI(&chip10->psi)->xscom_regs);
1964 
1965     /* LPC */
1966     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1967         return;
1968     }
1969     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1970                                 &chip10->lpc.xscom_regs);
1971 
1972     chip->fw_mr = &chip10->lpc.isa_fw;
1973     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1974                                             (uint64_t) PNV10_LPCM_BASE(chip));
1975 
1976     /* ChipTOD */
1977     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1978                              chip->chip_id == 0, &error_abort);
1979     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1980                              chip->chip_id == 1, &error_abort);
1981     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1982                              &error_abort);
1983     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1984         return;
1985     }
1986     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1987                             &chip10->chiptod.xscom_regs);
1988 
1989     /* Create the simplified OCC model */
1990     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1991         return;
1992     }
1993     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1994                             &chip10->occ.xscom_regs);
1995     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1996                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1997 
1998     /* OCC SRAM model */
1999     memory_region_add_subregion(get_system_memory(),
2000                                 PNV10_OCC_SENSOR_BASE(chip),
2001                                 &chip10->occ.sram_regs);
2002 
2003     /* SBE */
2004     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2005         return;
2006     }
2007     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2008                             &chip10->sbe.xscom_ctrl_regs);
2009     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2010                             &chip10->sbe.xscom_mbox_regs);
2011     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2012                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2013 
2014     /* HOMER */
2015     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2016                              &error_abort);
2017     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2018         return;
2019     }
2020     /* Homer Xscom region */
2021     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2022                             &chip10->homer.pba_regs);
2023 
2024     /* Homer mmio region */
2025     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2026                                 &chip10->homer.regs);
2027 
2028     /* N1 chiplet */
2029     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2030         return;
2031     }
2032     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2033              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2034 
2035     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2036                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2037 
2038     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2039                            &chip10->n1_chiplet.xscom_pb_es_mr);
2040 
2041     /* PHBs */
2042     pnv_chip_power10_phb_realize(chip, &local_err);
2043     if (local_err) {
2044         error_propagate(errp, local_err);
2045         return;
2046     }
2047 
2048 
2049     /*
2050      * I2C
2051      */
2052     for (i = 0; i < pcc->i2c_num_engines; i++) {
2053         Object *obj =  OBJECT(&chip10->i2c[i]);
2054 
2055         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2056         object_property_set_int(obj, "num-busses",
2057                                 pcc->i2c_ports_per_engine[i],
2058                                 &error_fatal);
2059         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2060         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2061             return;
2062         }
2063         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2064                                 (chip10->i2c[i].engine - 1) *
2065                                         PNV10_XSCOM_I2CM_SIZE,
2066                                 &chip10->i2c[i].xscom_regs);
2067         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2068                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2069                                                PSIHB9_IRQ_SBE_I2C));
2070     }
2071 
2072 }
2073 
2074 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2075 {
2076     int i;
2077     for (i = 0; i < pnv->num_chips; i++) {
2078         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2079 
2080         /*
2081          * Add a PCA9552 I2C device for PCIe hotplug control
2082          * to engine 2, bus 1, address 0x63
2083          */
2084         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2085                                                 "pca9552", 0x63);
2086 
2087         /*
2088          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2089          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2090          * after hypervisor code sets a SLOTx_EN pin high.
2091          */
2092         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2093         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2094         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2095         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2096         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2097 
2098         /*
2099          * Add a PCA9554 I2C device for cable card presence detection
2100          * to engine 2, bus 1, address 0x25
2101          */
2102         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2103     }
2104 }
2105 
2106 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2107 {
2108     addr &= (PNV10_XSCOM_SIZE - 1);
2109     return addr >> 3;
2110 }
2111 
2112 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2113 {
2114     DeviceClass *dc = DEVICE_CLASS(klass);
2115     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2116     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2117 
2118     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2119     k->cores_mask = POWER10_CORE_MASK;
2120     k->chip_pir = pnv_chip_pir_p10;
2121     k->intc_create = pnv_chip_power10_intc_create;
2122     k->intc_reset = pnv_chip_power10_intc_reset;
2123     k->intc_destroy = pnv_chip_power10_intc_destroy;
2124     k->intc_print_info = pnv_chip_power10_intc_print_info;
2125     k->isa_create = pnv_chip_power10_isa_create;
2126     k->dt_populate = pnv_chip_power10_dt_populate;
2127     k->pic_print_info = pnv_chip_power10_pic_print_info;
2128     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2129     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2130     dc->desc = "PowerNV Chip POWER10";
2131     k->num_pecs = PNV10_CHIP_MAX_PEC;
2132     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2133     k->i2c_ports_per_engine = i2c_ports_per_engine;
2134 
2135     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2136                                     &k->parent_realize);
2137 }
2138 
2139 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2140 {
2141     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2142     int cores_max;
2143 
2144     /*
2145      * No custom mask for this chip, let's use the default one from *
2146      * the chip class
2147      */
2148     if (!chip->cores_mask) {
2149         chip->cores_mask = pcc->cores_mask;
2150     }
2151 
2152     /* filter alien core ids ! some are reserved */
2153     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2154         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2155                    chip->cores_mask);
2156         return;
2157     }
2158     chip->cores_mask &= pcc->cores_mask;
2159 
2160     /* now that we have a sane layout, let check the number of cores */
2161     cores_max = ctpop64(chip->cores_mask);
2162     if (chip->nr_cores > cores_max) {
2163         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2164                    cores_max);
2165         return;
2166     }
2167 }
2168 
2169 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2170 {
2171     Error *error = NULL;
2172     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2173     const char *typename = pnv_chip_core_typename(chip);
2174     int i, core_hwid;
2175     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2176 
2177     if (!object_class_by_name(typename)) {
2178         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2179         return;
2180     }
2181 
2182     /* Cores */
2183     pnv_chip_core_sanitize(chip, &error);
2184     if (error) {
2185         error_propagate(errp, error);
2186         return;
2187     }
2188 
2189     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2190 
2191     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2192              && (i < chip->nr_cores); core_hwid++) {
2193         char core_name[32];
2194         PnvCore *pnv_core;
2195         uint64_t xscom_core_base;
2196 
2197         if (!(chip->cores_mask & (1ull << core_hwid))) {
2198             continue;
2199         }
2200 
2201         pnv_core = PNV_CORE(object_new(typename));
2202 
2203         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2204         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2205         chip->cores[i] = pnv_core;
2206         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2207                                 chip->nr_threads, &error_fatal);
2208         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2209                                 core_hwid, &error_fatal);
2210         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2211                                 &error_fatal);
2212         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2213                                 &error_fatal);
2214         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2215                                  &error_abort);
2216         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2217 
2218         /* Each core has an XSCOM MMIO region */
2219         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2220 
2221         pnv_xscom_add_subregion(chip, xscom_core_base,
2222                                 &pnv_core->xscom_regs);
2223         i++;
2224     }
2225 }
2226 
2227 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2228 {
2229     PnvChip *chip = PNV_CHIP(dev);
2230     Error *error = NULL;
2231 
2232     /* Cores */
2233     pnv_chip_core_realize(chip, &error);
2234     if (error) {
2235         error_propagate(errp, error);
2236         return;
2237     }
2238 }
2239 
2240 static Property pnv_chip_properties[] = {
2241     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2242     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2243     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2244     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2245     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2246     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2247     DEFINE_PROP_END_OF_LIST(),
2248 };
2249 
2250 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2251 {
2252     DeviceClass *dc = DEVICE_CLASS(klass);
2253 
2254     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2255     dc->realize = pnv_chip_realize;
2256     device_class_set_props(dc, pnv_chip_properties);
2257     dc->desc = "PowerNV Chip";
2258 }
2259 
2260 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2261 {
2262     int i;
2263 
2264     for (i = 0; i < chip->nr_cores; i++) {
2265         PnvCore *pc = chip->cores[i];
2266         CPUCore *cc = CPU_CORE(pc);
2267 
2268         if (cc->core_id == core_id) {
2269             return pc;
2270         }
2271     }
2272     return NULL;
2273 }
2274 
2275 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2276 {
2277     int i, j;
2278 
2279     for (i = 0; i < chip->nr_cores; i++) {
2280         PnvCore *pc = chip->cores[i];
2281         CPUCore *cc = CPU_CORE(pc);
2282 
2283         for (j = 0; j < cc->nr_threads; j++) {
2284             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2285                 return pc->threads[j];
2286             }
2287         }
2288     }
2289     return NULL;
2290 }
2291 
2292 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2293 {
2294     PnvMachineState *pnv = PNV_MACHINE(xi);
2295     int i, j;
2296 
2297     for (i = 0; i < pnv->num_chips; i++) {
2298         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2299 
2300         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2301             return &chip8->psi.ics;
2302         }
2303 
2304         for (j = 0; j < chip8->num_phbs; j++) {
2305             PnvPHB *phb = chip8->phbs[j];
2306             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2307 
2308             if (ics_valid_irq(&phb3->lsis, irq)) {
2309                 return &phb3->lsis;
2310             }
2311 
2312             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2313                 return ICS(&phb3->msis);
2314             }
2315         }
2316     }
2317     return NULL;
2318 }
2319 
2320 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2321 {
2322     int i;
2323 
2324     for (i = 0; i < pnv->num_chips; i++) {
2325         PnvChip *chip = pnv->chips[i];
2326         if (chip->chip_id == chip_id) {
2327             return chip;
2328         }
2329     }
2330     return NULL;
2331 }
2332 
2333 static void pnv_ics_resend(XICSFabric *xi)
2334 {
2335     PnvMachineState *pnv = PNV_MACHINE(xi);
2336     int i, j;
2337 
2338     for (i = 0; i < pnv->num_chips; i++) {
2339         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2340 
2341         ics_resend(&chip8->psi.ics);
2342 
2343         for (j = 0; j < chip8->num_phbs; j++) {
2344             PnvPHB *phb = chip8->phbs[j];
2345             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2346 
2347             ics_resend(&phb3->lsis);
2348             ics_resend(ICS(&phb3->msis));
2349         }
2350     }
2351 }
2352 
2353 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2354 {
2355     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2356 
2357     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2358 }
2359 
2360 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2361                                Monitor *mon)
2362 {
2363     PnvMachineState *pnv = PNV_MACHINE(obj);
2364     int i;
2365     CPUState *cs;
2366 
2367     CPU_FOREACH(cs) {
2368         PowerPCCPU *cpu = POWERPC_CPU(cs);
2369 
2370         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2371         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2372                                                            mon);
2373     }
2374 
2375     for (i = 0; i < pnv->num_chips; i++) {
2376         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2377     }
2378 }
2379 
2380 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2381                          uint8_t nvt_blk, uint32_t nvt_idx,
2382                          bool cam_ignore, uint8_t priority,
2383                          uint32_t logic_serv,
2384                          XiveTCTXMatch *match)
2385 {
2386     PnvMachineState *pnv = PNV_MACHINE(xfb);
2387     int total_count = 0;
2388     int i;
2389 
2390     for (i = 0; i < pnv->num_chips; i++) {
2391         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2392         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2393         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2394         int count;
2395 
2396         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2397                                priority, logic_serv, match);
2398 
2399         if (count < 0) {
2400             return count;
2401         }
2402 
2403         total_count += count;
2404     }
2405 
2406     return total_count;
2407 }
2408 
2409 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2410                                 uint8_t nvt_blk, uint32_t nvt_idx,
2411                                 bool cam_ignore, uint8_t priority,
2412                                 uint32_t logic_serv,
2413                                 XiveTCTXMatch *match)
2414 {
2415     PnvMachineState *pnv = PNV_MACHINE(xfb);
2416     int total_count = 0;
2417     int i;
2418 
2419     for (i = 0; i < pnv->num_chips; i++) {
2420         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2421         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2422         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2423         int count;
2424 
2425         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2426                                priority, logic_serv, match);
2427 
2428         if (count < 0) {
2429             return count;
2430         }
2431 
2432         total_count += count;
2433     }
2434 
2435     return total_count;
2436 }
2437 
2438 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2439 {
2440     MachineClass *mc = MACHINE_CLASS(oc);
2441     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2442     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2443     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2444 
2445     static GlobalProperty phb_compat[] = {
2446         { TYPE_PNV_PHB, "version", "3" },
2447         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2448     };
2449 
2450     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2451     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2452     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2453 
2454     xic->icp_get = pnv_icp_get;
2455     xic->ics_get = pnv_ics_get;
2456     xic->ics_resend = pnv_ics_resend;
2457 
2458     pmc->compat = compat;
2459     pmc->compat_size = sizeof(compat);
2460 
2461     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2462 }
2463 
2464 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2465 {
2466     MachineClass *mc = MACHINE_CLASS(oc);
2467     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2468     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2469     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2470 
2471     static GlobalProperty phb_compat[] = {
2472         { TYPE_PNV_PHB, "version", "4" },
2473         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2474     };
2475 
2476     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2477     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2478     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2479 
2480     xfc->match_nvt = pnv_match_nvt;
2481 
2482     pmc->compat = compat;
2483     pmc->compat_size = sizeof(compat);
2484     pmc->dt_power_mgt = pnv_dt_power_mgt;
2485 
2486     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2487 }
2488 
2489 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2490 {
2491     MachineClass *mc = MACHINE_CLASS(oc);
2492     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2493     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2494     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2495 
2496     static GlobalProperty phb_compat[] = {
2497         { TYPE_PNV_PHB, "version", "5" },
2498         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2499     };
2500 
2501     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2502     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2503 
2504     mc->alias = "powernv";
2505 
2506     pmc->compat = compat;
2507     pmc->compat_size = sizeof(compat);
2508     pmc->dt_power_mgt = pnv_dt_power_mgt;
2509 
2510     xfc->match_nvt = pnv10_xive_match_nvt;
2511 
2512     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2513 }
2514 
2515 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2516 {
2517     MachineClass *mc = MACHINE_CLASS(oc);
2518 
2519     pnv_machine_p10_common_class_init(oc, data);
2520     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2521 }
2522 
2523 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2524 {
2525     MachineClass *mc = MACHINE_CLASS(oc);
2526     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2527 
2528     pnv_machine_p10_common_class_init(oc, data);
2529     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2530     pmc->i2c_init = pnv_rainier_i2c_init;
2531 }
2532 
2533 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2534 {
2535     PnvMachineState *pnv = PNV_MACHINE(obj);
2536 
2537     return !!pnv->fw_load_addr;
2538 }
2539 
2540 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2541 {
2542     PnvMachineState *pnv = PNV_MACHINE(obj);
2543 
2544     if (value) {
2545         pnv->fw_load_addr = 0x8000000;
2546     }
2547 }
2548 
2549 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2550 {
2551     CPUPPCState *env = cpu_env(cs);
2552 
2553     cpu_synchronize_state(cs);
2554     ppc_cpu_do_system_reset(cs);
2555     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2556         /*
2557          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2558          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2559          * (PPC_BIT(43)).
2560          */
2561         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2562             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2563             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2564         }
2565     } else {
2566         /*
2567          * For non-powersave system resets, SRR1[42:45] are defined to be
2568          * implementation-dependent. The POWER9 User Manual specifies that
2569          * an external (SCOM driven, which may come from a BMC nmi command or
2570          * another CPU requesting a NMI IPI) system reset exception should be
2571          * 0b0010 (PPC_BIT(44)).
2572          */
2573         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2574     }
2575 }
2576 
2577 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2578 {
2579     CPUState *cs;
2580 
2581     CPU_FOREACH(cs) {
2582         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2583     }
2584 }
2585 
2586 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2587 {
2588     MachineClass *mc = MACHINE_CLASS(oc);
2589     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2590     NMIClass *nc = NMI_CLASS(oc);
2591 
2592     mc->desc = "IBM PowerNV (Non-Virtualized)";
2593     mc->init = pnv_init;
2594     mc->reset = pnv_reset;
2595     mc->max_cpus = MAX_CPUS;
2596     /* Pnv provides a AHCI device for storage */
2597     mc->block_default_type = IF_IDE;
2598     mc->no_parallel = 1;
2599     mc->default_boot_order = NULL;
2600     /*
2601      * RAM defaults to less than 2048 for 32-bit hosts, and large
2602      * enough to fit the maximum initrd size at it's load address
2603      */
2604     mc->default_ram_size = 1 * GiB;
2605     mc->default_ram_id = "pnv.ram";
2606     ispc->print_info = pnv_pic_print_info;
2607     nc->nmi_monitor_handler = pnv_nmi;
2608 
2609     object_class_property_add_bool(oc, "hb-mode",
2610                                    pnv_machine_get_hb, pnv_machine_set_hb);
2611     object_class_property_set_description(oc, "hb-mode",
2612                               "Use a hostboot like boot loader");
2613 }
2614 
2615 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2616     {                                             \
2617         .name          = type,                    \
2618         .class_init    = class_initfn,            \
2619         .parent        = TYPE_PNV8_CHIP,          \
2620     }
2621 
2622 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2623     {                                             \
2624         .name          = type,                    \
2625         .class_init    = class_initfn,            \
2626         .parent        = TYPE_PNV9_CHIP,          \
2627     }
2628 
2629 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2630     {                                              \
2631         .name          = type,                     \
2632         .class_init    = class_initfn,             \
2633         .parent        = TYPE_PNV10_CHIP,          \
2634     }
2635 
2636 static const TypeInfo types[] = {
2637     {
2638         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2639         .parent        = MACHINE_TYPE_NAME("powernv10"),
2640         .class_init    = pnv_machine_p10_rainier_class_init,
2641     },
2642     {
2643         .name          = MACHINE_TYPE_NAME("powernv10"),
2644         .parent        = TYPE_PNV_MACHINE,
2645         .class_init    = pnv_machine_power10_class_init,
2646         .interfaces = (InterfaceInfo[]) {
2647             { TYPE_XIVE_FABRIC },
2648             { },
2649         },
2650     },
2651     {
2652         .name          = MACHINE_TYPE_NAME("powernv9"),
2653         .parent        = TYPE_PNV_MACHINE,
2654         .class_init    = pnv_machine_power9_class_init,
2655         .interfaces = (InterfaceInfo[]) {
2656             { TYPE_XIVE_FABRIC },
2657             { },
2658         },
2659     },
2660     {
2661         .name          = MACHINE_TYPE_NAME("powernv8"),
2662         .parent        = TYPE_PNV_MACHINE,
2663         .class_init    = pnv_machine_power8_class_init,
2664         .interfaces = (InterfaceInfo[]) {
2665             { TYPE_XICS_FABRIC },
2666             { },
2667         },
2668     },
2669     {
2670         .name          = TYPE_PNV_MACHINE,
2671         .parent        = TYPE_MACHINE,
2672         .abstract       = true,
2673         .instance_size = sizeof(PnvMachineState),
2674         .class_init    = pnv_machine_class_init,
2675         .class_size    = sizeof(PnvMachineClass),
2676         .interfaces = (InterfaceInfo[]) {
2677             { TYPE_INTERRUPT_STATS_PROVIDER },
2678             { TYPE_NMI },
2679             { },
2680         },
2681     },
2682     {
2683         .name          = TYPE_PNV_CHIP,
2684         .parent        = TYPE_SYS_BUS_DEVICE,
2685         .class_init    = pnv_chip_class_init,
2686         .instance_size = sizeof(PnvChip),
2687         .class_size    = sizeof(PnvChipClass),
2688         .abstract      = true,
2689     },
2690 
2691     /*
2692      * P10 chip and variants
2693      */
2694     {
2695         .name          = TYPE_PNV10_CHIP,
2696         .parent        = TYPE_PNV_CHIP,
2697         .instance_init = pnv_chip_power10_instance_init,
2698         .instance_size = sizeof(Pnv10Chip),
2699     },
2700     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2701 
2702     /*
2703      * P9 chip and variants
2704      */
2705     {
2706         .name          = TYPE_PNV9_CHIP,
2707         .parent        = TYPE_PNV_CHIP,
2708         .instance_init = pnv_chip_power9_instance_init,
2709         .instance_size = sizeof(Pnv9Chip),
2710     },
2711     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2712 
2713     /*
2714      * P8 chip and variants
2715      */
2716     {
2717         .name          = TYPE_PNV8_CHIP,
2718         .parent        = TYPE_PNV_CHIP,
2719         .instance_init = pnv_chip_power8_instance_init,
2720         .instance_size = sizeof(Pnv8Chip),
2721     },
2722     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2723     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2724     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2725                           pnv_chip_power8nvl_class_init),
2726 };
2727 
2728 DEFINE_TYPES(types)
2729