1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/units.h" 23 #include "qapi/error.h" 24 #include "sysemu/sysemu.h" 25 #include "sysemu/numa.h" 26 #include "sysemu/reset.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/device_tree.h" 29 #include "target/ppc/cpu.h" 30 #include "qemu/log.h" 31 #include "hw/ppc/fdt.h" 32 #include "hw/ppc/ppc.h" 33 #include "hw/ppc/pnv.h" 34 #include "hw/ppc/pnv_core.h" 35 #include "hw/loader.h" 36 #include "exec/address-spaces.h" 37 #include "qapi/visitor.h" 38 #include "monitor/monitor.h" 39 #include "hw/intc/intc.h" 40 #include "hw/ipmi/ipmi.h" 41 #include "target/ppc/mmu-hash64.h" 42 43 #include "hw/ppc/xics.h" 44 #include "hw/ppc/pnv_xscom.h" 45 46 #include "hw/isa/isa.h" 47 #include "hw/char/serial.h" 48 #include "hw/timer/mc146818rtc.h" 49 50 #include <libfdt.h> 51 52 #define FDT_MAX_SIZE (1 * MiB) 53 54 #define FW_FILE_NAME "skiboot.lid" 55 #define FW_LOAD_ADDR 0x0 56 #define FW_MAX_SIZE (4 * MiB) 57 58 #define KERNEL_LOAD_ADDR 0x20000000 59 #define KERNEL_MAX_SIZE (256 * MiB) 60 #define INITRD_LOAD_ADDR 0x60000000 61 #define INITRD_MAX_SIZE (256 * MiB) 62 63 static const char *pnv_chip_core_typename(const PnvChip *o) 64 { 65 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 66 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 67 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 68 const char *core_type = object_class_get_name(object_class_by_name(s)); 69 g_free(s); 70 return core_type; 71 } 72 73 /* 74 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 75 * 4 * 4 sockets * 12 cores * 8 threads = 1536 76 * Let's make it 2^11 77 */ 78 #define MAX_CPUS 2048 79 80 /* 81 * Memory nodes are created by hostboot, one for each range of memory 82 * that has a different "affinity". In practice, it means one range 83 * per chip. 84 */ 85 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 86 { 87 char *mem_name; 88 uint64_t mem_reg_property[2]; 89 int off; 90 91 mem_reg_property[0] = cpu_to_be64(start); 92 mem_reg_property[1] = cpu_to_be64(size); 93 94 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 95 off = fdt_add_subnode(fdt, 0, mem_name); 96 g_free(mem_name); 97 98 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 99 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 100 sizeof(mem_reg_property)))); 101 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 102 } 103 104 static int get_cpus_node(void *fdt) 105 { 106 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 107 108 if (cpus_offset < 0) { 109 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 110 if (cpus_offset) { 111 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 112 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 113 } 114 } 115 _FDT(cpus_offset); 116 return cpus_offset; 117 } 118 119 /* 120 * The PowerNV cores (and threads) need to use real HW ids and not an 121 * incremental index like it has been done on other platforms. This HW 122 * id is stored in the CPU PIR, it is used to create cpu nodes in the 123 * device tree, used in XSCOM to address cores and in interrupt 124 * servers. 125 */ 126 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 127 { 128 PowerPCCPU *cpu = pc->threads[0]; 129 CPUState *cs = CPU(cpu); 130 DeviceClass *dc = DEVICE_GET_CLASS(cs); 131 int smt_threads = CPU_CORE(pc)->nr_threads; 132 CPUPPCState *env = &cpu->env; 133 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 134 uint32_t servers_prop[smt_threads]; 135 int i; 136 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 137 0xffffffff, 0xffffffff}; 138 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 139 uint32_t cpufreq = 1000000000; 140 uint32_t page_sizes_prop[64]; 141 size_t page_sizes_prop_size; 142 const uint8_t pa_features[] = { 24, 0, 143 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 144 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 145 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 146 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 147 int offset; 148 char *nodename; 149 int cpus_offset = get_cpus_node(fdt); 150 151 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 152 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 153 _FDT(offset); 154 g_free(nodename); 155 156 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 157 158 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 159 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 160 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 161 162 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 163 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 164 env->dcache_line_size))); 165 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 166 env->dcache_line_size))); 167 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 168 env->icache_line_size))); 169 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 170 env->icache_line_size))); 171 172 if (pcc->l1_dcache_size) { 173 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 174 pcc->l1_dcache_size))); 175 } else { 176 warn_report("Unknown L1 dcache size for cpu"); 177 } 178 if (pcc->l1_icache_size) { 179 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 180 pcc->l1_icache_size))); 181 } else { 182 warn_report("Unknown L1 icache size for cpu"); 183 } 184 185 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 186 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 187 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 188 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 189 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 190 191 if (env->spr_cb[SPR_PURR].oea_read) { 192 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 193 } 194 195 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 196 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 197 segs, sizeof(segs)))); 198 } 199 200 /* Advertise VMX/VSX (vector extensions) if available 201 * 0 / no property == no vector extensions 202 * 1 == VMX / Altivec available 203 * 2 == VSX available */ 204 if (env->insns_flags & PPC_ALTIVEC) { 205 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 206 207 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 208 } 209 210 /* Advertise DFP (Decimal Floating Point) if available 211 * 0 / no property == no DFP 212 * 1 == DFP available */ 213 if (env->insns_flags2 & PPC2_DFP) { 214 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 215 } 216 217 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 218 sizeof(page_sizes_prop)); 219 if (page_sizes_prop_size) { 220 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 221 page_sizes_prop, page_sizes_prop_size))); 222 } 223 224 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 225 pa_features, sizeof(pa_features)))); 226 227 /* Build interrupt servers properties */ 228 for (i = 0; i < smt_threads; i++) { 229 servers_prop[i] = cpu_to_be32(pc->pir + i); 230 } 231 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 232 servers_prop, sizeof(servers_prop)))); 233 } 234 235 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 236 uint32_t nr_threads) 237 { 238 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 239 char *name; 240 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 241 uint32_t irange[2], i, rsize; 242 uint64_t *reg; 243 int offset; 244 245 irange[0] = cpu_to_be32(pir); 246 irange[1] = cpu_to_be32(nr_threads); 247 248 rsize = sizeof(uint64_t) * 2 * nr_threads; 249 reg = g_malloc(rsize); 250 for (i = 0; i < nr_threads; i++) { 251 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 252 reg[i * 2 + 1] = cpu_to_be64(0x1000); 253 } 254 255 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 256 offset = fdt_add_subnode(fdt, 0, name); 257 _FDT(offset); 258 g_free(name); 259 260 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 261 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 262 _FDT((fdt_setprop_string(fdt, offset, "device_type", 263 "PowerPC-External-Interrupt-Presentation"))); 264 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 265 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 266 irange, sizeof(irange)))); 267 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 268 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 269 g_free(reg); 270 } 271 272 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 273 { 274 const char *typename = pnv_chip_core_typename(chip); 275 size_t typesize = object_type_get_instance_size(typename); 276 int i; 277 278 pnv_dt_xscom(chip, fdt, 0); 279 280 for (i = 0; i < chip->nr_cores; i++) { 281 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 282 283 pnv_dt_core(chip, pnv_core, fdt); 284 285 /* Interrupt Control Presenters (ICP). One per core. */ 286 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 287 } 288 289 if (chip->ram_size) { 290 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 291 } 292 } 293 294 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 295 { 296 const char *typename = pnv_chip_core_typename(chip); 297 size_t typesize = object_type_get_instance_size(typename); 298 int i; 299 300 pnv_dt_xscom(chip, fdt, 0); 301 302 for (i = 0; i < chip->nr_cores; i++) { 303 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 304 305 pnv_dt_core(chip, pnv_core, fdt); 306 } 307 308 if (chip->ram_size) { 309 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 310 } 311 312 pnv_dt_lpc(chip, fdt, 0); 313 } 314 315 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 316 { 317 uint32_t io_base = d->ioport_id; 318 uint32_t io_regs[] = { 319 cpu_to_be32(1), 320 cpu_to_be32(io_base), 321 cpu_to_be32(2) 322 }; 323 char *name; 324 int node; 325 326 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 327 node = fdt_add_subnode(fdt, lpc_off, name); 328 _FDT(node); 329 g_free(name); 330 331 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 332 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 333 } 334 335 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 336 { 337 const char compatible[] = "ns16550\0pnpPNP,501"; 338 uint32_t io_base = d->ioport_id; 339 uint32_t io_regs[] = { 340 cpu_to_be32(1), 341 cpu_to_be32(io_base), 342 cpu_to_be32(8) 343 }; 344 char *name; 345 int node; 346 347 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 348 node = fdt_add_subnode(fdt, lpc_off, name); 349 _FDT(node); 350 g_free(name); 351 352 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 353 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 354 sizeof(compatible)))); 355 356 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 357 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 358 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 359 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 360 fdt_get_phandle(fdt, lpc_off)))); 361 362 /* This is needed by Linux */ 363 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 364 } 365 366 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 367 { 368 const char compatible[] = "bt\0ipmi-bt"; 369 uint32_t io_base; 370 uint32_t io_regs[] = { 371 cpu_to_be32(1), 372 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 373 cpu_to_be32(3) 374 }; 375 uint32_t irq; 376 char *name; 377 int node; 378 379 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 380 io_regs[1] = cpu_to_be32(io_base); 381 382 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 383 384 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 385 node = fdt_add_subnode(fdt, lpc_off, name); 386 _FDT(node); 387 g_free(name); 388 389 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 390 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 391 sizeof(compatible)))); 392 393 /* Mark it as reserved to avoid Linux trying to claim it */ 394 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 395 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 396 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 397 fdt_get_phandle(fdt, lpc_off)))); 398 } 399 400 typedef struct ForeachPopulateArgs { 401 void *fdt; 402 int offset; 403 } ForeachPopulateArgs; 404 405 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 406 { 407 ForeachPopulateArgs *args = opaque; 408 ISADevice *d = ISA_DEVICE(dev); 409 410 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 411 pnv_dt_rtc(d, args->fdt, args->offset); 412 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 413 pnv_dt_serial(d, args->fdt, args->offset); 414 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 415 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 416 } else { 417 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 418 d->ioport_id); 419 } 420 421 return 0; 422 } 423 424 /* The default LPC bus of a multichip system is on chip 0. It's 425 * recognized by the firmware (skiboot) using a "primary" property. 426 */ 427 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 428 { 429 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 430 ForeachPopulateArgs args = { 431 .fdt = fdt, 432 .offset = isa_offset, 433 }; 434 435 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 436 437 /* ISA devices are not necessarily parented to the ISA bus so we 438 * can not use object_child_foreach() */ 439 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 440 &args); 441 } 442 443 static void pnv_dt_power_mgt(void *fdt) 444 { 445 int off; 446 447 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 448 off = fdt_add_subnode(fdt, off, "power-mgt"); 449 450 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 451 } 452 453 static void *pnv_dt_create(MachineState *machine) 454 { 455 const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 456 const char plat_compat9[] = "qemu,powernv9\0ibm,powernv"; 457 PnvMachineState *pnv = PNV_MACHINE(machine); 458 void *fdt; 459 char *buf; 460 int off; 461 int i; 462 463 fdt = g_malloc0(FDT_MAX_SIZE); 464 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 465 466 /* Root node */ 467 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 468 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 469 _FDT((fdt_setprop_string(fdt, 0, "model", 470 "IBM PowerNV (emulated by qemu)"))); 471 if (pnv_is_power9(pnv)) { 472 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9, 473 sizeof(plat_compat9)))); 474 } else { 475 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8, 476 sizeof(plat_compat8)))); 477 } 478 479 480 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 481 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 482 if (qemu_uuid_set) { 483 _FDT((fdt_property_string(fdt, "system-id", buf))); 484 } 485 g_free(buf); 486 487 off = fdt_add_subnode(fdt, 0, "chosen"); 488 if (machine->kernel_cmdline) { 489 _FDT((fdt_setprop_string(fdt, off, "bootargs", 490 machine->kernel_cmdline))); 491 } 492 493 if (pnv->initrd_size) { 494 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 495 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 496 497 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 498 &start_prop, sizeof(start_prop)))); 499 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 500 &end_prop, sizeof(end_prop)))); 501 } 502 503 /* Populate device tree for each chip */ 504 for (i = 0; i < pnv->num_chips; i++) { 505 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 506 } 507 508 /* Populate ISA devices on chip 0 */ 509 pnv_dt_isa(pnv, fdt); 510 511 if (pnv->bmc) { 512 pnv_dt_bmc_sensors(pnv->bmc, fdt); 513 } 514 515 /* Create an extra node for power management on Power9 */ 516 if (pnv_is_power9(pnv)) { 517 pnv_dt_power_mgt(fdt); 518 } 519 520 return fdt; 521 } 522 523 static void pnv_powerdown_notify(Notifier *n, void *opaque) 524 { 525 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 526 527 if (pnv->bmc) { 528 pnv_bmc_powerdown(pnv->bmc); 529 } 530 } 531 532 static void pnv_reset(MachineState *machine) 533 { 534 PnvMachineState *pnv = PNV_MACHINE(machine); 535 void *fdt; 536 Object *obj; 537 538 qemu_devices_reset(); 539 540 /* OpenPOWER systems have a BMC, which can be defined on the 541 * command line with: 542 * 543 * -device ipmi-bmc-sim,id=bmc0 544 * 545 * This is the internal simulator but it could also be an external 546 * BMC. 547 */ 548 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL); 549 if (obj) { 550 pnv->bmc = IPMI_BMC(obj); 551 } 552 553 fdt = pnv_dt_create(machine); 554 555 /* Pack resulting tree */ 556 _FDT((fdt_pack(fdt))); 557 558 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 559 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 560 } 561 562 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 563 { 564 Pnv8Chip *chip8 = PNV8_CHIP(chip); 565 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 566 } 567 568 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 569 { 570 Pnv8Chip *chip8 = PNV8_CHIP(chip); 571 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 572 } 573 574 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 575 { 576 Pnv9Chip *chip9 = PNV9_CHIP(chip); 577 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 578 } 579 580 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 581 { 582 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 583 } 584 585 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 586 { 587 Pnv8Chip *chip8 = PNV8_CHIP(chip); 588 589 ics_pic_print_info(&chip8->psi.ics, mon); 590 } 591 592 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 593 { 594 Pnv9Chip *chip9 = PNV9_CHIP(chip); 595 596 pnv_xive_pic_print_info(&chip9->xive, mon); 597 pnv_psi_pic_print_info(&chip9->psi, mon); 598 } 599 600 static void pnv_init(MachineState *machine) 601 { 602 PnvMachineState *pnv = PNV_MACHINE(machine); 603 MemoryRegion *ram; 604 char *fw_filename; 605 long fw_size; 606 int i; 607 char *chip_typename; 608 609 /* allocate RAM */ 610 if (machine->ram_size < (1 * GiB)) { 611 warn_report("skiboot may not work with < 1GB of RAM"); 612 } 613 614 ram = g_new(MemoryRegion, 1); 615 memory_region_allocate_system_memory(ram, NULL, "pnv.ram", 616 machine->ram_size); 617 memory_region_add_subregion(get_system_memory(), 0, ram); 618 619 /* load skiboot firmware */ 620 if (bios_name == NULL) { 621 bios_name = FW_FILE_NAME; 622 } 623 624 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 625 if (!fw_filename) { 626 error_report("Could not find OPAL firmware '%s'", bios_name); 627 exit(1); 628 } 629 630 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); 631 if (fw_size < 0) { 632 error_report("Could not load OPAL firmware '%s'", fw_filename); 633 exit(1); 634 } 635 g_free(fw_filename); 636 637 /* load kernel */ 638 if (machine->kernel_filename) { 639 long kernel_size; 640 641 kernel_size = load_image_targphys(machine->kernel_filename, 642 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 643 if (kernel_size < 0) { 644 error_report("Could not load kernel '%s'", 645 machine->kernel_filename); 646 exit(1); 647 } 648 } 649 650 /* load initrd */ 651 if (machine->initrd_filename) { 652 pnv->initrd_base = INITRD_LOAD_ADDR; 653 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 654 pnv->initrd_base, INITRD_MAX_SIZE); 655 if (pnv->initrd_size < 0) { 656 error_report("Could not load initial ram disk '%s'", 657 machine->initrd_filename); 658 exit(1); 659 } 660 } 661 662 /* Create the processor chips */ 663 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 664 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 665 i, machine->cpu_type); 666 if (!object_class_by_name(chip_typename)) { 667 error_report("invalid CPU model '%.*s' for %s machine", 668 i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name); 669 exit(1); 670 } 671 672 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 673 for (i = 0; i < pnv->num_chips; i++) { 674 char chip_name[32]; 675 Object *chip = object_new(chip_typename); 676 677 pnv->chips[i] = PNV_CHIP(chip); 678 679 /* TODO: put all the memory in one node on chip 0 until we find a 680 * way to specify different ranges for each chip 681 */ 682 if (i == 0) { 683 object_property_set_int(chip, machine->ram_size, "ram-size", 684 &error_fatal); 685 } 686 687 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); 688 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); 689 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", 690 &error_fatal); 691 object_property_set_int(chip, machine->smp.cores, 692 "nr-cores", &error_fatal); 693 object_property_set_bool(chip, true, "realized", &error_fatal); 694 } 695 g_free(chip_typename); 696 697 /* Instantiate ISA bus on chip 0 */ 698 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 699 700 /* Create serial port */ 701 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 702 703 /* Create an RTC ISA device too */ 704 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 705 706 /* OpenPOWER systems use a IPMI SEL Event message to notify the 707 * host to powerdown */ 708 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 709 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 710 } 711 712 /* 713 * 0:21 Reserved - Read as zeros 714 * 22:24 Chip ID 715 * 25:28 Core number 716 * 29:31 Thread ID 717 */ 718 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 719 { 720 return (chip->chip_id << 7) | (core_id << 3); 721 } 722 723 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 724 Error **errp) 725 { 726 Error *local_err = NULL; 727 Object *obj; 728 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 729 730 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()), 731 &local_err); 732 if (local_err) { 733 error_propagate(errp, local_err); 734 return; 735 } 736 737 pnv_cpu->intc = obj; 738 } 739 740 /* 741 * 0:48 Reserved - Read as zeroes 742 * 49:52 Node ID 743 * 53:55 Chip ID 744 * 56 Reserved - Read as zero 745 * 57:61 Core number 746 * 62:63 Thread ID 747 * 748 * We only care about the lower bits. uint32_t is fine for the moment. 749 */ 750 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 751 { 752 return (chip->chip_id << 8) | (core_id << 2); 753 } 754 755 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 756 Error **errp) 757 { 758 Pnv9Chip *chip9 = PNV9_CHIP(chip); 759 Error *local_err = NULL; 760 Object *obj; 761 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 762 763 /* 764 * The core creates its interrupt presenter but the XIVE interrupt 765 * controller object is initialized afterwards. Hopefully, it's 766 * only used at runtime. 767 */ 768 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err); 769 if (local_err) { 770 error_propagate(errp, local_err); 771 return; 772 } 773 774 pnv_cpu->intc = obj; 775 } 776 777 /* Allowed core identifiers on a POWER8 Processor Chip : 778 * 779 * <EX0 reserved> 780 * EX1 - Venice only 781 * EX2 - Venice only 782 * EX3 - Venice only 783 * EX4 784 * EX5 785 * EX6 786 * <EX7,8 reserved> <reserved> 787 * EX9 - Venice only 788 * EX10 - Venice only 789 * EX11 - Venice only 790 * EX12 791 * EX13 792 * EX14 793 * <EX15 reserved> 794 */ 795 #define POWER8E_CORE_MASK (0x7070ull) 796 #define POWER8_CORE_MASK (0x7e7eull) 797 798 /* 799 * POWER9 has 24 cores, ids starting at 0x0 800 */ 801 #define POWER9_CORE_MASK (0xffffffffffffffull) 802 803 static void pnv_chip_power8_instance_init(Object *obj) 804 { 805 Pnv8Chip *chip8 = PNV8_CHIP(obj); 806 807 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi), 808 TYPE_PNV8_PSI, &error_abort, NULL); 809 object_property_add_const_link(OBJECT(&chip8->psi), "xics", 810 OBJECT(qdev_get_machine()), &error_abort); 811 812 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc), 813 TYPE_PNV8_LPC, &error_abort, NULL); 814 object_property_add_const_link(OBJECT(&chip8->lpc), "psi", 815 OBJECT(&chip8->psi), &error_abort); 816 817 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ), 818 TYPE_PNV8_OCC, &error_abort, NULL); 819 object_property_add_const_link(OBJECT(&chip8->occ), "psi", 820 OBJECT(&chip8->psi), &error_abort); 821 } 822 823 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 824 { 825 PnvChip *chip = PNV_CHIP(chip8); 826 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 827 const char *typename = pnv_chip_core_typename(chip); 828 size_t typesize = object_type_get_instance_size(typename); 829 int i, j; 830 char *name; 831 XICSFabric *xi = XICS_FABRIC(qdev_get_machine()); 832 833 name = g_strdup_printf("icp-%x", chip->chip_id); 834 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 835 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 836 g_free(name); 837 838 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 839 840 /* Map the ICP registers for each thread */ 841 for (i = 0; i < chip->nr_cores; i++) { 842 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 843 int core_hwid = CPU_CORE(pnv_core)->core_id; 844 845 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 846 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 847 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir)); 848 849 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 850 &icp->mmio); 851 } 852 } 853 } 854 855 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 856 { 857 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 858 PnvChip *chip = PNV_CHIP(dev); 859 Pnv8Chip *chip8 = PNV8_CHIP(dev); 860 Pnv8Psi *psi8 = &chip8->psi; 861 Error *local_err = NULL; 862 863 /* XSCOM bridge is first */ 864 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err); 865 if (local_err) { 866 error_propagate(errp, local_err); 867 return; 868 } 869 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 870 871 pcc->parent_realize(dev, &local_err); 872 if (local_err) { 873 error_propagate(errp, local_err); 874 return; 875 } 876 877 /* Processor Service Interface (PSI) Host Bridge */ 878 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip), 879 "bar", &error_fatal); 880 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err); 881 if (local_err) { 882 error_propagate(errp, local_err); 883 return; 884 } 885 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 886 &PNV_PSI(psi8)->xscom_regs); 887 888 /* Create LPC controller */ 889 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized", 890 &error_fatal); 891 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 892 893 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 894 (uint64_t) PNV_XSCOM_BASE(chip), 895 PNV_XSCOM_LPC_BASE); 896 897 /* Interrupt Management Area. This is the memory region holding 898 * all the Interrupt Control Presenter (ICP) registers */ 899 pnv_chip_icp_realize(chip8, &local_err); 900 if (local_err) { 901 error_propagate(errp, local_err); 902 return; 903 } 904 905 /* Create the simplified OCC model */ 906 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err); 907 if (local_err) { 908 error_propagate(errp, local_err); 909 return; 910 } 911 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 912 } 913 914 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 915 { 916 DeviceClass *dc = DEVICE_CLASS(klass); 917 PnvChipClass *k = PNV_CHIP_CLASS(klass); 918 919 k->chip_type = PNV_CHIP_POWER8E; 920 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 921 k->cores_mask = POWER8E_CORE_MASK; 922 k->core_pir = pnv_chip_core_pir_p8; 923 k->intc_create = pnv_chip_power8_intc_create; 924 k->isa_create = pnv_chip_power8_isa_create; 925 k->dt_populate = pnv_chip_power8_dt_populate; 926 k->pic_print_info = pnv_chip_power8_pic_print_info; 927 dc->desc = "PowerNV Chip POWER8E"; 928 929 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 930 &k->parent_realize); 931 } 932 933 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 934 { 935 DeviceClass *dc = DEVICE_CLASS(klass); 936 PnvChipClass *k = PNV_CHIP_CLASS(klass); 937 938 k->chip_type = PNV_CHIP_POWER8; 939 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 940 k->cores_mask = POWER8_CORE_MASK; 941 k->core_pir = pnv_chip_core_pir_p8; 942 k->intc_create = pnv_chip_power8_intc_create; 943 k->isa_create = pnv_chip_power8_isa_create; 944 k->dt_populate = pnv_chip_power8_dt_populate; 945 k->pic_print_info = pnv_chip_power8_pic_print_info; 946 dc->desc = "PowerNV Chip POWER8"; 947 948 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 949 &k->parent_realize); 950 } 951 952 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 953 { 954 DeviceClass *dc = DEVICE_CLASS(klass); 955 PnvChipClass *k = PNV_CHIP_CLASS(klass); 956 957 k->chip_type = PNV_CHIP_POWER8NVL; 958 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 959 k->cores_mask = POWER8_CORE_MASK; 960 k->core_pir = pnv_chip_core_pir_p8; 961 k->intc_create = pnv_chip_power8_intc_create; 962 k->isa_create = pnv_chip_power8nvl_isa_create; 963 k->dt_populate = pnv_chip_power8_dt_populate; 964 k->pic_print_info = pnv_chip_power8_pic_print_info; 965 dc->desc = "PowerNV Chip POWER8NVL"; 966 967 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 968 &k->parent_realize); 969 } 970 971 static void pnv_chip_power9_instance_init(Object *obj) 972 { 973 Pnv9Chip *chip9 = PNV9_CHIP(obj); 974 975 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive), 976 TYPE_PNV_XIVE, &error_abort, NULL); 977 object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj, 978 &error_abort); 979 980 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi), 981 TYPE_PNV9_PSI, &error_abort, NULL); 982 object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj, 983 &error_abort); 984 985 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc), 986 TYPE_PNV9_LPC, &error_abort, NULL); 987 object_property_add_const_link(OBJECT(&chip9->lpc), "psi", 988 OBJECT(&chip9->psi), &error_abort); 989 990 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ), 991 TYPE_PNV9_OCC, &error_abort, NULL); 992 object_property_add_const_link(OBJECT(&chip9->occ), "psi", 993 OBJECT(&chip9->psi), &error_abort); 994 } 995 996 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 997 { 998 PnvChip *chip = PNV_CHIP(chip9); 999 const char *typename = pnv_chip_core_typename(chip); 1000 size_t typesize = object_type_get_instance_size(typename); 1001 int i; 1002 1003 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1004 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1005 1006 for (i = 0; i < chip9->nr_quads; i++) { 1007 char eq_name[32]; 1008 PnvQuad *eq = &chip9->quads[i]; 1009 PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize); 1010 int core_id = CPU_CORE(pnv_core)->core_id; 1011 1012 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1013 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq), 1014 TYPE_PNV_QUAD, &error_fatal, NULL); 1015 1016 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal); 1017 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal); 1018 1019 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id), 1020 &eq->xscom_regs); 1021 } 1022 } 1023 1024 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1025 { 1026 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1027 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1028 PnvChip *chip = PNV_CHIP(dev); 1029 Pnv9Psi *psi9 = &chip9->psi; 1030 Error *local_err = NULL; 1031 1032 /* XSCOM bridge is first */ 1033 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err); 1034 if (local_err) { 1035 error_propagate(errp, local_err); 1036 return; 1037 } 1038 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip)); 1039 1040 pcc->parent_realize(dev, &local_err); 1041 if (local_err) { 1042 error_propagate(errp, local_err); 1043 return; 1044 } 1045 1046 pnv_chip_quad_realize(chip9, &local_err); 1047 if (local_err) { 1048 error_propagate(errp, local_err); 1049 return; 1050 } 1051 1052 /* XIVE interrupt controller (POWER9) */ 1053 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip), 1054 "ic-bar", &error_fatal); 1055 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip), 1056 "vc-bar", &error_fatal); 1057 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip), 1058 "pc-bar", &error_fatal); 1059 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip), 1060 "tm-bar", &error_fatal); 1061 object_property_set_bool(OBJECT(&chip9->xive), true, "realized", 1062 &local_err); 1063 if (local_err) { 1064 error_propagate(errp, local_err); 1065 return; 1066 } 1067 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1068 &chip9->xive.xscom_regs); 1069 1070 /* Processor Service Interface (PSI) Host Bridge */ 1071 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip), 1072 "bar", &error_fatal); 1073 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err); 1074 if (local_err) { 1075 error_propagate(errp, local_err); 1076 return; 1077 } 1078 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1079 &PNV_PSI(psi9)->xscom_regs); 1080 1081 /* LPC */ 1082 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err); 1083 if (local_err) { 1084 error_propagate(errp, local_err); 1085 return; 1086 } 1087 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1088 &chip9->lpc.xscom_regs); 1089 1090 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1091 (uint64_t) PNV9_LPCM_BASE(chip)); 1092 1093 /* Create the simplified OCC model */ 1094 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err); 1095 if (local_err) { 1096 error_propagate(errp, local_err); 1097 return; 1098 } 1099 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1100 } 1101 1102 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1103 { 1104 DeviceClass *dc = DEVICE_CLASS(klass); 1105 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1106 1107 k->chip_type = PNV_CHIP_POWER9; 1108 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1109 k->cores_mask = POWER9_CORE_MASK; 1110 k->core_pir = pnv_chip_core_pir_p9; 1111 k->intc_create = pnv_chip_power9_intc_create; 1112 k->isa_create = pnv_chip_power9_isa_create; 1113 k->dt_populate = pnv_chip_power9_dt_populate; 1114 k->pic_print_info = pnv_chip_power9_pic_print_info; 1115 dc->desc = "PowerNV Chip POWER9"; 1116 1117 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1118 &k->parent_realize); 1119 } 1120 1121 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1122 { 1123 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1124 int cores_max; 1125 1126 /* 1127 * No custom mask for this chip, let's use the default one from * 1128 * the chip class 1129 */ 1130 if (!chip->cores_mask) { 1131 chip->cores_mask = pcc->cores_mask; 1132 } 1133 1134 /* filter alien core ids ! some are reserved */ 1135 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1136 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1137 chip->cores_mask); 1138 return; 1139 } 1140 chip->cores_mask &= pcc->cores_mask; 1141 1142 /* now that we have a sane layout, let check the number of cores */ 1143 cores_max = ctpop64(chip->cores_mask); 1144 if (chip->nr_cores > cores_max) { 1145 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1146 cores_max); 1147 return; 1148 } 1149 } 1150 1151 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1152 { 1153 MachineState *ms = MACHINE(qdev_get_machine()); 1154 Error *error = NULL; 1155 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1156 const char *typename = pnv_chip_core_typename(chip); 1157 size_t typesize = object_type_get_instance_size(typename); 1158 int i, core_hwid; 1159 1160 if (!object_class_by_name(typename)) { 1161 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1162 return; 1163 } 1164 1165 /* Cores */ 1166 pnv_chip_core_sanitize(chip, &error); 1167 if (error) { 1168 error_propagate(errp, error); 1169 return; 1170 } 1171 1172 chip->cores = g_malloc0(typesize * chip->nr_cores); 1173 1174 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1175 && (i < chip->nr_cores); core_hwid++) { 1176 char core_name[32]; 1177 void *pnv_core = chip->cores + i * typesize; 1178 uint64_t xscom_core_base; 1179 1180 if (!(chip->cores_mask & (1ull << core_hwid))) { 1181 continue; 1182 } 1183 1184 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1185 object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize, 1186 typename, &error_fatal, NULL); 1187 object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads", 1188 &error_fatal); 1189 object_property_set_int(OBJECT(pnv_core), core_hwid, 1190 CPU_CORE_PROP_CORE_ID, &error_fatal); 1191 object_property_set_int(OBJECT(pnv_core), 1192 pcc->core_pir(chip, core_hwid), 1193 "pir", &error_fatal); 1194 object_property_add_const_link(OBJECT(pnv_core), "chip", 1195 OBJECT(chip), &error_fatal); 1196 object_property_set_bool(OBJECT(pnv_core), true, "realized", 1197 &error_fatal); 1198 1199 /* Each core has an XSCOM MMIO region */ 1200 if (!pnv_chip_is_power9(chip)) { 1201 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid); 1202 } else { 1203 xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid); 1204 } 1205 1206 pnv_xscom_add_subregion(chip, xscom_core_base, 1207 &PNV_CORE(pnv_core)->xscom_regs); 1208 i++; 1209 } 1210 } 1211 1212 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1213 { 1214 PnvChip *chip = PNV_CHIP(dev); 1215 Error *error = NULL; 1216 1217 /* Cores */ 1218 pnv_chip_core_realize(chip, &error); 1219 if (error) { 1220 error_propagate(errp, error); 1221 return; 1222 } 1223 } 1224 1225 static Property pnv_chip_properties[] = { 1226 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1227 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1228 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1229 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1230 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1231 DEFINE_PROP_END_OF_LIST(), 1232 }; 1233 1234 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1235 { 1236 DeviceClass *dc = DEVICE_CLASS(klass); 1237 1238 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1239 dc->realize = pnv_chip_realize; 1240 dc->props = pnv_chip_properties; 1241 dc->desc = "PowerNV Chip"; 1242 } 1243 1244 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1245 { 1246 PnvMachineState *pnv = PNV_MACHINE(xi); 1247 int i; 1248 1249 for (i = 0; i < pnv->num_chips; i++) { 1250 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1251 1252 if (ics_valid_irq(&chip8->psi.ics, irq)) { 1253 return &chip8->psi.ics; 1254 } 1255 } 1256 return NULL; 1257 } 1258 1259 static void pnv_ics_resend(XICSFabric *xi) 1260 { 1261 PnvMachineState *pnv = PNV_MACHINE(xi); 1262 int i; 1263 1264 for (i = 0; i < pnv->num_chips; i++) { 1265 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1266 ics_resend(&chip8->psi.ics); 1267 } 1268 } 1269 1270 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1271 { 1272 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1273 1274 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 1275 } 1276 1277 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1278 Monitor *mon) 1279 { 1280 PnvMachineState *pnv = PNV_MACHINE(obj); 1281 int i; 1282 CPUState *cs; 1283 1284 CPU_FOREACH(cs) { 1285 PowerPCCPU *cpu = POWERPC_CPU(cs); 1286 1287 if (pnv_chip_is_power9(pnv->chips[0])) { 1288 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1289 } else { 1290 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 1291 } 1292 } 1293 1294 for (i = 0; i < pnv->num_chips; i++) { 1295 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 1296 } 1297 } 1298 1299 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, 1300 void *opaque, Error **errp) 1301 { 1302 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp); 1303 } 1304 1305 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, 1306 void *opaque, Error **errp) 1307 { 1308 PnvMachineState *pnv = PNV_MACHINE(obj); 1309 uint32_t num_chips; 1310 Error *local_err = NULL; 1311 1312 visit_type_uint32(v, name, &num_chips, &local_err); 1313 if (local_err) { 1314 error_propagate(errp, local_err); 1315 return; 1316 } 1317 1318 /* 1319 * TODO: should we decide on how many chips we can create based 1320 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 1321 */ 1322 if (!is_power_of_2(num_chips) || num_chips > 4) { 1323 error_setg(errp, "invalid number of chips: '%d'", num_chips); 1324 return; 1325 } 1326 1327 pnv->num_chips = num_chips; 1328 } 1329 1330 static void pnv_machine_instance_init(Object *obj) 1331 { 1332 PnvMachineState *pnv = PNV_MACHINE(obj); 1333 pnv->num_chips = 1; 1334 } 1335 1336 static void pnv_machine_class_props_init(ObjectClass *oc) 1337 { 1338 object_class_property_add(oc, "num-chips", "uint32", 1339 pnv_get_num_chips, pnv_set_num_chips, 1340 NULL, NULL, NULL); 1341 object_class_property_set_description(oc, "num-chips", 1342 "Specifies the number of processor chips", 1343 NULL); 1344 } 1345 1346 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1347 { 1348 MachineClass *mc = MACHINE_CLASS(oc); 1349 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1350 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1351 1352 mc->desc = "IBM PowerNV (Non-Virtualized)"; 1353 mc->init = pnv_init; 1354 mc->reset = pnv_reset; 1355 mc->max_cpus = MAX_CPUS; 1356 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1357 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for 1358 * storage */ 1359 mc->no_parallel = 1; 1360 mc->default_boot_order = NULL; 1361 mc->default_ram_size = 1 * GiB; 1362 xic->icp_get = pnv_icp_get; 1363 xic->ics_get = pnv_ics_get; 1364 xic->ics_resend = pnv_ics_resend; 1365 ispc->print_info = pnv_pic_print_info; 1366 1367 pnv_machine_class_props_init(oc); 1368 } 1369 1370 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 1371 { \ 1372 .name = type, \ 1373 .class_init = class_initfn, \ 1374 .parent = TYPE_PNV8_CHIP, \ 1375 } 1376 1377 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 1378 { \ 1379 .name = type, \ 1380 .class_init = class_initfn, \ 1381 .parent = TYPE_PNV9_CHIP, \ 1382 } 1383 1384 static const TypeInfo types[] = { 1385 { 1386 .name = TYPE_PNV_MACHINE, 1387 .parent = TYPE_MACHINE, 1388 .instance_size = sizeof(PnvMachineState), 1389 .instance_init = pnv_machine_instance_init, 1390 .class_init = pnv_machine_class_init, 1391 .interfaces = (InterfaceInfo[]) { 1392 { TYPE_XICS_FABRIC }, 1393 { TYPE_INTERRUPT_STATS_PROVIDER }, 1394 { }, 1395 }, 1396 }, 1397 { 1398 .name = TYPE_PNV_CHIP, 1399 .parent = TYPE_SYS_BUS_DEVICE, 1400 .class_init = pnv_chip_class_init, 1401 .instance_size = sizeof(PnvChip), 1402 .class_size = sizeof(PnvChipClass), 1403 .abstract = true, 1404 }, 1405 1406 /* 1407 * P9 chip and variants 1408 */ 1409 { 1410 .name = TYPE_PNV9_CHIP, 1411 .parent = TYPE_PNV_CHIP, 1412 .instance_init = pnv_chip_power9_instance_init, 1413 .instance_size = sizeof(Pnv9Chip), 1414 }, 1415 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 1416 1417 /* 1418 * P8 chip and variants 1419 */ 1420 { 1421 .name = TYPE_PNV8_CHIP, 1422 .parent = TYPE_PNV_CHIP, 1423 .instance_init = pnv_chip_power8_instance_init, 1424 .instance_size = sizeof(Pnv8Chip), 1425 }, 1426 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 1427 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 1428 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 1429 pnv_chip_power8nvl_class_init), 1430 }; 1431 1432 DEFINE_TYPES(types) 1433