1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/units.h" 23 #include "qapi/error.h" 24 #include "sysemu/sysemu.h" 25 #include "sysemu/numa.h" 26 #include "sysemu/reset.h" 27 #include "sysemu/runstate.h" 28 #include "sysemu/cpus.h" 29 #include "sysemu/device_tree.h" 30 #include "target/ppc/cpu.h" 31 #include "qemu/log.h" 32 #include "hw/ppc/fdt.h" 33 #include "hw/ppc/ppc.h" 34 #include "hw/ppc/pnv.h" 35 #include "hw/ppc/pnv_core.h" 36 #include "hw/loader.h" 37 #include "exec/address-spaces.h" 38 #include "qapi/visitor.h" 39 #include "monitor/monitor.h" 40 #include "hw/intc/intc.h" 41 #include "hw/ipmi/ipmi.h" 42 #include "target/ppc/mmu-hash64.h" 43 44 #include "hw/ppc/xics.h" 45 #include "hw/qdev-properties.h" 46 #include "hw/ppc/pnv_xscom.h" 47 #include "hw/ppc/pnv_pnor.h" 48 49 #include "hw/isa/isa.h" 50 #include "hw/boards.h" 51 #include "hw/char/serial.h" 52 #include "hw/rtc/mc146818rtc.h" 53 54 #include <libfdt.h> 55 56 #define FDT_MAX_SIZE (1 * MiB) 57 58 #define FW_FILE_NAME "skiboot.lid" 59 #define FW_LOAD_ADDR 0x0 60 #define FW_MAX_SIZE (4 * MiB) 61 62 #define KERNEL_LOAD_ADDR 0x20000000 63 #define KERNEL_MAX_SIZE (256 * MiB) 64 #define INITRD_LOAD_ADDR 0x60000000 65 #define INITRD_MAX_SIZE (256 * MiB) 66 67 static const char *pnv_chip_core_typename(const PnvChip *o) 68 { 69 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 70 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 71 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 72 const char *core_type = object_class_get_name(object_class_by_name(s)); 73 g_free(s); 74 return core_type; 75 } 76 77 /* 78 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 79 * 4 * 4 sockets * 12 cores * 8 threads = 1536 80 * Let's make it 2^11 81 */ 82 #define MAX_CPUS 2048 83 84 /* 85 * Memory nodes are created by hostboot, one for each range of memory 86 * that has a different "affinity". In practice, it means one range 87 * per chip. 88 */ 89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 90 { 91 char *mem_name; 92 uint64_t mem_reg_property[2]; 93 int off; 94 95 mem_reg_property[0] = cpu_to_be64(start); 96 mem_reg_property[1] = cpu_to_be64(size); 97 98 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 99 off = fdt_add_subnode(fdt, 0, mem_name); 100 g_free(mem_name); 101 102 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 103 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 104 sizeof(mem_reg_property)))); 105 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 106 } 107 108 static int get_cpus_node(void *fdt) 109 { 110 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 111 112 if (cpus_offset < 0) { 113 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 114 if (cpus_offset) { 115 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 116 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 117 } 118 } 119 _FDT(cpus_offset); 120 return cpus_offset; 121 } 122 123 /* 124 * The PowerNV cores (and threads) need to use real HW ids and not an 125 * incremental index like it has been done on other platforms. This HW 126 * id is stored in the CPU PIR, it is used to create cpu nodes in the 127 * device tree, used in XSCOM to address cores and in interrupt 128 * servers. 129 */ 130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 131 { 132 PowerPCCPU *cpu = pc->threads[0]; 133 CPUState *cs = CPU(cpu); 134 DeviceClass *dc = DEVICE_GET_CLASS(cs); 135 int smt_threads = CPU_CORE(pc)->nr_threads; 136 CPUPPCState *env = &cpu->env; 137 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 138 uint32_t servers_prop[smt_threads]; 139 int i; 140 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 141 0xffffffff, 0xffffffff}; 142 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 143 uint32_t cpufreq = 1000000000; 144 uint32_t page_sizes_prop[64]; 145 size_t page_sizes_prop_size; 146 const uint8_t pa_features[] = { 24, 0, 147 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 148 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 149 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 150 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 151 int offset; 152 char *nodename; 153 int cpus_offset = get_cpus_node(fdt); 154 155 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 156 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 157 _FDT(offset); 158 g_free(nodename); 159 160 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 161 162 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 164 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 165 166 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 167 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 168 env->dcache_line_size))); 169 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 170 env->dcache_line_size))); 171 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 172 env->icache_line_size))); 173 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 174 env->icache_line_size))); 175 176 if (pcc->l1_dcache_size) { 177 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 178 pcc->l1_dcache_size))); 179 } else { 180 warn_report("Unknown L1 dcache size for cpu"); 181 } 182 if (pcc->l1_icache_size) { 183 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 184 pcc->l1_icache_size))); 185 } else { 186 warn_report("Unknown L1 icache size for cpu"); 187 } 188 189 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 190 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 191 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 192 cpu->hash64_opts->slb_size))); 193 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 194 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 195 196 if (env->spr_cb[SPR_PURR].oea_read) { 197 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 198 } 199 200 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 201 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 202 segs, sizeof(segs)))); 203 } 204 205 /* 206 * Advertise VMX/VSX (vector extensions) if available 207 * 0 / no property == no vector extensions 208 * 1 == VMX / Altivec available 209 * 2 == VSX available 210 */ 211 if (env->insns_flags & PPC_ALTIVEC) { 212 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 213 214 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 215 } 216 217 /* 218 * Advertise DFP (Decimal Floating Point) if available 219 * 0 / no property == no DFP 220 * 1 == DFP available 221 */ 222 if (env->insns_flags2 & PPC2_DFP) { 223 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 224 } 225 226 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 227 sizeof(page_sizes_prop)); 228 if (page_sizes_prop_size) { 229 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 230 page_sizes_prop, page_sizes_prop_size))); 231 } 232 233 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 234 pa_features, sizeof(pa_features)))); 235 236 /* Build interrupt servers properties */ 237 for (i = 0; i < smt_threads; i++) { 238 servers_prop[i] = cpu_to_be32(pc->pir + i); 239 } 240 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 241 servers_prop, sizeof(servers_prop)))); 242 } 243 244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 245 uint32_t nr_threads) 246 { 247 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 248 char *name; 249 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 250 uint32_t irange[2], i, rsize; 251 uint64_t *reg; 252 int offset; 253 254 irange[0] = cpu_to_be32(pir); 255 irange[1] = cpu_to_be32(nr_threads); 256 257 rsize = sizeof(uint64_t) * 2 * nr_threads; 258 reg = g_malloc(rsize); 259 for (i = 0; i < nr_threads; i++) { 260 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 261 reg[i * 2 + 1] = cpu_to_be64(0x1000); 262 } 263 264 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 265 offset = fdt_add_subnode(fdt, 0, name); 266 _FDT(offset); 267 g_free(name); 268 269 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 270 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 271 _FDT((fdt_setprop_string(fdt, offset, "device_type", 272 "PowerPC-External-Interrupt-Presentation"))); 273 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 274 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 275 irange, sizeof(irange)))); 276 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 277 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 278 g_free(reg); 279 } 280 281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 282 { 283 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 284 int i; 285 286 pnv_dt_xscom(chip, fdt, 0, 287 cpu_to_be64(PNV_XSCOM_BASE(chip)), 288 cpu_to_be64(PNV_XSCOM_SIZE), 289 compat, sizeof(compat)); 290 291 for (i = 0; i < chip->nr_cores; i++) { 292 PnvCore *pnv_core = chip->cores[i]; 293 294 pnv_dt_core(chip, pnv_core, fdt); 295 296 /* Interrupt Control Presenters (ICP). One per core. */ 297 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 298 } 299 300 if (chip->ram_size) { 301 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 302 } 303 } 304 305 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 306 { 307 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 308 int i; 309 310 pnv_dt_xscom(chip, fdt, 0, 311 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 312 cpu_to_be64(PNV9_XSCOM_SIZE), 313 compat, sizeof(compat)); 314 315 for (i = 0; i < chip->nr_cores; i++) { 316 PnvCore *pnv_core = chip->cores[i]; 317 318 pnv_dt_core(chip, pnv_core, fdt); 319 } 320 321 if (chip->ram_size) { 322 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 323 } 324 325 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 326 } 327 328 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 329 { 330 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 331 int i; 332 333 pnv_dt_xscom(chip, fdt, 0, 334 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 335 cpu_to_be64(PNV10_XSCOM_SIZE), 336 compat, sizeof(compat)); 337 338 for (i = 0; i < chip->nr_cores; i++) { 339 PnvCore *pnv_core = chip->cores[i]; 340 341 pnv_dt_core(chip, pnv_core, fdt); 342 } 343 344 if (chip->ram_size) { 345 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 346 } 347 348 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 349 } 350 351 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 352 { 353 uint32_t io_base = d->ioport_id; 354 uint32_t io_regs[] = { 355 cpu_to_be32(1), 356 cpu_to_be32(io_base), 357 cpu_to_be32(2) 358 }; 359 char *name; 360 int node; 361 362 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 363 node = fdt_add_subnode(fdt, lpc_off, name); 364 _FDT(node); 365 g_free(name); 366 367 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 368 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 369 } 370 371 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 372 { 373 const char compatible[] = "ns16550\0pnpPNP,501"; 374 uint32_t io_base = d->ioport_id; 375 uint32_t io_regs[] = { 376 cpu_to_be32(1), 377 cpu_to_be32(io_base), 378 cpu_to_be32(8) 379 }; 380 char *name; 381 int node; 382 383 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 384 node = fdt_add_subnode(fdt, lpc_off, name); 385 _FDT(node); 386 g_free(name); 387 388 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 389 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 390 sizeof(compatible)))); 391 392 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 393 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 394 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 395 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 396 fdt_get_phandle(fdt, lpc_off)))); 397 398 /* This is needed by Linux */ 399 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 400 } 401 402 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 403 { 404 const char compatible[] = "bt\0ipmi-bt"; 405 uint32_t io_base; 406 uint32_t io_regs[] = { 407 cpu_to_be32(1), 408 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 409 cpu_to_be32(3) 410 }; 411 uint32_t irq; 412 char *name; 413 int node; 414 415 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 416 io_regs[1] = cpu_to_be32(io_base); 417 418 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 419 420 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 421 node = fdt_add_subnode(fdt, lpc_off, name); 422 _FDT(node); 423 g_free(name); 424 425 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 426 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 427 sizeof(compatible)))); 428 429 /* Mark it as reserved to avoid Linux trying to claim it */ 430 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 431 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 432 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 433 fdt_get_phandle(fdt, lpc_off)))); 434 } 435 436 typedef struct ForeachPopulateArgs { 437 void *fdt; 438 int offset; 439 } ForeachPopulateArgs; 440 441 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 442 { 443 ForeachPopulateArgs *args = opaque; 444 ISADevice *d = ISA_DEVICE(dev); 445 446 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 447 pnv_dt_rtc(d, args->fdt, args->offset); 448 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 449 pnv_dt_serial(d, args->fdt, args->offset); 450 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 451 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 452 } else { 453 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 454 d->ioport_id); 455 } 456 457 return 0; 458 } 459 460 /* 461 * The default LPC bus of a multichip system is on chip 0. It's 462 * recognized by the firmware (skiboot) using a "primary" property. 463 */ 464 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 465 { 466 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 467 ForeachPopulateArgs args = { 468 .fdt = fdt, 469 .offset = isa_offset, 470 }; 471 uint32_t phandle; 472 473 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 474 475 phandle = qemu_fdt_alloc_phandle(fdt); 476 assert(phandle > 0); 477 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 478 479 /* 480 * ISA devices are not necessarily parented to the ISA bus so we 481 * can not use object_child_foreach() 482 */ 483 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 484 &args); 485 } 486 487 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 488 { 489 int off; 490 491 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 492 off = fdt_add_subnode(fdt, off, "power-mgt"); 493 494 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 495 } 496 497 static void *pnv_dt_create(MachineState *machine) 498 { 499 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 500 PnvMachineState *pnv = PNV_MACHINE(machine); 501 void *fdt; 502 char *buf; 503 int off; 504 int i; 505 506 fdt = g_malloc0(FDT_MAX_SIZE); 507 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 508 509 /* /qemu node */ 510 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 511 512 /* Root node */ 513 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 514 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 515 _FDT((fdt_setprop_string(fdt, 0, "model", 516 "IBM PowerNV (emulated by qemu)"))); 517 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 518 519 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 520 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 521 if (qemu_uuid_set) { 522 _FDT((fdt_property_string(fdt, "system-id", buf))); 523 } 524 g_free(buf); 525 526 off = fdt_add_subnode(fdt, 0, "chosen"); 527 if (machine->kernel_cmdline) { 528 _FDT((fdt_setprop_string(fdt, off, "bootargs", 529 machine->kernel_cmdline))); 530 } 531 532 if (pnv->initrd_size) { 533 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 534 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 535 536 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 537 &start_prop, sizeof(start_prop)))); 538 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 539 &end_prop, sizeof(end_prop)))); 540 } 541 542 /* Populate device tree for each chip */ 543 for (i = 0; i < pnv->num_chips; i++) { 544 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 545 } 546 547 /* Populate ISA devices on chip 0 */ 548 pnv_dt_isa(pnv, fdt); 549 550 if (pnv->bmc) { 551 pnv_dt_bmc_sensors(pnv->bmc, fdt); 552 } 553 554 /* Create an extra node for power management on machines that support it */ 555 if (pmc->dt_power_mgt) { 556 pmc->dt_power_mgt(pnv, fdt); 557 } 558 559 return fdt; 560 } 561 562 static void pnv_powerdown_notify(Notifier *n, void *opaque) 563 { 564 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 565 566 if (pnv->bmc) { 567 pnv_bmc_powerdown(pnv->bmc); 568 } 569 } 570 571 static void pnv_reset(MachineState *machine) 572 { 573 void *fdt; 574 575 qemu_devices_reset(); 576 577 fdt = pnv_dt_create(machine); 578 579 /* Pack resulting tree */ 580 _FDT((fdt_pack(fdt))); 581 582 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 583 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 584 } 585 586 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 587 { 588 Pnv8Chip *chip8 = PNV8_CHIP(chip); 589 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 590 } 591 592 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 593 { 594 Pnv8Chip *chip8 = PNV8_CHIP(chip); 595 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 596 } 597 598 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 599 { 600 Pnv9Chip *chip9 = PNV9_CHIP(chip); 601 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 602 } 603 604 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 605 { 606 Pnv10Chip *chip10 = PNV10_CHIP(chip); 607 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 608 } 609 610 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 611 { 612 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 613 } 614 615 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 616 { 617 Pnv8Chip *chip8 = PNV8_CHIP(chip); 618 619 ics_pic_print_info(&chip8->psi.ics, mon); 620 } 621 622 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 623 { 624 Pnv9Chip *chip9 = PNV9_CHIP(chip); 625 626 pnv_xive_pic_print_info(&chip9->xive, mon); 627 pnv_psi_pic_print_info(&chip9->psi, mon); 628 } 629 630 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 631 uint32_t core_id) 632 { 633 return PNV_XSCOM_EX_BASE(core_id); 634 } 635 636 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 637 uint32_t core_id) 638 { 639 return PNV9_XSCOM_EC_BASE(core_id); 640 } 641 642 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 643 uint32_t core_id) 644 { 645 return PNV10_XSCOM_EC_BASE(core_id); 646 } 647 648 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 649 { 650 PowerPCCPUClass *ppc_default = 651 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 652 PowerPCCPUClass *ppc = 653 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 654 655 return ppc_default->pvr_match(ppc_default, ppc->pvr); 656 } 657 658 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 659 { 660 Object *obj; 661 662 obj = OBJECT(isa_create(bus, "isa-ipmi-bt")); 663 object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal); 664 object_property_set_int(obj, irq, "irq", &error_fatal); 665 object_property_set_bool(obj, true, "realized", &error_fatal); 666 } 667 668 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon) 669 { 670 Pnv10Chip *chip10 = PNV10_CHIP(chip); 671 672 pnv_psi_pic_print_info(&chip10->psi, mon); 673 } 674 675 static void pnv_init(MachineState *machine) 676 { 677 PnvMachineState *pnv = PNV_MACHINE(machine); 678 MachineClass *mc = MACHINE_GET_CLASS(machine); 679 MemoryRegion *ram; 680 char *fw_filename; 681 long fw_size; 682 int i; 683 char *chip_typename; 684 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 685 DeviceState *dev; 686 687 /* allocate RAM */ 688 if (machine->ram_size < (1 * GiB)) { 689 warn_report("skiboot may not work with < 1GB of RAM"); 690 } 691 692 ram = g_new(MemoryRegion, 1); 693 memory_region_allocate_system_memory(ram, NULL, "pnv.ram", 694 machine->ram_size); 695 memory_region_add_subregion(get_system_memory(), 0, ram); 696 697 /* 698 * Create our simple PNOR device 699 */ 700 dev = qdev_create(NULL, TYPE_PNV_PNOR); 701 if (pnor) { 702 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor), 703 &error_abort); 704 } 705 qdev_init_nofail(dev); 706 pnv->pnor = PNV_PNOR(dev); 707 708 /* load skiboot firmware */ 709 if (bios_name == NULL) { 710 bios_name = FW_FILE_NAME; 711 } 712 713 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 714 if (!fw_filename) { 715 error_report("Could not find OPAL firmware '%s'", bios_name); 716 exit(1); 717 } 718 719 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); 720 if (fw_size < 0) { 721 error_report("Could not load OPAL firmware '%s'", fw_filename); 722 exit(1); 723 } 724 g_free(fw_filename); 725 726 /* load kernel */ 727 if (machine->kernel_filename) { 728 long kernel_size; 729 730 kernel_size = load_image_targphys(machine->kernel_filename, 731 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 732 if (kernel_size < 0) { 733 error_report("Could not load kernel '%s'", 734 machine->kernel_filename); 735 exit(1); 736 } 737 } 738 739 /* load initrd */ 740 if (machine->initrd_filename) { 741 pnv->initrd_base = INITRD_LOAD_ADDR; 742 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 743 pnv->initrd_base, INITRD_MAX_SIZE); 744 if (pnv->initrd_size < 0) { 745 error_report("Could not load initial ram disk '%s'", 746 machine->initrd_filename); 747 exit(1); 748 } 749 } 750 751 /* 752 * Check compatibility of the specified CPU with the machine 753 * default. 754 */ 755 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 756 error_report("invalid CPU model '%s' for %s machine", 757 machine->cpu_type, mc->name); 758 exit(1); 759 } 760 761 /* Create the processor chips */ 762 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 763 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 764 i, machine->cpu_type); 765 if (!object_class_by_name(chip_typename)) { 766 error_report("invalid chip model '%.*s' for %s machine", 767 i, machine->cpu_type, mc->name); 768 exit(1); 769 } 770 771 pnv->num_chips = 772 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 773 /* 774 * TODO: should we decide on how many chips we can create based 775 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 776 */ 777 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) { 778 error_report("invalid number of chips: '%d'", pnv->num_chips); 779 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n"); 780 exit(1); 781 } 782 783 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 784 for (i = 0; i < pnv->num_chips; i++) { 785 char chip_name[32]; 786 Object *chip = object_new(chip_typename); 787 788 pnv->chips[i] = PNV_CHIP(chip); 789 790 /* 791 * TODO: put all the memory in one node on chip 0 until we find a 792 * way to specify different ranges for each chip 793 */ 794 if (i == 0) { 795 object_property_set_int(chip, machine->ram_size, "ram-size", 796 &error_fatal); 797 } 798 799 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); 800 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); 801 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", 802 &error_fatal); 803 object_property_set_int(chip, machine->smp.cores, 804 "nr-cores", &error_fatal); 805 object_property_set_int(chip, machine->smp.threads, 806 "nr-threads", &error_fatal); 807 /* 808 * The POWER8 machine use the XICS interrupt interface. 809 * Propagate the XICS fabric to the chip and its controllers. 810 */ 811 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 812 object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort); 813 } 814 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 815 object_property_set_link(chip, OBJECT(pnv), "xive-fabric", 816 &error_abort); 817 } 818 object_property_set_bool(chip, true, "realized", &error_fatal); 819 } 820 g_free(chip_typename); 821 822 /* Create the machine BMC simulator */ 823 pnv->bmc = pnv_bmc_create(pnv->pnor); 824 825 /* Instantiate ISA bus on chip 0 */ 826 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 827 828 /* Create serial port */ 829 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 830 831 /* Create an RTC ISA device too */ 832 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 833 834 /* Create the IPMI BT device for communication with the BMC */ 835 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 836 837 /* 838 * OpenPOWER systems use a IPMI SEL Event message to notify the 839 * host to powerdown 840 */ 841 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 842 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 843 } 844 845 /* 846 * 0:21 Reserved - Read as zeros 847 * 22:24 Chip ID 848 * 25:28 Core number 849 * 29:31 Thread ID 850 */ 851 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 852 { 853 return (chip->chip_id << 7) | (core_id << 3); 854 } 855 856 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 857 Error **errp) 858 { 859 Pnv8Chip *chip8 = PNV8_CHIP(chip); 860 Error *local_err = NULL; 861 Object *obj; 862 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 863 864 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 865 if (local_err) { 866 error_propagate(errp, local_err); 867 return; 868 } 869 870 pnv_cpu->intc = obj; 871 } 872 873 874 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 875 { 876 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 877 878 icp_reset(ICP(pnv_cpu->intc)); 879 } 880 881 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 882 { 883 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 884 885 icp_destroy(ICP(pnv_cpu->intc)); 886 pnv_cpu->intc = NULL; 887 } 888 889 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 890 Monitor *mon) 891 { 892 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 893 } 894 895 /* 896 * 0:48 Reserved - Read as zeroes 897 * 49:52 Node ID 898 * 53:55 Chip ID 899 * 56 Reserved - Read as zero 900 * 57:61 Core number 901 * 62:63 Thread ID 902 * 903 * We only care about the lower bits. uint32_t is fine for the moment. 904 */ 905 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 906 { 907 return (chip->chip_id << 8) | (core_id << 2); 908 } 909 910 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id) 911 { 912 return (chip->chip_id << 8) | (core_id << 2); 913 } 914 915 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 916 Error **errp) 917 { 918 Pnv9Chip *chip9 = PNV9_CHIP(chip); 919 Error *local_err = NULL; 920 Object *obj; 921 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 922 923 /* 924 * The core creates its interrupt presenter but the XIVE interrupt 925 * controller object is initialized afterwards. Hopefully, it's 926 * only used at runtime. 927 */ 928 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err); 929 if (local_err) { 930 error_propagate(errp, local_err); 931 return; 932 } 933 934 pnv_cpu->intc = obj; 935 } 936 937 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 938 { 939 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 940 941 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 942 } 943 944 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 945 { 946 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 947 948 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 949 pnv_cpu->intc = NULL; 950 } 951 952 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 953 Monitor *mon) 954 { 955 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 956 } 957 958 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 959 Error **errp) 960 { 961 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 962 963 /* Will be defined when the interrupt controller is */ 964 pnv_cpu->intc = NULL; 965 } 966 967 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 968 { 969 ; 970 } 971 972 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 973 { 974 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 975 976 pnv_cpu->intc = NULL; 977 } 978 979 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 980 Monitor *mon) 981 { 982 } 983 984 /* 985 * Allowed core identifiers on a POWER8 Processor Chip : 986 * 987 * <EX0 reserved> 988 * EX1 - Venice only 989 * EX2 - Venice only 990 * EX3 - Venice only 991 * EX4 992 * EX5 993 * EX6 994 * <EX7,8 reserved> <reserved> 995 * EX9 - Venice only 996 * EX10 - Venice only 997 * EX11 - Venice only 998 * EX12 999 * EX13 1000 * EX14 1001 * <EX15 reserved> 1002 */ 1003 #define POWER8E_CORE_MASK (0x7070ull) 1004 #define POWER8_CORE_MASK (0x7e7eull) 1005 1006 /* 1007 * POWER9 has 24 cores, ids starting at 0x0 1008 */ 1009 #define POWER9_CORE_MASK (0xffffffffffffffull) 1010 1011 1012 #define POWER10_CORE_MASK (0xffffffffffffffull) 1013 1014 static void pnv_chip_power8_instance_init(Object *obj) 1015 { 1016 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1017 1018 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1019 (Object **)&chip8->xics, 1020 object_property_allow_set_link, 1021 OBJ_PROP_LINK_STRONG, 1022 &error_abort); 1023 1024 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi), 1025 TYPE_PNV8_PSI, &error_abort, NULL); 1026 1027 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc), 1028 TYPE_PNV8_LPC, &error_abort, NULL); 1029 1030 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ), 1031 TYPE_PNV8_OCC, &error_abort, NULL); 1032 1033 object_initialize_child(obj, "homer", &chip8->homer, sizeof(chip8->homer), 1034 TYPE_PNV8_HOMER, &error_abort, NULL); 1035 } 1036 1037 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1038 { 1039 PnvChip *chip = PNV_CHIP(chip8); 1040 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1041 int i, j; 1042 char *name; 1043 1044 name = g_strdup_printf("icp-%x", chip->chip_id); 1045 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1046 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 1047 g_free(name); 1048 1049 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 1050 1051 /* Map the ICP registers for each thread */ 1052 for (i = 0; i < chip->nr_cores; i++) { 1053 PnvCore *pnv_core = chip->cores[i]; 1054 int core_hwid = CPU_CORE(pnv_core)->core_id; 1055 1056 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1057 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 1058 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1059 1060 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1061 &icp->mmio); 1062 } 1063 } 1064 } 1065 1066 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1067 { 1068 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1069 PnvChip *chip = PNV_CHIP(dev); 1070 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1071 Pnv8Psi *psi8 = &chip8->psi; 1072 Error *local_err = NULL; 1073 1074 assert(chip8->xics); 1075 1076 /* XSCOM bridge is first */ 1077 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err); 1078 if (local_err) { 1079 error_propagate(errp, local_err); 1080 return; 1081 } 1082 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 1083 1084 pcc->parent_realize(dev, &local_err); 1085 if (local_err) { 1086 error_propagate(errp, local_err); 1087 return; 1088 } 1089 1090 /* Processor Service Interface (PSI) Host Bridge */ 1091 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip), 1092 "bar", &error_fatal); 1093 object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics), 1094 ICS_PROP_XICS, &error_abort); 1095 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err); 1096 if (local_err) { 1097 error_propagate(errp, local_err); 1098 return; 1099 } 1100 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1101 &PNV_PSI(psi8)->xscom_regs); 1102 1103 /* Create LPC controller */ 1104 object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi", 1105 &error_abort); 1106 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized", 1107 &error_fatal); 1108 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1109 1110 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1111 (uint64_t) PNV_XSCOM_BASE(chip), 1112 PNV_XSCOM_LPC_BASE); 1113 1114 /* 1115 * Interrupt Management Area. This is the memory region holding 1116 * all the Interrupt Control Presenter (ICP) registers 1117 */ 1118 pnv_chip_icp_realize(chip8, &local_err); 1119 if (local_err) { 1120 error_propagate(errp, local_err); 1121 return; 1122 } 1123 1124 /* Create the simplified OCC model */ 1125 object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi", 1126 &error_abort); 1127 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err); 1128 if (local_err) { 1129 error_propagate(errp, local_err); 1130 return; 1131 } 1132 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1133 1134 /* OCC SRAM model */ 1135 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1136 &chip8->occ.sram_regs); 1137 1138 /* HOMER */ 1139 object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip", 1140 &error_abort); 1141 object_property_set_bool(OBJECT(&chip8->homer), true, "realized", 1142 &local_err); 1143 if (local_err) { 1144 error_propagate(errp, local_err); 1145 return; 1146 } 1147 /* Homer Xscom region */ 1148 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1149 1150 /* Homer mmio region */ 1151 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1152 &chip8->homer.regs); 1153 } 1154 1155 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1156 { 1157 addr &= (PNV_XSCOM_SIZE - 1); 1158 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1159 } 1160 1161 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1162 { 1163 DeviceClass *dc = DEVICE_CLASS(klass); 1164 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1165 1166 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1167 k->cores_mask = POWER8E_CORE_MASK; 1168 k->core_pir = pnv_chip_core_pir_p8; 1169 k->intc_create = pnv_chip_power8_intc_create; 1170 k->intc_reset = pnv_chip_power8_intc_reset; 1171 k->intc_destroy = pnv_chip_power8_intc_destroy; 1172 k->intc_print_info = pnv_chip_power8_intc_print_info; 1173 k->isa_create = pnv_chip_power8_isa_create; 1174 k->dt_populate = pnv_chip_power8_dt_populate; 1175 k->pic_print_info = pnv_chip_power8_pic_print_info; 1176 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1177 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1178 dc->desc = "PowerNV Chip POWER8E"; 1179 1180 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1181 &k->parent_realize); 1182 } 1183 1184 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1185 { 1186 DeviceClass *dc = DEVICE_CLASS(klass); 1187 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1188 1189 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1190 k->cores_mask = POWER8_CORE_MASK; 1191 k->core_pir = pnv_chip_core_pir_p8; 1192 k->intc_create = pnv_chip_power8_intc_create; 1193 k->intc_reset = pnv_chip_power8_intc_reset; 1194 k->intc_destroy = pnv_chip_power8_intc_destroy; 1195 k->intc_print_info = pnv_chip_power8_intc_print_info; 1196 k->isa_create = pnv_chip_power8_isa_create; 1197 k->dt_populate = pnv_chip_power8_dt_populate; 1198 k->pic_print_info = pnv_chip_power8_pic_print_info; 1199 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1200 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1201 dc->desc = "PowerNV Chip POWER8"; 1202 1203 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1204 &k->parent_realize); 1205 } 1206 1207 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1208 { 1209 DeviceClass *dc = DEVICE_CLASS(klass); 1210 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1211 1212 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1213 k->cores_mask = POWER8_CORE_MASK; 1214 k->core_pir = pnv_chip_core_pir_p8; 1215 k->intc_create = pnv_chip_power8_intc_create; 1216 k->intc_reset = pnv_chip_power8_intc_reset; 1217 k->intc_destroy = pnv_chip_power8_intc_destroy; 1218 k->intc_print_info = pnv_chip_power8_intc_print_info; 1219 k->isa_create = pnv_chip_power8nvl_isa_create; 1220 k->dt_populate = pnv_chip_power8_dt_populate; 1221 k->pic_print_info = pnv_chip_power8_pic_print_info; 1222 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1223 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1224 dc->desc = "PowerNV Chip POWER8NVL"; 1225 1226 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1227 &k->parent_realize); 1228 } 1229 1230 static void pnv_chip_power9_instance_init(Object *obj) 1231 { 1232 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1233 1234 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive), 1235 TYPE_PNV_XIVE, &error_abort, NULL); 1236 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1237 "xive-fabric", &error_abort); 1238 1239 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi), 1240 TYPE_PNV9_PSI, &error_abort, NULL); 1241 1242 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc), 1243 TYPE_PNV9_LPC, &error_abort, NULL); 1244 1245 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ), 1246 TYPE_PNV9_OCC, &error_abort, NULL); 1247 1248 object_initialize_child(obj, "homer", &chip9->homer, sizeof(chip9->homer), 1249 TYPE_PNV9_HOMER, &error_abort, NULL); 1250 } 1251 1252 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1253 { 1254 PnvChip *chip = PNV_CHIP(chip9); 1255 int i; 1256 1257 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1258 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1259 1260 for (i = 0; i < chip9->nr_quads; i++) { 1261 char eq_name[32]; 1262 PnvQuad *eq = &chip9->quads[i]; 1263 PnvCore *pnv_core = chip->cores[i * 4]; 1264 int core_id = CPU_CORE(pnv_core)->core_id; 1265 1266 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1267 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq), 1268 TYPE_PNV_QUAD, &error_fatal, NULL); 1269 1270 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal); 1271 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal); 1272 1273 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id), 1274 &eq->xscom_regs); 1275 } 1276 } 1277 1278 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1279 { 1280 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1281 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1282 PnvChip *chip = PNV_CHIP(dev); 1283 Pnv9Psi *psi9 = &chip9->psi; 1284 Error *local_err = NULL; 1285 1286 /* XSCOM bridge is first */ 1287 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err); 1288 if (local_err) { 1289 error_propagate(errp, local_err); 1290 return; 1291 } 1292 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip)); 1293 1294 pcc->parent_realize(dev, &local_err); 1295 if (local_err) { 1296 error_propagate(errp, local_err); 1297 return; 1298 } 1299 1300 pnv_chip_quad_realize(chip9, &local_err); 1301 if (local_err) { 1302 error_propagate(errp, local_err); 1303 return; 1304 } 1305 1306 /* XIVE interrupt controller (POWER9) */ 1307 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip), 1308 "ic-bar", &error_fatal); 1309 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip), 1310 "vc-bar", &error_fatal); 1311 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip), 1312 "pc-bar", &error_fatal); 1313 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip), 1314 "tm-bar", &error_fatal); 1315 object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip", 1316 &error_abort); 1317 object_property_set_bool(OBJECT(&chip9->xive), true, "realized", 1318 &local_err); 1319 if (local_err) { 1320 error_propagate(errp, local_err); 1321 return; 1322 } 1323 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1324 &chip9->xive.xscom_regs); 1325 1326 /* Processor Service Interface (PSI) Host Bridge */ 1327 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip), 1328 "bar", &error_fatal); 1329 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err); 1330 if (local_err) { 1331 error_propagate(errp, local_err); 1332 return; 1333 } 1334 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1335 &PNV_PSI(psi9)->xscom_regs); 1336 1337 /* LPC */ 1338 object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi", 1339 &error_abort); 1340 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err); 1341 if (local_err) { 1342 error_propagate(errp, local_err); 1343 return; 1344 } 1345 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1346 &chip9->lpc.xscom_regs); 1347 1348 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1349 (uint64_t) PNV9_LPCM_BASE(chip)); 1350 1351 /* Create the simplified OCC model */ 1352 object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi", 1353 &error_abort); 1354 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err); 1355 if (local_err) { 1356 error_propagate(errp, local_err); 1357 return; 1358 } 1359 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1360 1361 /* OCC SRAM model */ 1362 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1363 &chip9->occ.sram_regs); 1364 1365 /* HOMER */ 1366 object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip", 1367 &error_abort); 1368 object_property_set_bool(OBJECT(&chip9->homer), true, "realized", 1369 &local_err); 1370 if (local_err) { 1371 error_propagate(errp, local_err); 1372 return; 1373 } 1374 /* Homer Xscom region */ 1375 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1376 1377 /* Homer mmio region */ 1378 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1379 &chip9->homer.regs); 1380 } 1381 1382 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1383 { 1384 addr &= (PNV9_XSCOM_SIZE - 1); 1385 return addr >> 3; 1386 } 1387 1388 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1389 { 1390 DeviceClass *dc = DEVICE_CLASS(klass); 1391 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1392 1393 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1394 k->cores_mask = POWER9_CORE_MASK; 1395 k->core_pir = pnv_chip_core_pir_p9; 1396 k->intc_create = pnv_chip_power9_intc_create; 1397 k->intc_reset = pnv_chip_power9_intc_reset; 1398 k->intc_destroy = pnv_chip_power9_intc_destroy; 1399 k->intc_print_info = pnv_chip_power9_intc_print_info; 1400 k->isa_create = pnv_chip_power9_isa_create; 1401 k->dt_populate = pnv_chip_power9_dt_populate; 1402 k->pic_print_info = pnv_chip_power9_pic_print_info; 1403 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1404 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1405 dc->desc = "PowerNV Chip POWER9"; 1406 1407 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1408 &k->parent_realize); 1409 } 1410 1411 static void pnv_chip_power10_instance_init(Object *obj) 1412 { 1413 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1414 1415 object_initialize_child(obj, "psi", &chip10->psi, sizeof(chip10->psi), 1416 TYPE_PNV10_PSI, &error_abort, NULL); 1417 object_initialize_child(obj, "lpc", &chip10->lpc, sizeof(chip10->lpc), 1418 TYPE_PNV10_LPC, &error_abort, NULL); 1419 } 1420 1421 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 1422 { 1423 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1424 PnvChip *chip = PNV_CHIP(dev); 1425 Pnv10Chip *chip10 = PNV10_CHIP(dev); 1426 Error *local_err = NULL; 1427 1428 /* XSCOM bridge is first */ 1429 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err); 1430 if (local_err) { 1431 error_propagate(errp, local_err); 1432 return; 1433 } 1434 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip)); 1435 1436 pcc->parent_realize(dev, &local_err); 1437 if (local_err) { 1438 error_propagate(errp, local_err); 1439 return; 1440 } 1441 1442 /* Processor Service Interface (PSI) Host Bridge */ 1443 object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip), 1444 "bar", &error_fatal); 1445 object_property_set_bool(OBJECT(&chip10->psi), true, "realized", 1446 &local_err); 1447 if (local_err) { 1448 error_propagate(errp, local_err); 1449 return; 1450 } 1451 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 1452 &PNV_PSI(&chip10->psi)->xscom_regs); 1453 1454 /* LPC */ 1455 object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi", 1456 &error_abort); 1457 object_property_set_bool(OBJECT(&chip10->lpc), true, "realized", 1458 &local_err); 1459 if (local_err) { 1460 error_propagate(errp, local_err); 1461 return; 1462 } 1463 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 1464 &chip10->lpc.xscom_regs); 1465 1466 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1467 (uint64_t) PNV10_LPCM_BASE(chip)); 1468 } 1469 1470 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 1471 { 1472 addr &= (PNV10_XSCOM_SIZE - 1); 1473 return addr >> 3; 1474 } 1475 1476 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 1477 { 1478 DeviceClass *dc = DEVICE_CLASS(klass); 1479 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1480 1481 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */ 1482 k->cores_mask = POWER10_CORE_MASK; 1483 k->core_pir = pnv_chip_core_pir_p10; 1484 k->intc_create = pnv_chip_power10_intc_create; 1485 k->intc_reset = pnv_chip_power10_intc_reset; 1486 k->intc_destroy = pnv_chip_power10_intc_destroy; 1487 k->intc_print_info = pnv_chip_power10_intc_print_info; 1488 k->isa_create = pnv_chip_power10_isa_create; 1489 k->dt_populate = pnv_chip_power10_dt_populate; 1490 k->pic_print_info = pnv_chip_power10_pic_print_info; 1491 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 1492 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 1493 dc->desc = "PowerNV Chip POWER10"; 1494 1495 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 1496 &k->parent_realize); 1497 } 1498 1499 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1500 { 1501 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1502 int cores_max; 1503 1504 /* 1505 * No custom mask for this chip, let's use the default one from * 1506 * the chip class 1507 */ 1508 if (!chip->cores_mask) { 1509 chip->cores_mask = pcc->cores_mask; 1510 } 1511 1512 /* filter alien core ids ! some are reserved */ 1513 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1514 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1515 chip->cores_mask); 1516 return; 1517 } 1518 chip->cores_mask &= pcc->cores_mask; 1519 1520 /* now that we have a sane layout, let check the number of cores */ 1521 cores_max = ctpop64(chip->cores_mask); 1522 if (chip->nr_cores > cores_max) { 1523 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1524 cores_max); 1525 return; 1526 } 1527 } 1528 1529 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1530 { 1531 Error *error = NULL; 1532 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1533 const char *typename = pnv_chip_core_typename(chip); 1534 int i, core_hwid; 1535 1536 if (!object_class_by_name(typename)) { 1537 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1538 return; 1539 } 1540 1541 /* Cores */ 1542 pnv_chip_core_sanitize(chip, &error); 1543 if (error) { 1544 error_propagate(errp, error); 1545 return; 1546 } 1547 1548 chip->cores = g_new0(PnvCore *, chip->nr_cores); 1549 1550 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1551 && (i < chip->nr_cores); core_hwid++) { 1552 char core_name[32]; 1553 PnvCore *pnv_core; 1554 uint64_t xscom_core_base; 1555 1556 if (!(chip->cores_mask & (1ull << core_hwid))) { 1557 continue; 1558 } 1559 1560 pnv_core = PNV_CORE(object_new(typename)); 1561 1562 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1563 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core), 1564 &error_abort); 1565 chip->cores[i] = pnv_core; 1566 object_property_set_int(OBJECT(pnv_core), chip->nr_threads, 1567 "nr-threads", &error_fatal); 1568 object_property_set_int(OBJECT(pnv_core), core_hwid, 1569 CPU_CORE_PROP_CORE_ID, &error_fatal); 1570 object_property_set_int(OBJECT(pnv_core), 1571 pcc->core_pir(chip, core_hwid), 1572 "pir", &error_fatal); 1573 object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip", 1574 &error_abort); 1575 object_property_set_bool(OBJECT(pnv_core), true, "realized", 1576 &error_fatal); 1577 1578 /* Each core has an XSCOM MMIO region */ 1579 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 1580 1581 pnv_xscom_add_subregion(chip, xscom_core_base, 1582 &pnv_core->xscom_regs); 1583 i++; 1584 } 1585 } 1586 1587 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1588 { 1589 PnvChip *chip = PNV_CHIP(dev); 1590 Error *error = NULL; 1591 1592 /* Cores */ 1593 pnv_chip_core_realize(chip, &error); 1594 if (error) { 1595 error_propagate(errp, error); 1596 return; 1597 } 1598 } 1599 1600 static Property pnv_chip_properties[] = { 1601 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1602 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1603 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1604 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1605 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1606 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 1607 DEFINE_PROP_END_OF_LIST(), 1608 }; 1609 1610 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1611 { 1612 DeviceClass *dc = DEVICE_CLASS(klass); 1613 1614 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1615 dc->realize = pnv_chip_realize; 1616 dc->props = pnv_chip_properties; 1617 dc->desc = "PowerNV Chip"; 1618 } 1619 1620 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 1621 { 1622 int i, j; 1623 1624 for (i = 0; i < chip->nr_cores; i++) { 1625 PnvCore *pc = chip->cores[i]; 1626 CPUCore *cc = CPU_CORE(pc); 1627 1628 for (j = 0; j < cc->nr_threads; j++) { 1629 if (ppc_cpu_pir(pc->threads[j]) == pir) { 1630 return pc->threads[j]; 1631 } 1632 } 1633 } 1634 return NULL; 1635 } 1636 1637 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1638 { 1639 PnvMachineState *pnv = PNV_MACHINE(xi); 1640 int i; 1641 1642 for (i = 0; i < pnv->num_chips; i++) { 1643 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1644 1645 if (ics_valid_irq(&chip8->psi.ics, irq)) { 1646 return &chip8->psi.ics; 1647 } 1648 } 1649 return NULL; 1650 } 1651 1652 static void pnv_ics_resend(XICSFabric *xi) 1653 { 1654 PnvMachineState *pnv = PNV_MACHINE(xi); 1655 int i; 1656 1657 for (i = 0; i < pnv->num_chips; i++) { 1658 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1659 ics_resend(&chip8->psi.ics); 1660 } 1661 } 1662 1663 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1664 { 1665 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1666 1667 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 1668 } 1669 1670 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1671 Monitor *mon) 1672 { 1673 PnvMachineState *pnv = PNV_MACHINE(obj); 1674 int i; 1675 CPUState *cs; 1676 1677 CPU_FOREACH(cs) { 1678 PowerPCCPU *cpu = POWERPC_CPU(cs); 1679 1680 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */ 1681 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu, 1682 mon); 1683 } 1684 1685 for (i = 0; i < pnv->num_chips; i++) { 1686 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 1687 } 1688 } 1689 1690 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 1691 uint8_t nvt_blk, uint32_t nvt_idx, 1692 bool cam_ignore, uint8_t priority, 1693 uint32_t logic_serv, 1694 XiveTCTXMatch *match) 1695 { 1696 PnvMachineState *pnv = PNV_MACHINE(xfb); 1697 int total_count = 0; 1698 int i; 1699 1700 for (i = 0; i < pnv->num_chips; i++) { 1701 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 1702 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 1703 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 1704 int count; 1705 1706 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 1707 priority, logic_serv, match); 1708 1709 if (count < 0) { 1710 return count; 1711 } 1712 1713 total_count += count; 1714 } 1715 1716 return total_count; 1717 } 1718 1719 PnvChip *pnv_get_chip(uint32_t chip_id) 1720 { 1721 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1722 int i; 1723 1724 for (i = 0; i < pnv->num_chips; i++) { 1725 PnvChip *chip = pnv->chips[i]; 1726 if (chip->chip_id == chip_id) { 1727 return chip; 1728 } 1729 } 1730 return NULL; 1731 } 1732 1733 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 1734 { 1735 MachineClass *mc = MACHINE_CLASS(oc); 1736 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1737 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1738 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 1739 1740 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 1741 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1742 1743 xic->icp_get = pnv_icp_get; 1744 xic->ics_get = pnv_ics_get; 1745 xic->ics_resend = pnv_ics_resend; 1746 1747 pmc->compat = compat; 1748 pmc->compat_size = sizeof(compat); 1749 } 1750 1751 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 1752 { 1753 MachineClass *mc = MACHINE_CLASS(oc); 1754 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 1755 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1756 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 1757 1758 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 1759 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 1760 xfc->match_nvt = pnv_match_nvt; 1761 1762 mc->alias = "powernv"; 1763 1764 pmc->compat = compat; 1765 pmc->compat_size = sizeof(compat); 1766 pmc->dt_power_mgt = pnv_dt_power_mgt; 1767 } 1768 1769 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 1770 { 1771 MachineClass *mc = MACHINE_CLASS(oc); 1772 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1773 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 1774 1775 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 1776 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0"); 1777 1778 pmc->compat = compat; 1779 pmc->compat_size = sizeof(compat); 1780 pmc->dt_power_mgt = pnv_dt_power_mgt; 1781 } 1782 1783 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1784 { 1785 MachineClass *mc = MACHINE_CLASS(oc); 1786 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1787 1788 mc->desc = "IBM PowerNV (Non-Virtualized)"; 1789 mc->init = pnv_init; 1790 mc->reset = pnv_reset; 1791 mc->max_cpus = MAX_CPUS; 1792 /* Pnv provides a AHCI device for storage */ 1793 mc->block_default_type = IF_IDE; 1794 mc->no_parallel = 1; 1795 mc->default_boot_order = NULL; 1796 /* 1797 * RAM defaults to less than 2048 for 32-bit hosts, and large 1798 * enough to fit the maximum initrd size at it's load address 1799 */ 1800 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE; 1801 ispc->print_info = pnv_pic_print_info; 1802 } 1803 1804 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 1805 { \ 1806 .name = type, \ 1807 .class_init = class_initfn, \ 1808 .parent = TYPE_PNV8_CHIP, \ 1809 } 1810 1811 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 1812 { \ 1813 .name = type, \ 1814 .class_init = class_initfn, \ 1815 .parent = TYPE_PNV9_CHIP, \ 1816 } 1817 1818 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 1819 { \ 1820 .name = type, \ 1821 .class_init = class_initfn, \ 1822 .parent = TYPE_PNV10_CHIP, \ 1823 } 1824 1825 static const TypeInfo types[] = { 1826 { 1827 .name = MACHINE_TYPE_NAME("powernv10"), 1828 .parent = TYPE_PNV_MACHINE, 1829 .class_init = pnv_machine_power10_class_init, 1830 }, 1831 { 1832 .name = MACHINE_TYPE_NAME("powernv9"), 1833 .parent = TYPE_PNV_MACHINE, 1834 .class_init = pnv_machine_power9_class_init, 1835 .interfaces = (InterfaceInfo[]) { 1836 { TYPE_XIVE_FABRIC }, 1837 { }, 1838 }, 1839 }, 1840 { 1841 .name = MACHINE_TYPE_NAME("powernv8"), 1842 .parent = TYPE_PNV_MACHINE, 1843 .class_init = pnv_machine_power8_class_init, 1844 .interfaces = (InterfaceInfo[]) { 1845 { TYPE_XICS_FABRIC }, 1846 { }, 1847 }, 1848 }, 1849 { 1850 .name = TYPE_PNV_MACHINE, 1851 .parent = TYPE_MACHINE, 1852 .abstract = true, 1853 .instance_size = sizeof(PnvMachineState), 1854 .class_init = pnv_machine_class_init, 1855 .class_size = sizeof(PnvMachineClass), 1856 .interfaces = (InterfaceInfo[]) { 1857 { TYPE_INTERRUPT_STATS_PROVIDER }, 1858 { }, 1859 }, 1860 }, 1861 { 1862 .name = TYPE_PNV_CHIP, 1863 .parent = TYPE_SYS_BUS_DEVICE, 1864 .class_init = pnv_chip_class_init, 1865 .instance_size = sizeof(PnvChip), 1866 .class_size = sizeof(PnvChipClass), 1867 .abstract = true, 1868 }, 1869 1870 /* 1871 * P10 chip and variants 1872 */ 1873 { 1874 .name = TYPE_PNV10_CHIP, 1875 .parent = TYPE_PNV_CHIP, 1876 .instance_init = pnv_chip_power10_instance_init, 1877 .instance_size = sizeof(Pnv10Chip), 1878 }, 1879 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 1880 1881 /* 1882 * P9 chip and variants 1883 */ 1884 { 1885 .name = TYPE_PNV9_CHIP, 1886 .parent = TYPE_PNV_CHIP, 1887 .instance_init = pnv_chip_power9_instance_init, 1888 .instance_size = sizeof(Pnv9Chip), 1889 }, 1890 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 1891 1892 /* 1893 * P8 chip and variants 1894 */ 1895 { 1896 .name = TYPE_PNV8_CHIP, 1897 .parent = TYPE_PNV_CHIP, 1898 .instance_init = pnv_chip_power8_instance_init, 1899 .instance_size = sizeof(Pnv8Chip), 1900 }, 1901 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 1902 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 1903 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 1904 pnv_chip_power8nvl_class_init), 1905 }; 1906 1907 DEFINE_TYPES(types) 1908