xref: /openbmc/qemu/hw/ppc/pnv.c (revision d76f2da7a5b6330fba70f2c14f209de92e26abab)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     int i;
284 
285     pnv_dt_xscom(chip, fdt, 0);
286 
287     for (i = 0; i < chip->nr_cores; i++) {
288         PnvCore *pnv_core = chip->cores[i];
289 
290         pnv_dt_core(chip, pnv_core, fdt);
291 
292         /* Interrupt Control Presenters (ICP). One per core. */
293         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
294     }
295 
296     if (chip->ram_size) {
297         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
298     }
299 }
300 
301 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
302 {
303     int i;
304 
305     pnv_dt_xscom(chip, fdt, 0);
306 
307     for (i = 0; i < chip->nr_cores; i++) {
308         PnvCore *pnv_core = chip->cores[i];
309 
310         pnv_dt_core(chip, pnv_core, fdt);
311     }
312 
313     if (chip->ram_size) {
314         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
315     }
316 
317     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
318 }
319 
320 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
321 {
322     int i;
323 
324     pnv_dt_xscom(chip, fdt, 0);
325 
326     for (i = 0; i < chip->nr_cores; i++) {
327         PnvCore *pnv_core = chip->cores[i];
328 
329         pnv_dt_core(chip, pnv_core, fdt);
330     }
331 
332     if (chip->ram_size) {
333         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
334     }
335 
336     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
337 }
338 
339 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
340 {
341     uint32_t io_base = d->ioport_id;
342     uint32_t io_regs[] = {
343         cpu_to_be32(1),
344         cpu_to_be32(io_base),
345         cpu_to_be32(2)
346     };
347     char *name;
348     int node;
349 
350     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
351     node = fdt_add_subnode(fdt, lpc_off, name);
352     _FDT(node);
353     g_free(name);
354 
355     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
356     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
357 }
358 
359 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
360 {
361     const char compatible[] = "ns16550\0pnpPNP,501";
362     uint32_t io_base = d->ioport_id;
363     uint32_t io_regs[] = {
364         cpu_to_be32(1),
365         cpu_to_be32(io_base),
366         cpu_to_be32(8)
367     };
368     char *name;
369     int node;
370 
371     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
372     node = fdt_add_subnode(fdt, lpc_off, name);
373     _FDT(node);
374     g_free(name);
375 
376     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
377     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
378                       sizeof(compatible))));
379 
380     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
381     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
382     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
383     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
384                            fdt_get_phandle(fdt, lpc_off))));
385 
386     /* This is needed by Linux */
387     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
388 }
389 
390 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
391 {
392     const char compatible[] = "bt\0ipmi-bt";
393     uint32_t io_base;
394     uint32_t io_regs[] = {
395         cpu_to_be32(1),
396         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
397         cpu_to_be32(3)
398     };
399     uint32_t irq;
400     char *name;
401     int node;
402 
403     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
404     io_regs[1] = cpu_to_be32(io_base);
405 
406     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
407 
408     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
409     node = fdt_add_subnode(fdt, lpc_off, name);
410     _FDT(node);
411     g_free(name);
412 
413     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
414     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
415                       sizeof(compatible))));
416 
417     /* Mark it as reserved to avoid Linux trying to claim it */
418     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
419     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
420     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
421                            fdt_get_phandle(fdt, lpc_off))));
422 }
423 
424 typedef struct ForeachPopulateArgs {
425     void *fdt;
426     int offset;
427 } ForeachPopulateArgs;
428 
429 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
430 {
431     ForeachPopulateArgs *args = opaque;
432     ISADevice *d = ISA_DEVICE(dev);
433 
434     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
435         pnv_dt_rtc(d, args->fdt, args->offset);
436     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
437         pnv_dt_serial(d, args->fdt, args->offset);
438     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
439         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
440     } else {
441         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
442                      d->ioport_id);
443     }
444 
445     return 0;
446 }
447 
448 /*
449  * The default LPC bus of a multichip system is on chip 0. It's
450  * recognized by the firmware (skiboot) using a "primary" property.
451  */
452 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
453 {
454     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
455     ForeachPopulateArgs args = {
456         .fdt = fdt,
457         .offset = isa_offset,
458     };
459     uint32_t phandle;
460 
461     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
462 
463     phandle = qemu_fdt_alloc_phandle(fdt);
464     assert(phandle > 0);
465     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
466 
467     /*
468      * ISA devices are not necessarily parented to the ISA bus so we
469      * can not use object_child_foreach()
470      */
471     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
472                        &args);
473 }
474 
475 static void pnv_dt_power_mgt(void *fdt)
476 {
477     int off;
478 
479     off = fdt_add_subnode(fdt, 0, "ibm,opal");
480     off = fdt_add_subnode(fdt, off, "power-mgt");
481 
482     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
483 }
484 
485 static void *pnv_dt_create(MachineState *machine)
486 {
487     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
488     PnvMachineState *pnv = PNV_MACHINE(machine);
489     void *fdt;
490     char *buf;
491     int off;
492     int i;
493 
494     fdt = g_malloc0(FDT_MAX_SIZE);
495     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
496 
497     /* /qemu node */
498     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
499 
500     /* Root node */
501     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
502     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
503     _FDT((fdt_setprop_string(fdt, 0, "model",
504                              "IBM PowerNV (emulated by qemu)")));
505     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
506 
507     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
508     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
509     if (qemu_uuid_set) {
510         _FDT((fdt_property_string(fdt, "system-id", buf)));
511     }
512     g_free(buf);
513 
514     off = fdt_add_subnode(fdt, 0, "chosen");
515     if (machine->kernel_cmdline) {
516         _FDT((fdt_setprop_string(fdt, off, "bootargs",
517                                  machine->kernel_cmdline)));
518     }
519 
520     if (pnv->initrd_size) {
521         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
522         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
523 
524         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
525                                &start_prop, sizeof(start_prop))));
526         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
527                                &end_prop, sizeof(end_prop))));
528     }
529 
530     /* Populate device tree for each chip */
531     for (i = 0; i < pnv->num_chips; i++) {
532         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
533     }
534 
535     /* Populate ISA devices on chip 0 */
536     pnv_dt_isa(pnv, fdt);
537 
538     if (pnv->bmc) {
539         pnv_dt_bmc_sensors(pnv->bmc, fdt);
540     }
541 
542     /* Create an extra node for power management on Power9 and Power10 */
543     if (pnv_is_power9(pnv) || pnv_is_power10(pnv)) {
544         pnv_dt_power_mgt(fdt);
545     }
546 
547     return fdt;
548 }
549 
550 static void pnv_powerdown_notify(Notifier *n, void *opaque)
551 {
552     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
553 
554     if (pnv->bmc) {
555         pnv_bmc_powerdown(pnv->bmc);
556     }
557 }
558 
559 static void pnv_reset(MachineState *machine)
560 {
561     void *fdt;
562 
563     qemu_devices_reset();
564 
565     fdt = pnv_dt_create(machine);
566 
567     /* Pack resulting tree */
568     _FDT((fdt_pack(fdt)));
569 
570     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
571     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
572 }
573 
574 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
575 {
576     Pnv8Chip *chip8 = PNV8_CHIP(chip);
577     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
578 }
579 
580 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
581 {
582     Pnv8Chip *chip8 = PNV8_CHIP(chip);
583     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
584 }
585 
586 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
587 {
588     Pnv9Chip *chip9 = PNV9_CHIP(chip);
589     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
590 }
591 
592 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
593 {
594     Pnv10Chip *chip10 = PNV10_CHIP(chip);
595     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
596 }
597 
598 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
599 {
600     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
601 }
602 
603 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
604 {
605     Pnv8Chip *chip8 = PNV8_CHIP(chip);
606 
607     ics_pic_print_info(&chip8->psi.ics, mon);
608 }
609 
610 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
611 {
612     Pnv9Chip *chip9 = PNV9_CHIP(chip);
613 
614     pnv_xive_pic_print_info(&chip9->xive, mon);
615     pnv_psi_pic_print_info(&chip9->psi, mon);
616 }
617 
618 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
619 {
620     PowerPCCPUClass *ppc_default =
621         POWERPC_CPU_CLASS(object_class_by_name(default_type));
622     PowerPCCPUClass *ppc =
623         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
624 
625     return ppc_default->pvr_match(ppc_default, ppc->pvr);
626 }
627 
628 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
629 {
630     Object *obj;
631 
632     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
633     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
634     object_property_set_int(obj, irq, "irq", &error_fatal);
635     object_property_set_bool(obj, true, "realized", &error_fatal);
636 }
637 
638 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
639 {
640     Pnv10Chip *chip10 = PNV10_CHIP(chip);
641 
642     pnv_psi_pic_print_info(&chip10->psi, mon);
643 }
644 
645 static void pnv_init(MachineState *machine)
646 {
647     PnvMachineState *pnv = PNV_MACHINE(machine);
648     MachineClass *mc = MACHINE_GET_CLASS(machine);
649     MemoryRegion *ram;
650     char *fw_filename;
651     long fw_size;
652     int i;
653     char *chip_typename;
654     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
655     DeviceState *dev;
656 
657     /* allocate RAM */
658     if (machine->ram_size < (1 * GiB)) {
659         warn_report("skiboot may not work with < 1GB of RAM");
660     }
661 
662     ram = g_new(MemoryRegion, 1);
663     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
664                                          machine->ram_size);
665     memory_region_add_subregion(get_system_memory(), 0, ram);
666 
667     /*
668      * Create our simple PNOR device
669      */
670     dev = qdev_create(NULL, TYPE_PNV_PNOR);
671     if (pnor) {
672         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
673                             &error_abort);
674     }
675     qdev_init_nofail(dev);
676     pnv->pnor = PNV_PNOR(dev);
677 
678     /* load skiboot firmware  */
679     if (bios_name == NULL) {
680         bios_name = FW_FILE_NAME;
681     }
682 
683     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
684     if (!fw_filename) {
685         error_report("Could not find OPAL firmware '%s'", bios_name);
686         exit(1);
687     }
688 
689     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
690     if (fw_size < 0) {
691         error_report("Could not load OPAL firmware '%s'", fw_filename);
692         exit(1);
693     }
694     g_free(fw_filename);
695 
696     /* load kernel */
697     if (machine->kernel_filename) {
698         long kernel_size;
699 
700         kernel_size = load_image_targphys(machine->kernel_filename,
701                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
702         if (kernel_size < 0) {
703             error_report("Could not load kernel '%s'",
704                          machine->kernel_filename);
705             exit(1);
706         }
707     }
708 
709     /* load initrd */
710     if (machine->initrd_filename) {
711         pnv->initrd_base = INITRD_LOAD_ADDR;
712         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
713                                   pnv->initrd_base, INITRD_MAX_SIZE);
714         if (pnv->initrd_size < 0) {
715             error_report("Could not load initial ram disk '%s'",
716                          machine->initrd_filename);
717             exit(1);
718         }
719     }
720 
721     /*
722      * Check compatibility of the specified CPU with the machine
723      * default.
724      */
725     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
726         error_report("invalid CPU model '%s' for %s machine",
727                      machine->cpu_type, mc->name);
728         exit(1);
729     }
730 
731     /* Create the processor chips */
732     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
733     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
734                                     i, machine->cpu_type);
735     if (!object_class_by_name(chip_typename)) {
736         error_report("invalid chip model '%.*s' for %s machine",
737                      i, machine->cpu_type, mc->name);
738         exit(1);
739     }
740 
741     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
742     for (i = 0; i < pnv->num_chips; i++) {
743         char chip_name[32];
744         Object *chip = object_new(chip_typename);
745 
746         pnv->chips[i] = PNV_CHIP(chip);
747 
748         /*
749          * TODO: put all the memory in one node on chip 0 until we find a
750          * way to specify different ranges for each chip
751          */
752         if (i == 0) {
753             object_property_set_int(chip, machine->ram_size, "ram-size",
754                                     &error_fatal);
755         }
756 
757         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
758         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
759         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
760                                 &error_fatal);
761         object_property_set_int(chip, machine->smp.cores,
762                                 "nr-cores", &error_fatal);
763         object_property_set_bool(chip, true, "realized", &error_fatal);
764     }
765     g_free(chip_typename);
766 
767     /* Create the machine BMC simulator */
768     pnv->bmc = pnv_bmc_create();
769 
770     /* Instantiate ISA bus on chip 0 */
771     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
772 
773     /* Create serial port */
774     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
775 
776     /* Create an RTC ISA device too */
777     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
778 
779     /* Create the IPMI BT device for communication with the BMC */
780     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
781 
782     /*
783      * OpenPOWER systems use a IPMI SEL Event message to notify the
784      * host to powerdown
785      */
786     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
787     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
788 }
789 
790 /*
791  *    0:21  Reserved - Read as zeros
792  *   22:24  Chip ID
793  *   25:28  Core number
794  *   29:31  Thread ID
795  */
796 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
797 {
798     return (chip->chip_id << 7) | (core_id << 3);
799 }
800 
801 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
802                                         Error **errp)
803 {
804     Error *local_err = NULL;
805     Object *obj;
806     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
807 
808     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
809                      &local_err);
810     if (local_err) {
811         error_propagate(errp, local_err);
812         return;
813     }
814 
815     pnv_cpu->intc = obj;
816 }
817 
818 
819 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
820 {
821     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
822 
823     icp_reset(ICP(pnv_cpu->intc));
824 }
825 
826 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
827 {
828     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
829 
830     icp_destroy(ICP(pnv_cpu->intc));
831     pnv_cpu->intc = NULL;
832 }
833 
834 /*
835  *    0:48  Reserved - Read as zeroes
836  *   49:52  Node ID
837  *   53:55  Chip ID
838  *   56     Reserved - Read as zero
839  *   57:61  Core number
840  *   62:63  Thread ID
841  *
842  * We only care about the lower bits. uint32_t is fine for the moment.
843  */
844 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
845 {
846     return (chip->chip_id << 8) | (core_id << 2);
847 }
848 
849 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
850 {
851     return (chip->chip_id << 8) | (core_id << 2);
852 }
853 
854 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
855                                         Error **errp)
856 {
857     Pnv9Chip *chip9 = PNV9_CHIP(chip);
858     Error *local_err = NULL;
859     Object *obj;
860     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
861 
862     /*
863      * The core creates its interrupt presenter but the XIVE interrupt
864      * controller object is initialized afterwards. Hopefully, it's
865      * only used at runtime.
866      */
867     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
868     if (local_err) {
869         error_propagate(errp, local_err);
870         return;
871     }
872 
873     pnv_cpu->intc = obj;
874 }
875 
876 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
877 {
878     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
879 
880     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
881 }
882 
883 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
884 {
885     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
886 
887     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
888     pnv_cpu->intc = NULL;
889 }
890 
891 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
892                                         Error **errp)
893 {
894     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
895 
896     /* Will be defined when the interrupt controller is */
897     pnv_cpu->intc = NULL;
898 }
899 
900 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
901 {
902     ;
903 }
904 
905 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
906 {
907     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
908 
909     pnv_cpu->intc = NULL;
910 }
911 
912 /*
913  * Allowed core identifiers on a POWER8 Processor Chip :
914  *
915  * <EX0 reserved>
916  *  EX1  - Venice only
917  *  EX2  - Venice only
918  *  EX3  - Venice only
919  *  EX4
920  *  EX5
921  *  EX6
922  * <EX7,8 reserved> <reserved>
923  *  EX9  - Venice only
924  *  EX10 - Venice only
925  *  EX11 - Venice only
926  *  EX12
927  *  EX13
928  *  EX14
929  * <EX15 reserved>
930  */
931 #define POWER8E_CORE_MASK  (0x7070ull)
932 #define POWER8_CORE_MASK   (0x7e7eull)
933 
934 /*
935  * POWER9 has 24 cores, ids starting at 0x0
936  */
937 #define POWER9_CORE_MASK   (0xffffffffffffffull)
938 
939 
940 #define POWER10_CORE_MASK  (0xffffffffffffffull)
941 
942 static void pnv_chip_power8_instance_init(Object *obj)
943 {
944     Pnv8Chip *chip8 = PNV8_CHIP(obj);
945 
946     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
947                             TYPE_PNV8_PSI, &error_abort, NULL);
948     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
949                                    OBJECT(qdev_get_machine()), &error_abort);
950 
951     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
952                             TYPE_PNV8_LPC, &error_abort, NULL);
953 
954     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
955                             TYPE_PNV8_OCC, &error_abort, NULL);
956 
957     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
958                             TYPE_PNV8_HOMER, &error_abort, NULL);
959 }
960 
961 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
962  {
963     PnvChip *chip = PNV_CHIP(chip8);
964     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
965     int i, j;
966     char *name;
967     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
968 
969     name = g_strdup_printf("icp-%x", chip->chip_id);
970     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
971     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
972     g_free(name);
973 
974     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
975 
976     /* Map the ICP registers for each thread */
977     for (i = 0; i < chip->nr_cores; i++) {
978         PnvCore *pnv_core = chip->cores[i];
979         int core_hwid = CPU_CORE(pnv_core)->core_id;
980 
981         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
982             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
983             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
984 
985             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
986                                         &icp->mmio);
987         }
988     }
989 }
990 
991 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
992 {
993     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
994     PnvChip *chip = PNV_CHIP(dev);
995     Pnv8Chip *chip8 = PNV8_CHIP(dev);
996     Pnv8Psi *psi8 = &chip8->psi;
997     Error *local_err = NULL;
998 
999     /* XSCOM bridge is first */
1000     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1001     if (local_err) {
1002         error_propagate(errp, local_err);
1003         return;
1004     }
1005     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1006 
1007     pcc->parent_realize(dev, &local_err);
1008     if (local_err) {
1009         error_propagate(errp, local_err);
1010         return;
1011     }
1012 
1013     /* Processor Service Interface (PSI) Host Bridge */
1014     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1015                             "bar", &error_fatal);
1016     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1017     if (local_err) {
1018         error_propagate(errp, local_err);
1019         return;
1020     }
1021     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1022                             &PNV_PSI(psi8)->xscom_regs);
1023 
1024     /* Create LPC controller */
1025     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1026                              &error_abort);
1027     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1028                              &error_fatal);
1029     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1030 
1031     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1032                                             (uint64_t) PNV_XSCOM_BASE(chip),
1033                                             PNV_XSCOM_LPC_BASE);
1034 
1035     /*
1036      * Interrupt Management Area. This is the memory region holding
1037      * all the Interrupt Control Presenter (ICP) registers
1038      */
1039     pnv_chip_icp_realize(chip8, &local_err);
1040     if (local_err) {
1041         error_propagate(errp, local_err);
1042         return;
1043     }
1044 
1045     /* Create the simplified OCC model */
1046     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1047                              &error_abort);
1048     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1049     if (local_err) {
1050         error_propagate(errp, local_err);
1051         return;
1052     }
1053     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1054 
1055     /* OCC SRAM model */
1056     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1057                                 &chip8->occ.sram_regs);
1058 
1059     /* HOMER */
1060     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1061                              &error_abort);
1062     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1063                              &local_err);
1064     if (local_err) {
1065         error_propagate(errp, local_err);
1066         return;
1067     }
1068     /* Homer Xscom region */
1069     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1070 
1071     /* Homer mmio region */
1072     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1073                                 &chip8->homer.regs);
1074 }
1075 
1076 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1077 {
1078     DeviceClass *dc = DEVICE_CLASS(klass);
1079     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1080 
1081     k->chip_type = PNV_CHIP_POWER8E;
1082     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1083     k->cores_mask = POWER8E_CORE_MASK;
1084     k->core_pir = pnv_chip_core_pir_p8;
1085     k->intc_create = pnv_chip_power8_intc_create;
1086     k->intc_reset = pnv_chip_power8_intc_reset;
1087     k->intc_destroy = pnv_chip_power8_intc_destroy;
1088     k->isa_create = pnv_chip_power8_isa_create;
1089     k->dt_populate = pnv_chip_power8_dt_populate;
1090     k->pic_print_info = pnv_chip_power8_pic_print_info;
1091     dc->desc = "PowerNV Chip POWER8E";
1092 
1093     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1094                                     &k->parent_realize);
1095 }
1096 
1097 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1098 {
1099     DeviceClass *dc = DEVICE_CLASS(klass);
1100     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1101 
1102     k->chip_type = PNV_CHIP_POWER8;
1103     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1104     k->cores_mask = POWER8_CORE_MASK;
1105     k->core_pir = pnv_chip_core_pir_p8;
1106     k->intc_create = pnv_chip_power8_intc_create;
1107     k->intc_reset = pnv_chip_power8_intc_reset;
1108     k->intc_destroy = pnv_chip_power8_intc_destroy;
1109     k->isa_create = pnv_chip_power8_isa_create;
1110     k->dt_populate = pnv_chip_power8_dt_populate;
1111     k->pic_print_info = pnv_chip_power8_pic_print_info;
1112     dc->desc = "PowerNV Chip POWER8";
1113 
1114     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1115                                     &k->parent_realize);
1116 }
1117 
1118 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1119 {
1120     DeviceClass *dc = DEVICE_CLASS(klass);
1121     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1122 
1123     k->chip_type = PNV_CHIP_POWER8NVL;
1124     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1125     k->cores_mask = POWER8_CORE_MASK;
1126     k->core_pir = pnv_chip_core_pir_p8;
1127     k->intc_create = pnv_chip_power8_intc_create;
1128     k->intc_reset = pnv_chip_power8_intc_reset;
1129     k->intc_destroy = pnv_chip_power8_intc_destroy;
1130     k->isa_create = pnv_chip_power8nvl_isa_create;
1131     k->dt_populate = pnv_chip_power8_dt_populate;
1132     k->pic_print_info = pnv_chip_power8_pic_print_info;
1133     dc->desc = "PowerNV Chip POWER8NVL";
1134 
1135     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1136                                     &k->parent_realize);
1137 }
1138 
1139 static void pnv_chip_power9_instance_init(Object *obj)
1140 {
1141     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1142 
1143     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1144                             TYPE_PNV_XIVE, &error_abort, NULL);
1145 
1146     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1147                             TYPE_PNV9_PSI, &error_abort, NULL);
1148 
1149     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1150                             TYPE_PNV9_LPC, &error_abort, NULL);
1151 
1152     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1153                             TYPE_PNV9_OCC, &error_abort, NULL);
1154 
1155     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1156                             TYPE_PNV9_HOMER, &error_abort, NULL);
1157 }
1158 
1159 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1160 {
1161     PnvChip *chip = PNV_CHIP(chip9);
1162     int i;
1163 
1164     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1165     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1166 
1167     for (i = 0; i < chip9->nr_quads; i++) {
1168         char eq_name[32];
1169         PnvQuad *eq = &chip9->quads[i];
1170         PnvCore *pnv_core = chip->cores[i * 4];
1171         int core_id = CPU_CORE(pnv_core)->core_id;
1172 
1173         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1174         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1175                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1176 
1177         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1178         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1179 
1180         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1181                                 &eq->xscom_regs);
1182     }
1183 }
1184 
1185 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1186 {
1187     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1188     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1189     PnvChip *chip = PNV_CHIP(dev);
1190     Pnv9Psi *psi9 = &chip9->psi;
1191     Error *local_err = NULL;
1192 
1193     /* XSCOM bridge is first */
1194     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1195     if (local_err) {
1196         error_propagate(errp, local_err);
1197         return;
1198     }
1199     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1200 
1201     pcc->parent_realize(dev, &local_err);
1202     if (local_err) {
1203         error_propagate(errp, local_err);
1204         return;
1205     }
1206 
1207     pnv_chip_quad_realize(chip9, &local_err);
1208     if (local_err) {
1209         error_propagate(errp, local_err);
1210         return;
1211     }
1212 
1213     /* XIVE interrupt controller (POWER9) */
1214     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1215                             "ic-bar", &error_fatal);
1216     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1217                             "vc-bar", &error_fatal);
1218     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1219                             "pc-bar", &error_fatal);
1220     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1221                             "tm-bar", &error_fatal);
1222     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1223                              &error_abort);
1224     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1225                              &local_err);
1226     if (local_err) {
1227         error_propagate(errp, local_err);
1228         return;
1229     }
1230     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1231                             &chip9->xive.xscom_regs);
1232 
1233     /* Processor Service Interface (PSI) Host Bridge */
1234     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1235                             "bar", &error_fatal);
1236     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1237     if (local_err) {
1238         error_propagate(errp, local_err);
1239         return;
1240     }
1241     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1242                             &PNV_PSI(psi9)->xscom_regs);
1243 
1244     /* LPC */
1245     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1246                              &error_abort);
1247     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1248     if (local_err) {
1249         error_propagate(errp, local_err);
1250         return;
1251     }
1252     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1253                                 &chip9->lpc.xscom_regs);
1254 
1255     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1256                                             (uint64_t) PNV9_LPCM_BASE(chip));
1257 
1258     /* Create the simplified OCC model */
1259     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1260                              &error_abort);
1261     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1262     if (local_err) {
1263         error_propagate(errp, local_err);
1264         return;
1265     }
1266     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1267 
1268     /* OCC SRAM model */
1269     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1270                                 &chip9->occ.sram_regs);
1271 
1272     /* HOMER */
1273     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1274                              &error_abort);
1275     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1276                              &local_err);
1277     if (local_err) {
1278         error_propagate(errp, local_err);
1279         return;
1280     }
1281     /* Homer Xscom region */
1282     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1283 
1284     /* Homer mmio region */
1285     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1286                                 &chip9->homer.regs);
1287 }
1288 
1289 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1290 {
1291     DeviceClass *dc = DEVICE_CLASS(klass);
1292     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1293 
1294     k->chip_type = PNV_CHIP_POWER9;
1295     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1296     k->cores_mask = POWER9_CORE_MASK;
1297     k->core_pir = pnv_chip_core_pir_p9;
1298     k->intc_create = pnv_chip_power9_intc_create;
1299     k->intc_reset = pnv_chip_power9_intc_reset;
1300     k->intc_destroy = pnv_chip_power9_intc_destroy;
1301     k->isa_create = pnv_chip_power9_isa_create;
1302     k->dt_populate = pnv_chip_power9_dt_populate;
1303     k->pic_print_info = pnv_chip_power9_pic_print_info;
1304     dc->desc = "PowerNV Chip POWER9";
1305 
1306     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1307                                     &k->parent_realize);
1308 }
1309 
1310 static void pnv_chip_power10_instance_init(Object *obj)
1311 {
1312     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1313 
1314     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1315                             TYPE_PNV10_PSI, &error_abort, NULL);
1316     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1317                             TYPE_PNV10_LPC, &error_abort, NULL);
1318 }
1319 
1320 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1321 {
1322     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1323     PnvChip *chip = PNV_CHIP(dev);
1324     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1325     Error *local_err = NULL;
1326 
1327     /* XSCOM bridge is first */
1328     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1329     if (local_err) {
1330         error_propagate(errp, local_err);
1331         return;
1332     }
1333     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1334 
1335     pcc->parent_realize(dev, &local_err);
1336     if (local_err) {
1337         error_propagate(errp, local_err);
1338         return;
1339     }
1340 
1341     /* Processor Service Interface (PSI) Host Bridge */
1342     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1343                             "bar", &error_fatal);
1344     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1345                              &local_err);
1346     if (local_err) {
1347         error_propagate(errp, local_err);
1348         return;
1349     }
1350     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1351                             &PNV_PSI(&chip10->psi)->xscom_regs);
1352 
1353     /* LPC */
1354     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1355                              &error_abort);
1356     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1357                              &local_err);
1358     if (local_err) {
1359         error_propagate(errp, local_err);
1360         return;
1361     }
1362     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1363                                 &chip10->lpc.xscom_regs);
1364 
1365     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1366                                             (uint64_t) PNV10_LPCM_BASE(chip));
1367 }
1368 
1369 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1370 {
1371     DeviceClass *dc = DEVICE_CLASS(klass);
1372     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1373 
1374     k->chip_type = PNV_CHIP_POWER10;
1375     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1376     k->cores_mask = POWER10_CORE_MASK;
1377     k->core_pir = pnv_chip_core_pir_p10;
1378     k->intc_create = pnv_chip_power10_intc_create;
1379     k->intc_reset = pnv_chip_power10_intc_reset;
1380     k->intc_destroy = pnv_chip_power10_intc_destroy;
1381     k->isa_create = pnv_chip_power10_isa_create;
1382     k->dt_populate = pnv_chip_power10_dt_populate;
1383     k->pic_print_info = pnv_chip_power10_pic_print_info;
1384     dc->desc = "PowerNV Chip POWER10";
1385 
1386     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1387                                     &k->parent_realize);
1388 }
1389 
1390 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1391 {
1392     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1393     int cores_max;
1394 
1395     /*
1396      * No custom mask for this chip, let's use the default one from *
1397      * the chip class
1398      */
1399     if (!chip->cores_mask) {
1400         chip->cores_mask = pcc->cores_mask;
1401     }
1402 
1403     /* filter alien core ids ! some are reserved */
1404     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1405         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1406                    chip->cores_mask);
1407         return;
1408     }
1409     chip->cores_mask &= pcc->cores_mask;
1410 
1411     /* now that we have a sane layout, let check the number of cores */
1412     cores_max = ctpop64(chip->cores_mask);
1413     if (chip->nr_cores > cores_max) {
1414         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1415                    cores_max);
1416         return;
1417     }
1418 }
1419 
1420 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1421 {
1422     MachineState *ms = MACHINE(qdev_get_machine());
1423     Error *error = NULL;
1424     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1425     const char *typename = pnv_chip_core_typename(chip);
1426     int i, core_hwid;
1427 
1428     if (!object_class_by_name(typename)) {
1429         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1430         return;
1431     }
1432 
1433     /* Cores */
1434     pnv_chip_core_sanitize(chip, &error);
1435     if (error) {
1436         error_propagate(errp, error);
1437         return;
1438     }
1439 
1440     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1441 
1442     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1443              && (i < chip->nr_cores); core_hwid++) {
1444         char core_name[32];
1445         PnvCore *pnv_core;
1446         uint64_t xscom_core_base;
1447 
1448         if (!(chip->cores_mask & (1ull << core_hwid))) {
1449             continue;
1450         }
1451 
1452         pnv_core = PNV_CORE(object_new(typename));
1453 
1454         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1455         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1456                                   &error_abort);
1457         chip->cores[i] = pnv_core;
1458         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1459                                 &error_fatal);
1460         object_property_set_int(OBJECT(pnv_core), core_hwid,
1461                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1462         object_property_set_int(OBJECT(pnv_core),
1463                                 pcc->core_pir(chip, core_hwid),
1464                                 "pir", &error_fatal);
1465         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1466                                  &error_abort);
1467         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1468                                  &error_fatal);
1469 
1470         /* Each core has an XSCOM MMIO region */
1471         if (pnv_chip_is_power10(chip)) {
1472             xscom_core_base = PNV10_XSCOM_EC_BASE(core_hwid);
1473         } else if (pnv_chip_is_power9(chip)) {
1474             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1475         } else {
1476             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1477         }
1478 
1479         pnv_xscom_add_subregion(chip, xscom_core_base,
1480                                 &pnv_core->xscom_regs);
1481         i++;
1482     }
1483 }
1484 
1485 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1486 {
1487     PnvChip *chip = PNV_CHIP(dev);
1488     Error *error = NULL;
1489 
1490     /* Cores */
1491     pnv_chip_core_realize(chip, &error);
1492     if (error) {
1493         error_propagate(errp, error);
1494         return;
1495     }
1496 }
1497 
1498 static Property pnv_chip_properties[] = {
1499     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1500     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1501     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1502     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1503     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1504     DEFINE_PROP_END_OF_LIST(),
1505 };
1506 
1507 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1508 {
1509     DeviceClass *dc = DEVICE_CLASS(klass);
1510 
1511     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1512     dc->realize = pnv_chip_realize;
1513     dc->props = pnv_chip_properties;
1514     dc->desc = "PowerNV Chip";
1515 }
1516 
1517 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1518 {
1519     int i, j;
1520 
1521     for (i = 0; i < chip->nr_cores; i++) {
1522         PnvCore *pc = chip->cores[i];
1523         CPUCore *cc = CPU_CORE(pc);
1524 
1525         for (j = 0; j < cc->nr_threads; j++) {
1526             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1527                 return pc->threads[j];
1528             }
1529         }
1530     }
1531     return NULL;
1532 }
1533 
1534 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1535 {
1536     PnvMachineState *pnv = PNV_MACHINE(xi);
1537     int i;
1538 
1539     for (i = 0; i < pnv->num_chips; i++) {
1540         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1541 
1542         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1543             return &chip8->psi.ics;
1544         }
1545     }
1546     return NULL;
1547 }
1548 
1549 static void pnv_ics_resend(XICSFabric *xi)
1550 {
1551     PnvMachineState *pnv = PNV_MACHINE(xi);
1552     int i;
1553 
1554     for (i = 0; i < pnv->num_chips; i++) {
1555         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1556         ics_resend(&chip8->psi.ics);
1557     }
1558 }
1559 
1560 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1561 {
1562     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1563 
1564     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1565 }
1566 
1567 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1568                                Monitor *mon)
1569 {
1570     PnvMachineState *pnv = PNV_MACHINE(obj);
1571     int i;
1572     CPUState *cs;
1573 
1574     CPU_FOREACH(cs) {
1575         PowerPCCPU *cpu = POWERPC_CPU(cs);
1576 
1577         if (pnv_chip_is_power9(pnv->chips[0])) {
1578             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1579         } else {
1580             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1581         }
1582     }
1583 
1584     for (i = 0; i < pnv->num_chips; i++) {
1585         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1586     }
1587 }
1588 
1589 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1590                          uint8_t nvt_blk, uint32_t nvt_idx,
1591                          bool cam_ignore, uint8_t priority,
1592                          uint32_t logic_serv,
1593                          XiveTCTXMatch *match)
1594 {
1595     PnvMachineState *pnv = PNV_MACHINE(xfb);
1596     int total_count = 0;
1597     int i;
1598 
1599     for (i = 0; i < pnv->num_chips; i++) {
1600         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1601         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1602         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1603         int count;
1604 
1605         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1606                                priority, logic_serv, match);
1607 
1608         if (count < 0) {
1609             return count;
1610         }
1611 
1612         total_count += count;
1613     }
1614 
1615     return total_count;
1616 }
1617 
1618 PnvChip *pnv_get_chip(uint32_t chip_id)
1619 {
1620     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1621     int i;
1622 
1623     for (i = 0; i < pnv->num_chips; i++) {
1624         PnvChip *chip = pnv->chips[i];
1625         if (chip->chip_id == chip_id) {
1626             return chip;
1627         }
1628     }
1629     return NULL;
1630 }
1631 
1632 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1633                               void *opaque, Error **errp)
1634 {
1635     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1636 }
1637 
1638 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1639                               void *opaque, Error **errp)
1640 {
1641     PnvMachineState *pnv = PNV_MACHINE(obj);
1642     uint32_t num_chips;
1643     Error *local_err = NULL;
1644 
1645     visit_type_uint32(v, name, &num_chips, &local_err);
1646     if (local_err) {
1647         error_propagate(errp, local_err);
1648         return;
1649     }
1650 
1651     /*
1652      * TODO: should we decide on how many chips we can create based
1653      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1654      */
1655     if (!is_power_of_2(num_chips) || num_chips > 4) {
1656         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1657         return;
1658     }
1659 
1660     pnv->num_chips = num_chips;
1661 }
1662 
1663 static void pnv_machine_instance_init(Object *obj)
1664 {
1665     PnvMachineState *pnv = PNV_MACHINE(obj);
1666     pnv->num_chips = 1;
1667 }
1668 
1669 static void pnv_machine_class_props_init(ObjectClass *oc)
1670 {
1671     object_class_property_add(oc, "num-chips", "uint32",
1672                               pnv_get_num_chips, pnv_set_num_chips,
1673                               NULL, NULL, NULL);
1674     object_class_property_set_description(oc, "num-chips",
1675                               "Specifies the number of processor chips",
1676                               NULL);
1677 }
1678 
1679 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1680 {
1681     MachineClass *mc = MACHINE_CLASS(oc);
1682     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1683     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1684     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1685 
1686     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1687     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1688 
1689     xic->icp_get = pnv_icp_get;
1690     xic->ics_get = pnv_ics_get;
1691     xic->ics_resend = pnv_ics_resend;
1692 
1693     pmc->compat = compat;
1694     pmc->compat_size = sizeof(compat);
1695 }
1696 
1697 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1698 {
1699     MachineClass *mc = MACHINE_CLASS(oc);
1700     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1701     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1702     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1703 
1704     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1705     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1706     xfc->match_nvt = pnv_match_nvt;
1707 
1708     mc->alias = "powernv";
1709 
1710     pmc->compat = compat;
1711     pmc->compat_size = sizeof(compat);
1712 }
1713 
1714 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1715 {
1716     MachineClass *mc = MACHINE_CLASS(oc);
1717     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1718     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1719 
1720     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1721     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1722 
1723     pmc->compat = compat;
1724     pmc->compat_size = sizeof(compat);
1725 }
1726 
1727 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1728 {
1729     MachineClass *mc = MACHINE_CLASS(oc);
1730     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1731 
1732     mc->desc = "IBM PowerNV (Non-Virtualized)";
1733     mc->init = pnv_init;
1734     mc->reset = pnv_reset;
1735     mc->max_cpus = MAX_CPUS;
1736     /* Pnv provides a AHCI device for storage */
1737     mc->block_default_type = IF_IDE;
1738     mc->no_parallel = 1;
1739     mc->default_boot_order = NULL;
1740     /*
1741      * RAM defaults to less than 2048 for 32-bit hosts, and large
1742      * enough to fit the maximum initrd size at it's load address
1743      */
1744     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1745     ispc->print_info = pnv_pic_print_info;
1746 
1747     pnv_machine_class_props_init(oc);
1748 }
1749 
1750 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1751     {                                             \
1752         .name          = type,                    \
1753         .class_init    = class_initfn,            \
1754         .parent        = TYPE_PNV8_CHIP,          \
1755     }
1756 
1757 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1758     {                                             \
1759         .name          = type,                    \
1760         .class_init    = class_initfn,            \
1761         .parent        = TYPE_PNV9_CHIP,          \
1762     }
1763 
1764 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1765     {                                              \
1766         .name          = type,                     \
1767         .class_init    = class_initfn,             \
1768         .parent        = TYPE_PNV10_CHIP,          \
1769     }
1770 
1771 static const TypeInfo types[] = {
1772     {
1773         .name          = MACHINE_TYPE_NAME("powernv10"),
1774         .parent        = TYPE_PNV_MACHINE,
1775         .class_init    = pnv_machine_power10_class_init,
1776     },
1777     {
1778         .name          = MACHINE_TYPE_NAME("powernv9"),
1779         .parent        = TYPE_PNV_MACHINE,
1780         .class_init    = pnv_machine_power9_class_init,
1781         .interfaces = (InterfaceInfo[]) {
1782             { TYPE_XIVE_FABRIC },
1783             { },
1784         },
1785     },
1786     {
1787         .name          = MACHINE_TYPE_NAME("powernv8"),
1788         .parent        = TYPE_PNV_MACHINE,
1789         .class_init    = pnv_machine_power8_class_init,
1790         .interfaces = (InterfaceInfo[]) {
1791             { TYPE_XICS_FABRIC },
1792             { },
1793         },
1794     },
1795     {
1796         .name          = TYPE_PNV_MACHINE,
1797         .parent        = TYPE_MACHINE,
1798         .abstract       = true,
1799         .instance_size = sizeof(PnvMachineState),
1800         .instance_init = pnv_machine_instance_init,
1801         .class_init    = pnv_machine_class_init,
1802         .class_size    = sizeof(PnvMachineClass),
1803         .interfaces = (InterfaceInfo[]) {
1804             { TYPE_INTERRUPT_STATS_PROVIDER },
1805             { },
1806         },
1807     },
1808     {
1809         .name          = TYPE_PNV_CHIP,
1810         .parent        = TYPE_SYS_BUS_DEVICE,
1811         .class_init    = pnv_chip_class_init,
1812         .instance_size = sizeof(PnvChip),
1813         .class_size    = sizeof(PnvChipClass),
1814         .abstract      = true,
1815     },
1816 
1817     /*
1818      * P10 chip and variants
1819      */
1820     {
1821         .name          = TYPE_PNV10_CHIP,
1822         .parent        = TYPE_PNV_CHIP,
1823         .instance_init = pnv_chip_power10_instance_init,
1824         .instance_size = sizeof(Pnv10Chip),
1825     },
1826     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
1827 
1828     /*
1829      * P9 chip and variants
1830      */
1831     {
1832         .name          = TYPE_PNV9_CHIP,
1833         .parent        = TYPE_PNV_CHIP,
1834         .instance_init = pnv_chip_power9_instance_init,
1835         .instance_size = sizeof(Pnv9Chip),
1836     },
1837     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1838 
1839     /*
1840      * P8 chip and variants
1841      */
1842     {
1843         .name          = TYPE_PNV8_CHIP,
1844         .parent        = TYPE_PNV_CHIP,
1845         .instance_init = pnv_chip_power8_instance_init,
1846         .instance_size = sizeof(Pnv8Chip),
1847     },
1848     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1849     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1850     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1851                           pnv_chip_power8nvl_class_init),
1852 };
1853 
1854 DEFINE_TYPES(types)
1855