xref: /openbmc/qemu/hw/ppc/pnv.c (revision d76cb5a53b04d52db1500e83bd6bdfbfeca44e4d)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t pir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (ppc_has_spr(cpu, SPR_PURR)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(*servers_prop) * smt_threads)));
243 
244     return offset;
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
248                        uint32_t nr_threads)
249 {
250     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
251     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
252     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
253     char *name;
254     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
255     uint32_t irange[2], i, rsize;
256     uint64_t *reg;
257     int offset;
258 
259     irange[0] = cpu_to_be32(pir);
260     irange[1] = cpu_to_be32(nr_threads);
261 
262     rsize = sizeof(uint64_t) * 2 * nr_threads;
263     reg = g_malloc(rsize);
264     for (i = 0; i < nr_threads; i++) {
265         /* We know P8 PIR is linear with thread id */
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 /*
288  * Adds a PnvPHB to the chip on P8.
289  * Implemented here, like for defaults PHBs
290  */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293     Pnv8Chip *chip8 = PNV8_CHIP(chip);
294 
295     phb->chip = chip;
296 
297     chip8->phbs[chip8->num_phbs] = phb;
298     chip8->num_phbs++;
299     return chip;
300 }
301 
302 /*
303  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
304  * HTM is always enabled because TCG does implement HTM, it's just a
305  * degenerate implementation.
306  */
307 static const uint8_t pa_features_207[] = { 24, 0,
308                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
309                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
310                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
311                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
312 
313 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
314 {
315     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
316     int i;
317 
318     pnv_dt_xscom(chip, fdt, 0,
319                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
320                  cpu_to_be64(PNV_XSCOM_SIZE),
321                  compat, sizeof(compat));
322 
323     for (i = 0; i < chip->nr_cores; i++) {
324         PnvCore *pnv_core = chip->cores[i];
325         int offset;
326 
327         offset = pnv_dt_core(chip, pnv_core, fdt);
328 
329         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
330                            pa_features_207, sizeof(pa_features_207))));
331 
332         /* Interrupt Control Presenters (ICP). One per core. */
333         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
334     }
335 
336     if (chip->ram_size) {
337         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
338     }
339 }
340 
341 /*
342  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
343  */
344 static const uint8_t pa_features_300[] = { 66, 0,
345     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
346     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
347     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
348     /* 6: DS207 */
349     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
350     /* 16: Vector */
351     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
352     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
353     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
354     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
356     /* 32: LE atomic, 34: EBB + ext EBB */
357     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
358     /* 40: Radix MMU */
359     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
360     /* 42: PM, 44: PC RA, 46: SC vec'd */
361     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
362     /* 48: SIMD, 50: QP BFP, 52: String */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
364     /* 54: DecFP, 56: DecI, 58: SHA */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
366     /* 60: NM atomic, 62: RNG */
367     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
368 };
369 
370 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
371 {
372     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
373     int i;
374 
375     pnv_dt_xscom(chip, fdt, 0,
376                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
377                  cpu_to_be64(PNV9_XSCOM_SIZE),
378                  compat, sizeof(compat));
379 
380     for (i = 0; i < chip->nr_cores; i++) {
381         PnvCore *pnv_core = chip->cores[i];
382         int offset;
383 
384         offset = pnv_dt_core(chip, pnv_core, fdt);
385 
386         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
387                            pa_features_300, sizeof(pa_features_300))));
388     }
389 
390     if (chip->ram_size) {
391         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
392     }
393 
394     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
395 }
396 
397 /*
398  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
399  * always disables copy/paste.
400  */
401 static const uint8_t pa_features_31[] = { 74, 0,
402     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
403     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
404     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
405     /* 6: DS207 */
406     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
407     /* 16: Vector */
408     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
409     /* 18: Vec. Scalar, 20: Vec. XOR */
410     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
411     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
412     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
413     /* 32: LE atomic, 34: EBB + ext EBB */
414     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
415     /* 40: Radix MMU */
416     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
417     /* 42: PM, 44: PC RA, 46: SC vec'd */
418     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
419     /* 48: SIMD, 50: QP BFP, 52: String */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
421     /* 54: DecFP, 56: DecI, 58: SHA */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
423     /* 60: NM atomic, 62: RNG */
424     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
425     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
426     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
427     /* 72: [P]HASHST/[P]HASHCHK */
428     0x80, 0x00,                         /* 72 - 73 */
429 };
430 
431 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
432 {
433     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
434     int i;
435 
436     pnv_dt_xscom(chip, fdt, 0,
437                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
438                  cpu_to_be64(PNV10_XSCOM_SIZE),
439                  compat, sizeof(compat));
440 
441     for (i = 0; i < chip->nr_cores; i++) {
442         PnvCore *pnv_core = chip->cores[i];
443         int offset;
444 
445         offset = pnv_dt_core(chip, pnv_core, fdt);
446 
447         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
448                            pa_features_31, sizeof(pa_features_31))));
449     }
450 
451     if (chip->ram_size) {
452         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
453     }
454 
455     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
456 }
457 
458 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
459 {
460     uint32_t io_base = d->ioport_id;
461     uint32_t io_regs[] = {
462         cpu_to_be32(1),
463         cpu_to_be32(io_base),
464         cpu_to_be32(2)
465     };
466     char *name;
467     int node;
468 
469     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
470     node = fdt_add_subnode(fdt, lpc_off, name);
471     _FDT(node);
472     g_free(name);
473 
474     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
475     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
476 }
477 
478 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
479 {
480     const char compatible[] = "ns16550\0pnpPNP,501";
481     uint32_t io_base = d->ioport_id;
482     uint32_t io_regs[] = {
483         cpu_to_be32(1),
484         cpu_to_be32(io_base),
485         cpu_to_be32(8)
486     };
487     uint32_t irq;
488     char *name;
489     int node;
490 
491     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
492 
493     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
494     node = fdt_add_subnode(fdt, lpc_off, name);
495     _FDT(node);
496     g_free(name);
497 
498     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
499     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
500                       sizeof(compatible))));
501 
502     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
503     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
504     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
505     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
506                            fdt_get_phandle(fdt, lpc_off))));
507 
508     /* This is needed by Linux */
509     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
510 }
511 
512 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
513 {
514     const char compatible[] = "bt\0ipmi-bt";
515     uint32_t io_base;
516     uint32_t io_regs[] = {
517         cpu_to_be32(1),
518         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
519         cpu_to_be32(3)
520     };
521     uint32_t irq;
522     char *name;
523     int node;
524 
525     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
526     io_regs[1] = cpu_to_be32(io_base);
527 
528     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
529 
530     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
531     node = fdt_add_subnode(fdt, lpc_off, name);
532     _FDT(node);
533     g_free(name);
534 
535     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
536     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
537                       sizeof(compatible))));
538 
539     /* Mark it as reserved to avoid Linux trying to claim it */
540     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
541     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
542     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
543                            fdt_get_phandle(fdt, lpc_off))));
544 }
545 
546 typedef struct ForeachPopulateArgs {
547     void *fdt;
548     int offset;
549 } ForeachPopulateArgs;
550 
551 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
552 {
553     ForeachPopulateArgs *args = opaque;
554     ISADevice *d = ISA_DEVICE(dev);
555 
556     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
557         pnv_dt_rtc(d, args->fdt, args->offset);
558     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
559         pnv_dt_serial(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
561         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
562     } else {
563         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
564                      d->ioport_id);
565     }
566 
567     return 0;
568 }
569 
570 /*
571  * The default LPC bus of a multichip system is on chip 0. It's
572  * recognized by the firmware (skiboot) using a "primary" property.
573  */
574 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
575 {
576     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
577     ForeachPopulateArgs args = {
578         .fdt = fdt,
579         .offset = isa_offset,
580     };
581     uint32_t phandle;
582 
583     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
584 
585     phandle = qemu_fdt_alloc_phandle(fdt);
586     assert(phandle > 0);
587     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
588 
589     /*
590      * ISA devices are not necessarily parented to the ISA bus so we
591      * can not use object_child_foreach()
592      */
593     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
594                        &args);
595 }
596 
597 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
598 {
599     int off;
600 
601     off = fdt_add_subnode(fdt, 0, "ibm,opal");
602     off = fdt_add_subnode(fdt, off, "power-mgt");
603 
604     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
605 }
606 
607 static void *pnv_dt_create(MachineState *machine)
608 {
609     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
610     PnvMachineState *pnv = PNV_MACHINE(machine);
611     void *fdt;
612     char *buf;
613     int off;
614     int i;
615 
616     fdt = g_malloc0(FDT_MAX_SIZE);
617     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
618 
619     /* /qemu node */
620     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
621 
622     /* Root node */
623     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
624     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
625     _FDT((fdt_setprop_string(fdt, 0, "model",
626                              "IBM PowerNV (emulated by qemu)")));
627     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
628 
629     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
630     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
631     if (qemu_uuid_set) {
632         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
633     }
634     g_free(buf);
635 
636     off = fdt_add_subnode(fdt, 0, "chosen");
637     if (machine->kernel_cmdline) {
638         _FDT((fdt_setprop_string(fdt, off, "bootargs",
639                                  machine->kernel_cmdline)));
640     }
641 
642     if (pnv->initrd_size) {
643         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
644         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
645 
646         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
647                                &start_prop, sizeof(start_prop))));
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
649                                &end_prop, sizeof(end_prop))));
650     }
651 
652     /* Populate device tree for each chip */
653     for (i = 0; i < pnv->num_chips; i++) {
654         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
655     }
656 
657     /* Populate ISA devices on chip 0 */
658     pnv_dt_isa(pnv, fdt);
659 
660     if (pnv->bmc) {
661         pnv_dt_bmc_sensors(pnv->bmc, fdt);
662     }
663 
664     /* Create an extra node for power management on machines that support it */
665     if (pmc->dt_power_mgt) {
666         pmc->dt_power_mgt(pnv, fdt);
667     }
668 
669     return fdt;
670 }
671 
672 static void pnv_powerdown_notify(Notifier *n, void *opaque)
673 {
674     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
675 
676     if (pnv->bmc) {
677         pnv_bmc_powerdown(pnv->bmc);
678     }
679 }
680 
681 static void pnv_reset(MachineState *machine, ShutdownCause reason)
682 {
683     PnvMachineState *pnv = PNV_MACHINE(machine);
684     IPMIBmc *bmc;
685     void *fdt;
686 
687     qemu_devices_reset(reason);
688 
689     /*
690      * The machine should provide by default an internal BMC simulator.
691      * If not, try to use the BMC device that was provided on the command
692      * line.
693      */
694     bmc = pnv_bmc_find(&error_fatal);
695     if (!pnv->bmc) {
696         if (!bmc) {
697             if (!qtest_enabled()) {
698                 warn_report("machine has no BMC device. Use '-device "
699                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
700                             "to define one");
701             }
702         } else {
703             pnv_bmc_set_pnor(bmc, pnv->pnor);
704             pnv->bmc = bmc;
705         }
706     }
707 
708     fdt = pnv_dt_create(machine);
709 
710     /* Pack resulting tree */
711     _FDT((fdt_pack(fdt)));
712 
713     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
714     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
715 
716     /*
717      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
718      * the existing machine->fdt to avoid leaking it during
719      * a reset.
720      */
721     g_free(machine->fdt);
722     machine->fdt = fdt;
723 }
724 
725 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
726 {
727     Pnv8Chip *chip8 = PNV8_CHIP(chip);
728     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
729 
730     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
731 
732     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
733 }
734 
735 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
736 {
737     Pnv8Chip *chip8 = PNV8_CHIP(chip);
738     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
739 
740     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
741 
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq;
749 
750     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
751     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
752 
753     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
754     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
755     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
756     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
757     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
758     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
759     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
760     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
761 
762     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
763 }
764 
765 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
766 {
767     Pnv10Chip *chip10 = PNV10_CHIP(chip);
768     qemu_irq irq;
769 
770     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
771     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
772 
773     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
774     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
775     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
776     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
777     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
778     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
779     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
780     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
781 
782     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
783 }
784 
785 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
786 {
787     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
788 }
789 
790 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
791 {
792     Pnv8Chip *chip8 = PNV8_CHIP(chip);
793     int i;
794 
795     ics_pic_print_info(&chip8->psi.ics, buf);
796 
797     for (i = 0; i < chip8->num_phbs; i++) {
798         PnvPHB *phb = chip8->phbs[i];
799         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
800 
801         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
802         ics_pic_print_info(&phb3->lsis, buf);
803     }
804 }
805 
806 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
807 {
808     GString *buf = opaque;
809     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
810 
811     if (!phb) {
812         return 0;
813     }
814 
815     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
816 
817     return 0;
818 }
819 
820 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
821 {
822     Pnv9Chip *chip9 = PNV9_CHIP(chip);
823 
824     pnv_xive_pic_print_info(&chip9->xive, buf);
825     pnv_psi_pic_print_info(&chip9->psi, buf);
826     object_child_foreach_recursive(OBJECT(chip),
827                          pnv_chip_power9_pic_print_info_child, buf);
828 }
829 
830 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
831                                                 uint32_t core_id)
832 {
833     return PNV_XSCOM_EX_BASE(core_id);
834 }
835 
836 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
837                                                 uint32_t core_id)
838 {
839     return PNV9_XSCOM_EC_BASE(core_id);
840 }
841 
842 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
843                                                  uint32_t core_id)
844 {
845     return PNV10_XSCOM_EC_BASE(core_id);
846 }
847 
848 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
849 {
850     PowerPCCPUClass *ppc_default =
851         POWERPC_CPU_CLASS(object_class_by_name(default_type));
852     PowerPCCPUClass *ppc =
853         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
854 
855     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
856 }
857 
858 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
859 {
860     ISADevice *dev = isa_new("isa-ipmi-bt");
861 
862     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
863     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
864     isa_realize_and_unref(dev, bus, &error_fatal);
865 }
866 
867 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
868 {
869     Pnv10Chip *chip10 = PNV10_CHIP(chip);
870 
871     pnv_xive2_pic_print_info(&chip10->xive, buf);
872     pnv_psi_pic_print_info(&chip10->psi, buf);
873     object_child_foreach_recursive(OBJECT(chip),
874                          pnv_chip_power9_pic_print_info_child, buf);
875 }
876 
877 /* Always give the first 1GB to chip 0 else we won't boot */
878 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
879 {
880     MachineState *machine = MACHINE(pnv);
881     uint64_t ram_per_chip;
882 
883     assert(machine->ram_size >= 1 * GiB);
884 
885     ram_per_chip = machine->ram_size / pnv->num_chips;
886     if (ram_per_chip >= 1 * GiB) {
887         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
888     }
889 
890     assert(pnv->num_chips > 1);
891 
892     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
893     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
894 }
895 
896 static void pnv_init(MachineState *machine)
897 {
898     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
899     PnvMachineState *pnv = PNV_MACHINE(machine);
900     MachineClass *mc = MACHINE_GET_CLASS(machine);
901     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
902     int max_smt_threads = pmc->max_smt_threads;
903     char *fw_filename;
904     long fw_size;
905     uint64_t chip_ram_start = 0;
906     int i;
907     char *chip_typename;
908     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
909     DeviceState *dev;
910 
911     if (kvm_enabled()) {
912         error_report("machine %s does not support the KVM accelerator",
913                      mc->name);
914         exit(EXIT_FAILURE);
915     }
916 
917     /* allocate RAM */
918     if (machine->ram_size < mc->default_ram_size) {
919         char *sz = size_to_str(mc->default_ram_size);
920         error_report("Invalid RAM size, should be bigger than %s", sz);
921         g_free(sz);
922         exit(EXIT_FAILURE);
923     }
924     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
925 
926     /*
927      * Create our simple PNOR device
928      */
929     dev = qdev_new(TYPE_PNV_PNOR);
930     if (pnor) {
931         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
932     }
933     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
934     pnv->pnor = PNV_PNOR(dev);
935 
936     /* load skiboot firmware  */
937     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
938     if (!fw_filename) {
939         error_report("Could not find OPAL firmware '%s'", bios_name);
940         exit(1);
941     }
942 
943     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
944     if (fw_size < 0) {
945         error_report("Could not load OPAL firmware '%s'", fw_filename);
946         exit(1);
947     }
948     g_free(fw_filename);
949 
950     /* load kernel */
951     if (machine->kernel_filename) {
952         long kernel_size;
953 
954         kernel_size = load_image_targphys(machine->kernel_filename,
955                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
956         if (kernel_size < 0) {
957             error_report("Could not load kernel '%s'",
958                          machine->kernel_filename);
959             exit(1);
960         }
961     }
962 
963     /* load initrd */
964     if (machine->initrd_filename) {
965         pnv->initrd_base = INITRD_LOAD_ADDR;
966         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
967                                   pnv->initrd_base, INITRD_MAX_SIZE);
968         if (pnv->initrd_size < 0) {
969             error_report("Could not load initial ram disk '%s'",
970                          machine->initrd_filename);
971             exit(1);
972         }
973     }
974 
975     /* MSIs are supported on this platform */
976     msi_nonbroken = true;
977 
978     /*
979      * Check compatibility of the specified CPU with the machine
980      * default.
981      */
982     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
983         error_report("invalid CPU model '%s' for %s machine",
984                      machine->cpu_type, mc->name);
985         exit(1);
986     }
987 
988     /* Create the processor chips */
989     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
990     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
991                                     i, machine->cpu_type);
992     if (!object_class_by_name(chip_typename)) {
993         error_report("invalid chip model '%.*s' for %s machine",
994                      i, machine->cpu_type, mc->name);
995         exit(1);
996     }
997 
998     pnv->num_chips =
999         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1000 
1001     if (machine->smp.threads > max_smt_threads) {
1002         error_report("Cannot support more than %d threads/core "
1003                      "on %s machine", max_smt_threads, mc->desc);
1004         exit(1);
1005     }
1006 
1007     if (!is_power_of_2(machine->smp.threads)) {
1008         error_report("Cannot support %d threads/core on a powernv"
1009                      "machine because it must be a power of 2",
1010                      machine->smp.threads);
1011         exit(1);
1012     }
1013 
1014     /*
1015      * TODO: should we decide on how many chips we can create based
1016      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1017      */
1018     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1019         error_report("invalid number of chips: '%d'", pnv->num_chips);
1020         error_printf(
1021             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1022         exit(1);
1023     }
1024 
1025     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1026     for (i = 0; i < pnv->num_chips; i++) {
1027         char chip_name[32];
1028         Object *chip = OBJECT(qdev_new(chip_typename));
1029         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1030 
1031         pnv->chips[i] = PNV_CHIP(chip);
1032 
1033         /* Distribute RAM among the chips  */
1034         object_property_set_int(chip, "ram-start", chip_ram_start,
1035                                 &error_fatal);
1036         object_property_set_int(chip, "ram-size", chip_ram_size,
1037                                 &error_fatal);
1038         chip_ram_start += chip_ram_size;
1039 
1040         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1041         object_property_add_child(OBJECT(pnv), chip_name, chip);
1042         object_property_set_int(chip, "chip-id", i, &error_fatal);
1043         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1044                                 &error_fatal);
1045         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1046                                 &error_fatal);
1047         /*
1048          * The POWER8 machine use the XICS interrupt interface.
1049          * Propagate the XICS fabric to the chip and its controllers.
1050          */
1051         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1052             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1053         }
1054         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1055             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1056                                      &error_abort);
1057         }
1058         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1059     }
1060     g_free(chip_typename);
1061 
1062     /* Instantiate ISA bus on chip 0 */
1063     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1064 
1065     /* Create serial port */
1066     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1067 
1068     /* Create an RTC ISA device too */
1069     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1070 
1071     /*
1072      * Create the machine BMC simulator and the IPMI BT device for
1073      * communication with the BMC
1074      */
1075     if (defaults_enabled()) {
1076         pnv->bmc = pnv_bmc_create(pnv->pnor);
1077         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1078     }
1079 
1080     /*
1081      * The PNOR is mapped on the LPC FW address space by the BMC.
1082      * Since we can not reach the remote BMC machine with LPC memops,
1083      * map it always for now.
1084      */
1085     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1086                                 &pnv->pnor->mmio);
1087 
1088     /*
1089      * OpenPOWER systems use a IPMI SEL Event message to notify the
1090      * host to powerdown
1091      */
1092     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1093     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1094 
1095     /*
1096      * Create/Connect any machine-specific I2C devices
1097      */
1098     if (pmc->i2c_init) {
1099         pmc->i2c_init(pnv);
1100     }
1101 }
1102 
1103 /*
1104  *    0:21  Reserved - Read as zeros
1105  *   22:24  Chip ID
1106  *   25:28  Core number
1107  *   29:31  Thread ID
1108  */
1109 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1110                                 uint32_t thread_id)
1111 {
1112     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1113 }
1114 
1115 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1116                                         Error **errp)
1117 {
1118     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1119     Error *local_err = NULL;
1120     Object *obj;
1121     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1122 
1123     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1124     if (local_err) {
1125         error_propagate(errp, local_err);
1126         return;
1127     }
1128 
1129     pnv_cpu->intc = obj;
1130 }
1131 
1132 
1133 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1134 {
1135     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1136 
1137     icp_reset(ICP(pnv_cpu->intc));
1138 }
1139 
1140 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1141 {
1142     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1143 
1144     icp_destroy(ICP(pnv_cpu->intc));
1145     pnv_cpu->intc = NULL;
1146 }
1147 
1148 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1149                                             GString *buf)
1150 {
1151     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1152 }
1153 
1154 /*
1155  *    0:48  Reserved - Read as zeroes
1156  *   49:52  Node ID
1157  *   53:55  Chip ID
1158  *   56     Reserved - Read as zero
1159  *   57:61  Core number
1160  *   62:63  Thread ID
1161  *
1162  * We only care about the lower bits. uint32_t is fine for the moment.
1163  */
1164 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1165                                 uint32_t thread_id)
1166 {
1167     if (chip->nr_threads == 8) {
1168         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1169                (thread_id >> 1);
1170     } else {
1171         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1172     }
1173 }
1174 
1175 /*
1176  *    0:48  Reserved - Read as zeroes
1177  *   49:52  Node ID
1178  *   53:55  Chip ID
1179  *   56     Reserved - Read as zero
1180  *   57:59  Quad ID
1181  *   60     Core Chiplet Pair ID
1182  *   61:63  Thread/Core Chiplet ID t0-t2
1183  *
1184  * We only care about the lower bits. uint32_t is fine for the moment.
1185  */
1186 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1187                                  uint32_t thread_id)
1188 {
1189     if (chip->nr_threads == 8) {
1190         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1191                ((core_id % 2) << 3) | thread_id;
1192     } else {
1193         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1194     }
1195 }
1196 
1197 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1198                                         Error **errp)
1199 {
1200     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1201     Error *local_err = NULL;
1202     Object *obj;
1203     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1204 
1205     /*
1206      * The core creates its interrupt presenter but the XIVE interrupt
1207      * controller object is initialized afterwards. Hopefully, it's
1208      * only used at runtime.
1209      */
1210     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1211                            &local_err);
1212     if (local_err) {
1213         error_propagate(errp, local_err);
1214         return;
1215     }
1216 
1217     pnv_cpu->intc = obj;
1218 }
1219 
1220 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1221 {
1222     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1223 
1224     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1225 }
1226 
1227 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1228 {
1229     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1230 
1231     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1232     pnv_cpu->intc = NULL;
1233 }
1234 
1235 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1236                                             GString *buf)
1237 {
1238     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1239 }
1240 
1241 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1242                                         Error **errp)
1243 {
1244     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1245     Error *local_err = NULL;
1246     Object *obj;
1247     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1248 
1249     /*
1250      * The core creates its interrupt presenter but the XIVE2 interrupt
1251      * controller object is initialized afterwards. Hopefully, it's
1252      * only used at runtime.
1253      */
1254     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1255                            &local_err);
1256     if (local_err) {
1257         error_propagate(errp, local_err);
1258         return;
1259     }
1260 
1261     pnv_cpu->intc = obj;
1262 }
1263 
1264 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1265 {
1266     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1267 
1268     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1269 }
1270 
1271 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1272 {
1273     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1274 
1275     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1276     pnv_cpu->intc = NULL;
1277 }
1278 
1279 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1280                                              GString *buf)
1281 {
1282     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1283 }
1284 
1285 /*
1286  * Allowed core identifiers on a POWER8 Processor Chip :
1287  *
1288  * <EX0 reserved>
1289  *  EX1  - Venice only
1290  *  EX2  - Venice only
1291  *  EX3  - Venice only
1292  *  EX4
1293  *  EX5
1294  *  EX6
1295  * <EX7,8 reserved> <reserved>
1296  *  EX9  - Venice only
1297  *  EX10 - Venice only
1298  *  EX11 - Venice only
1299  *  EX12
1300  *  EX13
1301  *  EX14
1302  * <EX15 reserved>
1303  */
1304 #define POWER8E_CORE_MASK  (0x7070ull)
1305 #define POWER8_CORE_MASK   (0x7e7eull)
1306 
1307 /*
1308  * POWER9 has 24 cores, ids starting at 0x0
1309  */
1310 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1311 
1312 
1313 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1314 
1315 static void pnv_chip_power8_instance_init(Object *obj)
1316 {
1317     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1318     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1319     int i;
1320 
1321     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1322                              (Object **)&chip8->xics,
1323                              object_property_allow_set_link,
1324                              OBJ_PROP_LINK_STRONG);
1325 
1326     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1327 
1328     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1329 
1330     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1331 
1332     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1333 
1334     if (defaults_enabled()) {
1335         chip8->num_phbs = pcc->num_phbs;
1336 
1337         for (i = 0; i < chip8->num_phbs; i++) {
1338             Object *phb = object_new(TYPE_PNV_PHB);
1339 
1340             /*
1341              * We need the chip to parent the PHB to allow the DT
1342              * to build correctly (via pnv_xscom_dt()).
1343              *
1344              * TODO: the PHB should be parented by a PEC device that, at
1345              * this moment, is not modelled powernv8/phb3.
1346              */
1347             object_property_add_child(obj, "phb[*]", phb);
1348             chip8->phbs[i] = PNV_PHB(phb);
1349         }
1350     }
1351 
1352 }
1353 
1354 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1355  {
1356     PnvChip *chip = PNV_CHIP(chip8);
1357     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1358     int i, j;
1359     char *name;
1360 
1361     name = g_strdup_printf("icp-%x", chip->chip_id);
1362     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1363     g_free(name);
1364     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1365                                 &chip8->icp_mmio);
1366 
1367     /* Map the ICP registers for each thread */
1368     for (i = 0; i < chip->nr_cores; i++) {
1369         PnvCore *pnv_core = chip->cores[i];
1370         int core_hwid = CPU_CORE(pnv_core)->core_id;
1371 
1372         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1373             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1374             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1375 
1376             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1377                                         &icp->mmio);
1378         }
1379     }
1380 }
1381 
1382 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1383 {
1384     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1385     PnvChip *chip = PNV_CHIP(dev);
1386     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1387     Pnv8Psi *psi8 = &chip8->psi;
1388     Error *local_err = NULL;
1389     int i;
1390 
1391     assert(chip8->xics);
1392 
1393     /* XSCOM bridge is first */
1394     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1395 
1396     pcc->parent_realize(dev, &local_err);
1397     if (local_err) {
1398         error_propagate(errp, local_err);
1399         return;
1400     }
1401 
1402     /* Processor Service Interface (PSI) Host Bridge */
1403     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1404                             &error_fatal);
1405     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1406                              OBJECT(chip8->xics), &error_abort);
1407     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1408         return;
1409     }
1410     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1411                             &PNV_PSI(psi8)->xscom_regs);
1412 
1413     /* Create LPC controller */
1414     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1415     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1416 
1417     chip->fw_mr = &chip8->lpc.isa_fw;
1418     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1419                                             (uint64_t) PNV_XSCOM_BASE(chip),
1420                                             PNV_XSCOM_LPC_BASE);
1421 
1422     /*
1423      * Interrupt Management Area. This is the memory region holding
1424      * all the Interrupt Control Presenter (ICP) registers
1425      */
1426     pnv_chip_icp_realize(chip8, &local_err);
1427     if (local_err) {
1428         error_propagate(errp, local_err);
1429         return;
1430     }
1431 
1432     /* Create the simplified OCC model */
1433     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1434         return;
1435     }
1436     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1437     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1438                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1439 
1440     /* OCC SRAM model */
1441     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1442                                 &chip8->occ.sram_regs);
1443 
1444     /* HOMER */
1445     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1446                              &error_abort);
1447     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1448         return;
1449     }
1450     /* Homer Xscom region */
1451     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1452 
1453     /* Homer mmio region */
1454     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1455                                 &chip8->homer.regs);
1456 
1457     /* PHB controllers */
1458     for (i = 0; i < chip8->num_phbs; i++) {
1459         PnvPHB *phb = chip8->phbs[i];
1460 
1461         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1462         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1463                                 &error_fatal);
1464         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1465                                  &error_fatal);
1466         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1467             return;
1468         }
1469     }
1470 }
1471 
1472 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1473 {
1474     addr &= (PNV_XSCOM_SIZE - 1);
1475     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1476 }
1477 
1478 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1479 {
1480     DeviceClass *dc = DEVICE_CLASS(klass);
1481     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1482 
1483     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1484     k->cores_mask = POWER8E_CORE_MASK;
1485     k->num_phbs = 3;
1486     k->chip_pir = pnv_chip_pir_p8;
1487     k->intc_create = pnv_chip_power8_intc_create;
1488     k->intc_reset = pnv_chip_power8_intc_reset;
1489     k->intc_destroy = pnv_chip_power8_intc_destroy;
1490     k->intc_print_info = pnv_chip_power8_intc_print_info;
1491     k->isa_create = pnv_chip_power8_isa_create;
1492     k->dt_populate = pnv_chip_power8_dt_populate;
1493     k->pic_print_info = pnv_chip_power8_pic_print_info;
1494     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1495     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1496     dc->desc = "PowerNV Chip POWER8E";
1497 
1498     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1499                                     &k->parent_realize);
1500 }
1501 
1502 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1503 {
1504     DeviceClass *dc = DEVICE_CLASS(klass);
1505     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1506 
1507     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1508     k->cores_mask = POWER8_CORE_MASK;
1509     k->num_phbs = 3;
1510     k->chip_pir = pnv_chip_pir_p8;
1511     k->intc_create = pnv_chip_power8_intc_create;
1512     k->intc_reset = pnv_chip_power8_intc_reset;
1513     k->intc_destroy = pnv_chip_power8_intc_destroy;
1514     k->intc_print_info = pnv_chip_power8_intc_print_info;
1515     k->isa_create = pnv_chip_power8_isa_create;
1516     k->dt_populate = pnv_chip_power8_dt_populate;
1517     k->pic_print_info = pnv_chip_power8_pic_print_info;
1518     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1519     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1520     dc->desc = "PowerNV Chip POWER8";
1521 
1522     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1523                                     &k->parent_realize);
1524 }
1525 
1526 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1527 {
1528     DeviceClass *dc = DEVICE_CLASS(klass);
1529     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1530 
1531     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1532     k->cores_mask = POWER8_CORE_MASK;
1533     k->num_phbs = 4;
1534     k->chip_pir = pnv_chip_pir_p8;
1535     k->intc_create = pnv_chip_power8_intc_create;
1536     k->intc_reset = pnv_chip_power8_intc_reset;
1537     k->intc_destroy = pnv_chip_power8_intc_destroy;
1538     k->intc_print_info = pnv_chip_power8_intc_print_info;
1539     k->isa_create = pnv_chip_power8nvl_isa_create;
1540     k->dt_populate = pnv_chip_power8_dt_populate;
1541     k->pic_print_info = pnv_chip_power8_pic_print_info;
1542     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1543     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1544     dc->desc = "PowerNV Chip POWER8NVL";
1545 
1546     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1547                                     &k->parent_realize);
1548 }
1549 
1550 static void pnv_chip_power9_instance_init(Object *obj)
1551 {
1552     PnvChip *chip = PNV_CHIP(obj);
1553     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1554     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1555     int i;
1556 
1557     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1558     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1559     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1560                               "xive-fabric");
1561 
1562     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1563 
1564     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1565 
1566     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1567 
1568     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1569 
1570     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1571 
1572     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1573 
1574     /* Number of PECs is the chip default */
1575     chip->num_pecs = pcc->num_pecs;
1576 
1577     for (i = 0; i < chip->num_pecs; i++) {
1578         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1579                                 TYPE_PNV_PHB4_PEC);
1580     }
1581 
1582     for (i = 0; i < pcc->i2c_num_engines; i++) {
1583         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1584     }
1585 }
1586 
1587 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1588                                       PnvCore *pnv_core,
1589                                       const char *type)
1590 {
1591     char eq_name[32];
1592     int core_id = CPU_CORE(pnv_core)->core_id;
1593 
1594     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1595     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1596                                        sizeof(*eq), type,
1597                                        &error_fatal, NULL);
1598 
1599     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1600     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1601 }
1602 
1603 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1604 {
1605     PnvChip *chip = PNV_CHIP(chip9);
1606     int i;
1607 
1608     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1609     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1610 
1611     for (i = 0; i < chip9->nr_quads; i++) {
1612         PnvQuad *eq = &chip9->quads[i];
1613 
1614         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1615                                   PNV_QUAD_TYPE_NAME("power9"));
1616 
1617         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1618                                 &eq->xscom_regs);
1619     }
1620 }
1621 
1622 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1623 {
1624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1625     int i;
1626 
1627     for (i = 0; i < chip->num_pecs; i++) {
1628         PnvPhb4PecState *pec = &chip9->pecs[i];
1629         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1630         uint32_t pec_nest_base;
1631         uint32_t pec_pci_base;
1632 
1633         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1634         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1635                                 &error_fatal);
1636         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1637                                  &error_fatal);
1638         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1639             return;
1640         }
1641 
1642         pec_nest_base = pecc->xscom_nest_base(pec);
1643         pec_pci_base = pecc->xscom_pci_base(pec);
1644 
1645         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1646         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1647     }
1648 }
1649 
1650 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1651 {
1652     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1653     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1654     PnvChip *chip = PNV_CHIP(dev);
1655     Pnv9Psi *psi9 = &chip9->psi;
1656     Error *local_err = NULL;
1657     int i;
1658 
1659     /* XSCOM bridge is first */
1660     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1661 
1662     pcc->parent_realize(dev, &local_err);
1663     if (local_err) {
1664         error_propagate(errp, local_err);
1665         return;
1666     }
1667 
1668     /* ADU */
1669     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1670                              &error_abort);
1671     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1672         return;
1673     }
1674     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1675                             &chip9->adu.xscom_regs);
1676 
1677     pnv_chip_quad_realize(chip9, &local_err);
1678     if (local_err) {
1679         error_propagate(errp, local_err);
1680         return;
1681     }
1682 
1683     /* XIVE interrupt controller (POWER9) */
1684     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1685                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1686     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1687                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1688     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1689                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1690     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1691                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1692     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1693                              &error_abort);
1694     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1695         return;
1696     }
1697     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1698                             &chip9->xive.xscom_regs);
1699 
1700     /* Processor Service Interface (PSI) Host Bridge */
1701     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1702                             &error_fatal);
1703     /* This is the only device with 4k ESB pages */
1704     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1705                             &error_fatal);
1706     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1707         return;
1708     }
1709     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1710                             &PNV_PSI(psi9)->xscom_regs);
1711 
1712     /* LPC */
1713     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1714         return;
1715     }
1716     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1717                                 &chip9->lpc.xscom_regs);
1718 
1719     chip->fw_mr = &chip9->lpc.isa_fw;
1720     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1721                                             (uint64_t) PNV9_LPCM_BASE(chip));
1722 
1723     /* ChipTOD */
1724     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1725                              chip->chip_id == 0, &error_abort);
1726     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1727                              chip->chip_id == 1, &error_abort);
1728     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1729                              &error_abort);
1730     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1731         return;
1732     }
1733     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1734                             &chip9->chiptod.xscom_regs);
1735 
1736     /* Create the simplified OCC model */
1737     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1738         return;
1739     }
1740     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1741     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1742                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1743 
1744     /* OCC SRAM model */
1745     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1746                                 &chip9->occ.sram_regs);
1747 
1748     /* SBE */
1749     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1750         return;
1751     }
1752     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1753                             &chip9->sbe.xscom_ctrl_regs);
1754     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1755                             &chip9->sbe.xscom_mbox_regs);
1756     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1757                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1758 
1759     /* HOMER */
1760     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1761                              &error_abort);
1762     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1763         return;
1764     }
1765     /* Homer Xscom region */
1766     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1767 
1768     /* Homer mmio region */
1769     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1770                                 &chip9->homer.regs);
1771 
1772     /* PEC PHBs */
1773     pnv_chip_power9_pec_realize(chip, &local_err);
1774     if (local_err) {
1775         error_propagate(errp, local_err);
1776         return;
1777     }
1778 
1779     /*
1780      * I2C
1781      */
1782     for (i = 0; i < pcc->i2c_num_engines; i++) {
1783         Object *obj =  OBJECT(&chip9->i2c[i]);
1784 
1785         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1786         object_property_set_int(obj, "num-busses",
1787                                 pcc->i2c_ports_per_engine[i],
1788                                 &error_fatal);
1789         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1790         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1791             return;
1792         }
1793         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1794                                 (chip9->i2c[i].engine - 1) *
1795                                         PNV9_XSCOM_I2CM_SIZE,
1796                                 &chip9->i2c[i].xscom_regs);
1797         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1798                               qdev_get_gpio_in(DEVICE(psi9),
1799                                                PSIHB9_IRQ_SBE_I2C));
1800     }
1801 }
1802 
1803 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1804 {
1805     addr &= (PNV9_XSCOM_SIZE - 1);
1806     return addr >> 3;
1807 }
1808 
1809 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1810 {
1811     DeviceClass *dc = DEVICE_CLASS(klass);
1812     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1813     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1814 
1815     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1816     k->cores_mask = POWER9_CORE_MASK;
1817     k->chip_pir = pnv_chip_pir_p9;
1818     k->intc_create = pnv_chip_power9_intc_create;
1819     k->intc_reset = pnv_chip_power9_intc_reset;
1820     k->intc_destroy = pnv_chip_power9_intc_destroy;
1821     k->intc_print_info = pnv_chip_power9_intc_print_info;
1822     k->isa_create = pnv_chip_power9_isa_create;
1823     k->dt_populate = pnv_chip_power9_dt_populate;
1824     k->pic_print_info = pnv_chip_power9_pic_print_info;
1825     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1826     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1827     dc->desc = "PowerNV Chip POWER9";
1828     k->num_pecs = PNV9_CHIP_MAX_PEC;
1829     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1830     k->i2c_ports_per_engine = i2c_ports_per_engine;
1831 
1832     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1833                                     &k->parent_realize);
1834 }
1835 
1836 static void pnv_chip_power10_instance_init(Object *obj)
1837 {
1838     PnvChip *chip = PNV_CHIP(obj);
1839     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1840     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1841     int i;
1842 
1843     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1844     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1845     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1846                               "xive-fabric");
1847     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1848     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1849     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1850                             TYPE_PNV10_CHIPTOD);
1851     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1852     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1853     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1854     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1855                             TYPE_PNV_N1_CHIPLET);
1856 
1857     chip->num_pecs = pcc->num_pecs;
1858 
1859     for (i = 0; i < chip->num_pecs; i++) {
1860         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1861                                 TYPE_PNV_PHB5_PEC);
1862     }
1863 
1864     for (i = 0; i < pcc->i2c_num_engines; i++) {
1865         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1866     }
1867 }
1868 
1869 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1870 {
1871     PnvChip *chip = PNV_CHIP(chip10);
1872     int i;
1873 
1874     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1875     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1876 
1877     for (i = 0; i < chip10->nr_quads; i++) {
1878         PnvQuad *eq = &chip10->quads[i];
1879 
1880         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1881                                   PNV_QUAD_TYPE_NAME("power10"));
1882 
1883         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1884                                 &eq->xscom_regs);
1885 
1886         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1887                                 &eq->xscom_qme_regs);
1888     }
1889 }
1890 
1891 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1892 {
1893     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1894     int i;
1895 
1896     for (i = 0; i < chip->num_pecs; i++) {
1897         PnvPhb4PecState *pec = &chip10->pecs[i];
1898         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1899         uint32_t pec_nest_base;
1900         uint32_t pec_pci_base;
1901 
1902         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1903         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1904                                 &error_fatal);
1905         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1906                                  &error_fatal);
1907         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1908             return;
1909         }
1910 
1911         pec_nest_base = pecc->xscom_nest_base(pec);
1912         pec_pci_base = pecc->xscom_pci_base(pec);
1913 
1914         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1915         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1916     }
1917 }
1918 
1919 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1920 {
1921     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1922     PnvChip *chip = PNV_CHIP(dev);
1923     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1924     Error *local_err = NULL;
1925     int i;
1926 
1927     /* XSCOM bridge is first */
1928     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1929 
1930     pcc->parent_realize(dev, &local_err);
1931     if (local_err) {
1932         error_propagate(errp, local_err);
1933         return;
1934     }
1935 
1936     /* ADU */
1937     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
1938                              &error_abort);
1939     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
1940         return;
1941     }
1942     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
1943                             &chip10->adu.xscom_regs);
1944 
1945     pnv_chip_power10_quad_realize(chip10, &local_err);
1946     if (local_err) {
1947         error_propagate(errp, local_err);
1948         return;
1949     }
1950 
1951     /* XIVE2 interrupt controller (POWER10) */
1952     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1953                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1954     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1955                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1956     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1957                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1958     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1959                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1960     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1961                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1962     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1963                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1964     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1965                              &error_abort);
1966     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1967         return;
1968     }
1969     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1970                             &chip10->xive.xscom_regs);
1971 
1972     /* Processor Service Interface (PSI) Host Bridge */
1973     object_property_set_int(OBJECT(&chip10->psi), "bar",
1974                             PNV10_PSIHB_BASE(chip), &error_fatal);
1975     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1976     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1977                             &error_fatal);
1978     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1979         return;
1980     }
1981     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1982                             &PNV_PSI(&chip10->psi)->xscom_regs);
1983 
1984     /* LPC */
1985     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1986         return;
1987     }
1988     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1989                                 &chip10->lpc.xscom_regs);
1990 
1991     chip->fw_mr = &chip10->lpc.isa_fw;
1992     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1993                                             (uint64_t) PNV10_LPCM_BASE(chip));
1994 
1995     /* ChipTOD */
1996     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1997                              chip->chip_id == 0, &error_abort);
1998     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1999                              chip->chip_id == 1, &error_abort);
2000     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2001                              &error_abort);
2002     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2003         return;
2004     }
2005     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2006                             &chip10->chiptod.xscom_regs);
2007 
2008     /* Create the simplified OCC model */
2009     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2010         return;
2011     }
2012     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2013                             &chip10->occ.xscom_regs);
2014     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2015                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2016 
2017     /* OCC SRAM model */
2018     memory_region_add_subregion(get_system_memory(),
2019                                 PNV10_OCC_SENSOR_BASE(chip),
2020                                 &chip10->occ.sram_regs);
2021 
2022     /* SBE */
2023     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2024         return;
2025     }
2026     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2027                             &chip10->sbe.xscom_ctrl_regs);
2028     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2029                             &chip10->sbe.xscom_mbox_regs);
2030     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2031                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2032 
2033     /* HOMER */
2034     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2035                              &error_abort);
2036     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2037         return;
2038     }
2039     /* Homer Xscom region */
2040     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2041                             &chip10->homer.pba_regs);
2042 
2043     /* Homer mmio region */
2044     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2045                                 &chip10->homer.regs);
2046 
2047     /* N1 chiplet */
2048     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2049         return;
2050     }
2051     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2052              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2053 
2054     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2055                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2056 
2057     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2058                            &chip10->n1_chiplet.xscom_pb_es_mr);
2059 
2060     /* PHBs */
2061     pnv_chip_power10_phb_realize(chip, &local_err);
2062     if (local_err) {
2063         error_propagate(errp, local_err);
2064         return;
2065     }
2066 
2067 
2068     /*
2069      * I2C
2070      */
2071     for (i = 0; i < pcc->i2c_num_engines; i++) {
2072         Object *obj =  OBJECT(&chip10->i2c[i]);
2073 
2074         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2075         object_property_set_int(obj, "num-busses",
2076                                 pcc->i2c_ports_per_engine[i],
2077                                 &error_fatal);
2078         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2079         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2080             return;
2081         }
2082         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2083                                 (chip10->i2c[i].engine - 1) *
2084                                         PNV10_XSCOM_I2CM_SIZE,
2085                                 &chip10->i2c[i].xscom_regs);
2086         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2087                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2088                                                PSIHB9_IRQ_SBE_I2C));
2089     }
2090 
2091 }
2092 
2093 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2094 {
2095     int i;
2096     for (i = 0; i < pnv->num_chips; i++) {
2097         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2098 
2099         /*
2100          * Add a PCA9552 I2C device for PCIe hotplug control
2101          * to engine 2, bus 1, address 0x63
2102          */
2103         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2104                                                 "pca9552", 0x63);
2105 
2106         /*
2107          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2108          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2109          * after hypervisor code sets a SLOTx_EN pin high.
2110          */
2111         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2112         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2113         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2114         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2115         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2116 
2117         /*
2118          * Add a PCA9554 I2C device for cable card presence detection
2119          * to engine 2, bus 1, address 0x25
2120          */
2121         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2122     }
2123 }
2124 
2125 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2126 {
2127     addr &= (PNV10_XSCOM_SIZE - 1);
2128     return addr >> 3;
2129 }
2130 
2131 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2132 {
2133     DeviceClass *dc = DEVICE_CLASS(klass);
2134     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2135     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2136 
2137     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2138     k->cores_mask = POWER10_CORE_MASK;
2139     k->chip_pir = pnv_chip_pir_p10;
2140     k->intc_create = pnv_chip_power10_intc_create;
2141     k->intc_reset = pnv_chip_power10_intc_reset;
2142     k->intc_destroy = pnv_chip_power10_intc_destroy;
2143     k->intc_print_info = pnv_chip_power10_intc_print_info;
2144     k->isa_create = pnv_chip_power10_isa_create;
2145     k->dt_populate = pnv_chip_power10_dt_populate;
2146     k->pic_print_info = pnv_chip_power10_pic_print_info;
2147     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2148     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2149     dc->desc = "PowerNV Chip POWER10";
2150     k->num_pecs = PNV10_CHIP_MAX_PEC;
2151     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2152     k->i2c_ports_per_engine = i2c_ports_per_engine;
2153 
2154     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2155                                     &k->parent_realize);
2156 }
2157 
2158 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2159 {
2160     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2161     int cores_max;
2162 
2163     /*
2164      * No custom mask for this chip, let's use the default one from *
2165      * the chip class
2166      */
2167     if (!chip->cores_mask) {
2168         chip->cores_mask = pcc->cores_mask;
2169     }
2170 
2171     /* filter alien core ids ! some are reserved */
2172     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2173         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2174                    chip->cores_mask);
2175         return;
2176     }
2177     chip->cores_mask &= pcc->cores_mask;
2178 
2179     /* now that we have a sane layout, let check the number of cores */
2180     cores_max = ctpop64(chip->cores_mask);
2181     if (chip->nr_cores > cores_max) {
2182         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2183                    cores_max);
2184         return;
2185     }
2186 }
2187 
2188 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2189 {
2190     Error *error = NULL;
2191     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2192     const char *typename = pnv_chip_core_typename(chip);
2193     int i, core_hwid;
2194     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2195 
2196     if (!object_class_by_name(typename)) {
2197         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2198         return;
2199     }
2200 
2201     /* Cores */
2202     pnv_chip_core_sanitize(chip, &error);
2203     if (error) {
2204         error_propagate(errp, error);
2205         return;
2206     }
2207 
2208     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2209 
2210     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2211              && (i < chip->nr_cores); core_hwid++) {
2212         char core_name[32];
2213         PnvCore *pnv_core;
2214         uint64_t xscom_core_base;
2215 
2216         if (!(chip->cores_mask & (1ull << core_hwid))) {
2217             continue;
2218         }
2219 
2220         pnv_core = PNV_CORE(object_new(typename));
2221 
2222         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2223         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2224         chip->cores[i] = pnv_core;
2225         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2226                                 chip->nr_threads, &error_fatal);
2227         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2228                                 core_hwid, &error_fatal);
2229         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2230                                 &error_fatal);
2231         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2232                                 &error_fatal);
2233         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2234                                  &error_abort);
2235         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2236 
2237         /* Each core has an XSCOM MMIO region */
2238         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2239 
2240         pnv_xscom_add_subregion(chip, xscom_core_base,
2241                                 &pnv_core->xscom_regs);
2242         i++;
2243     }
2244 }
2245 
2246 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2247 {
2248     PnvChip *chip = PNV_CHIP(dev);
2249     Error *error = NULL;
2250 
2251     /* Cores */
2252     pnv_chip_core_realize(chip, &error);
2253     if (error) {
2254         error_propagate(errp, error);
2255         return;
2256     }
2257 }
2258 
2259 static Property pnv_chip_properties[] = {
2260     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2261     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2262     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2263     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2264     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2265     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2266     DEFINE_PROP_END_OF_LIST(),
2267 };
2268 
2269 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2270 {
2271     DeviceClass *dc = DEVICE_CLASS(klass);
2272 
2273     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2274     dc->realize = pnv_chip_realize;
2275     device_class_set_props(dc, pnv_chip_properties);
2276     dc->desc = "PowerNV Chip";
2277 }
2278 
2279 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2280 {
2281     int i;
2282 
2283     for (i = 0; i < chip->nr_cores; i++) {
2284         PnvCore *pc = chip->cores[i];
2285         CPUCore *cc = CPU_CORE(pc);
2286 
2287         if (cc->core_id == core_id) {
2288             return pc;
2289         }
2290     }
2291     return NULL;
2292 }
2293 
2294 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2295 {
2296     int i, j;
2297 
2298     for (i = 0; i < chip->nr_cores; i++) {
2299         PnvCore *pc = chip->cores[i];
2300         CPUCore *cc = CPU_CORE(pc);
2301 
2302         for (j = 0; j < cc->nr_threads; j++) {
2303             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2304                 return pc->threads[j];
2305             }
2306         }
2307     }
2308     return NULL;
2309 }
2310 
2311 static void pnv_chip_foreach_cpu(PnvChip *chip,
2312                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2313                    void *opaque)
2314 {
2315     int i, j;
2316 
2317     for (i = 0; i < chip->nr_cores; i++) {
2318         PnvCore *pc = chip->cores[i];
2319 
2320         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2321             fn(chip, pc->threads[j], opaque);
2322         }
2323     }
2324 }
2325 
2326 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2327 {
2328     PnvMachineState *pnv = PNV_MACHINE(xi);
2329     int i, j;
2330 
2331     for (i = 0; i < pnv->num_chips; i++) {
2332         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2333 
2334         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2335             return &chip8->psi.ics;
2336         }
2337 
2338         for (j = 0; j < chip8->num_phbs; j++) {
2339             PnvPHB *phb = chip8->phbs[j];
2340             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2341 
2342             if (ics_valid_irq(&phb3->lsis, irq)) {
2343                 return &phb3->lsis;
2344             }
2345 
2346             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2347                 return ICS(&phb3->msis);
2348             }
2349         }
2350     }
2351     return NULL;
2352 }
2353 
2354 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2355 {
2356     int i;
2357 
2358     for (i = 0; i < pnv->num_chips; i++) {
2359         PnvChip *chip = pnv->chips[i];
2360         if (chip->chip_id == chip_id) {
2361             return chip;
2362         }
2363     }
2364     return NULL;
2365 }
2366 
2367 static void pnv_ics_resend(XICSFabric *xi)
2368 {
2369     PnvMachineState *pnv = PNV_MACHINE(xi);
2370     int i, j;
2371 
2372     for (i = 0; i < pnv->num_chips; i++) {
2373         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2374 
2375         ics_resend(&chip8->psi.ics);
2376 
2377         for (j = 0; j < chip8->num_phbs; j++) {
2378             PnvPHB *phb = chip8->phbs[j];
2379             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2380 
2381             ics_resend(&phb3->lsis);
2382             ics_resend(ICS(&phb3->msis));
2383         }
2384     }
2385 }
2386 
2387 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2388 {
2389     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2390 
2391     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2392 }
2393 
2394 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2395                                     void *opaque)
2396 {
2397     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2398 }
2399 
2400 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2401 {
2402     PnvMachineState *pnv = PNV_MACHINE(obj);
2403     int i;
2404 
2405     for (i = 0; i < pnv->num_chips; i++) {
2406         PnvChip *chip = pnv->chips[i];
2407 
2408         /* First CPU presenters */
2409         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2410 
2411         /* Then other devices, PHB, PSI, XIVE */
2412         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2413     }
2414 }
2415 
2416 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2417                          uint8_t nvt_blk, uint32_t nvt_idx,
2418                          bool cam_ignore, uint8_t priority,
2419                          uint32_t logic_serv,
2420                          XiveTCTXMatch *match)
2421 {
2422     PnvMachineState *pnv = PNV_MACHINE(xfb);
2423     int total_count = 0;
2424     int i;
2425 
2426     for (i = 0; i < pnv->num_chips; i++) {
2427         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2428         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2429         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2430         int count;
2431 
2432         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2433                                priority, logic_serv, match);
2434 
2435         if (count < 0) {
2436             return count;
2437         }
2438 
2439         total_count += count;
2440     }
2441 
2442     return total_count;
2443 }
2444 
2445 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2446                                 uint8_t nvt_blk, uint32_t nvt_idx,
2447                                 bool cam_ignore, uint8_t priority,
2448                                 uint32_t logic_serv,
2449                                 XiveTCTXMatch *match)
2450 {
2451     PnvMachineState *pnv = PNV_MACHINE(xfb);
2452     int total_count = 0;
2453     int i;
2454 
2455     for (i = 0; i < pnv->num_chips; i++) {
2456         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2457         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2458         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2459         int count;
2460 
2461         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2462                                priority, logic_serv, match);
2463 
2464         if (count < 0) {
2465             return count;
2466         }
2467 
2468         total_count += count;
2469     }
2470 
2471     return total_count;
2472 }
2473 
2474 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2475 {
2476     MachineClass *mc = MACHINE_CLASS(oc);
2477     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2478     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2479     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2480 
2481     static GlobalProperty phb_compat[] = {
2482         { TYPE_PNV_PHB, "version", "3" },
2483         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2484     };
2485 
2486     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2487     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2488     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2489 
2490     xic->icp_get = pnv_icp_get;
2491     xic->ics_get = pnv_ics_get;
2492     xic->ics_resend = pnv_ics_resend;
2493 
2494     pmc->compat = compat;
2495     pmc->compat_size = sizeof(compat);
2496     pmc->max_smt_threads = 8;
2497 
2498     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2499 }
2500 
2501 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2502 {
2503     MachineClass *mc = MACHINE_CLASS(oc);
2504     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2505     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2506     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2507 
2508     static GlobalProperty phb_compat[] = {
2509         { TYPE_PNV_PHB, "version", "4" },
2510         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2511     };
2512 
2513     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2514     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2515     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2516 
2517     xfc->match_nvt = pnv_match_nvt;
2518 
2519     pmc->compat = compat;
2520     pmc->compat_size = sizeof(compat);
2521     pmc->max_smt_threads = 4;
2522     pmc->dt_power_mgt = pnv_dt_power_mgt;
2523 
2524     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2525 }
2526 
2527 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2528 {
2529     MachineClass *mc = MACHINE_CLASS(oc);
2530     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2531     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2532     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2533 
2534     static GlobalProperty phb_compat[] = {
2535         { TYPE_PNV_PHB, "version", "5" },
2536         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2537     };
2538 
2539     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2540     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2541 
2542     mc->alias = "powernv";
2543 
2544     pmc->compat = compat;
2545     pmc->compat_size = sizeof(compat);
2546     pmc->max_smt_threads = 4;
2547     pmc->dt_power_mgt = pnv_dt_power_mgt;
2548 
2549     xfc->match_nvt = pnv10_xive_match_nvt;
2550 
2551     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2552 }
2553 
2554 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2555 {
2556     MachineClass *mc = MACHINE_CLASS(oc);
2557 
2558     pnv_machine_p10_common_class_init(oc, data);
2559     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2560 }
2561 
2562 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2563 {
2564     MachineClass *mc = MACHINE_CLASS(oc);
2565     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2566 
2567     pnv_machine_p10_common_class_init(oc, data);
2568     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2569     pmc->i2c_init = pnv_rainier_i2c_init;
2570 }
2571 
2572 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2573 {
2574     PnvMachineState *pnv = PNV_MACHINE(obj);
2575 
2576     return !!pnv->fw_load_addr;
2577 }
2578 
2579 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2580 {
2581     PnvMachineState *pnv = PNV_MACHINE(obj);
2582 
2583     if (value) {
2584         pnv->fw_load_addr = 0x8000000;
2585     }
2586 }
2587 
2588 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2589 {
2590     CPUPPCState *env = cpu_env(cs);
2591 
2592     cpu_synchronize_state(cs);
2593     ppc_cpu_do_system_reset(cs);
2594     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2595         /*
2596          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2597          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2598          * (PPC_BIT(43)).
2599          */
2600         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2601             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2602             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2603         }
2604     } else {
2605         /*
2606          * For non-powersave system resets, SRR1[42:45] are defined to be
2607          * implementation-dependent. The POWER9 User Manual specifies that
2608          * an external (SCOM driven, which may come from a BMC nmi command or
2609          * another CPU requesting a NMI IPI) system reset exception should be
2610          * 0b0010 (PPC_BIT(44)).
2611          */
2612         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2613     }
2614 }
2615 
2616 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2617 {
2618     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2619 }
2620 
2621 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2622 {
2623     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2624     int i;
2625 
2626     for (i = 0; i < pnv->num_chips; i++) {
2627         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2628     }
2629 }
2630 
2631 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2632 {
2633     MachineClass *mc = MACHINE_CLASS(oc);
2634     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2635     NMIClass *nc = NMI_CLASS(oc);
2636 
2637     mc->desc = "IBM PowerNV (Non-Virtualized)";
2638     mc->init = pnv_init;
2639     mc->reset = pnv_reset;
2640     mc->max_cpus = MAX_CPUS;
2641     /* Pnv provides a AHCI device for storage */
2642     mc->block_default_type = IF_IDE;
2643     mc->no_parallel = 1;
2644     mc->default_boot_order = NULL;
2645     /*
2646      * RAM defaults to less than 2048 for 32-bit hosts, and large
2647      * enough to fit the maximum initrd size at it's load address
2648      */
2649     mc->default_ram_size = 1 * GiB;
2650     mc->default_ram_id = "pnv.ram";
2651     ispc->print_info = pnv_pic_print_info;
2652     nc->nmi_monitor_handler = pnv_nmi;
2653 
2654     object_class_property_add_bool(oc, "hb-mode",
2655                                    pnv_machine_get_hb, pnv_machine_set_hb);
2656     object_class_property_set_description(oc, "hb-mode",
2657                               "Use a hostboot like boot loader");
2658 }
2659 
2660 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2661     {                                             \
2662         .name          = type,                    \
2663         .class_init    = class_initfn,            \
2664         .parent        = TYPE_PNV8_CHIP,          \
2665     }
2666 
2667 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2668     {                                             \
2669         .name          = type,                    \
2670         .class_init    = class_initfn,            \
2671         .parent        = TYPE_PNV9_CHIP,          \
2672     }
2673 
2674 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2675     {                                              \
2676         .name          = type,                     \
2677         .class_init    = class_initfn,             \
2678         .parent        = TYPE_PNV10_CHIP,          \
2679     }
2680 
2681 static const TypeInfo types[] = {
2682     {
2683         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2684         .parent        = MACHINE_TYPE_NAME("powernv10"),
2685         .class_init    = pnv_machine_p10_rainier_class_init,
2686     },
2687     {
2688         .name          = MACHINE_TYPE_NAME("powernv10"),
2689         .parent        = TYPE_PNV_MACHINE,
2690         .class_init    = pnv_machine_power10_class_init,
2691         .interfaces = (InterfaceInfo[]) {
2692             { TYPE_XIVE_FABRIC },
2693             { },
2694         },
2695     },
2696     {
2697         .name          = MACHINE_TYPE_NAME("powernv9"),
2698         .parent        = TYPE_PNV_MACHINE,
2699         .class_init    = pnv_machine_power9_class_init,
2700         .interfaces = (InterfaceInfo[]) {
2701             { TYPE_XIVE_FABRIC },
2702             { },
2703         },
2704     },
2705     {
2706         .name          = MACHINE_TYPE_NAME("powernv8"),
2707         .parent        = TYPE_PNV_MACHINE,
2708         .class_init    = pnv_machine_power8_class_init,
2709         .interfaces = (InterfaceInfo[]) {
2710             { TYPE_XICS_FABRIC },
2711             { },
2712         },
2713     },
2714     {
2715         .name          = TYPE_PNV_MACHINE,
2716         .parent        = TYPE_MACHINE,
2717         .abstract       = true,
2718         .instance_size = sizeof(PnvMachineState),
2719         .class_init    = pnv_machine_class_init,
2720         .class_size    = sizeof(PnvMachineClass),
2721         .interfaces = (InterfaceInfo[]) {
2722             { TYPE_INTERRUPT_STATS_PROVIDER },
2723             { TYPE_NMI },
2724             { },
2725         },
2726     },
2727     {
2728         .name          = TYPE_PNV_CHIP,
2729         .parent        = TYPE_SYS_BUS_DEVICE,
2730         .class_init    = pnv_chip_class_init,
2731         .instance_size = sizeof(PnvChip),
2732         .class_size    = sizeof(PnvChipClass),
2733         .abstract      = true,
2734     },
2735 
2736     /*
2737      * P10 chip and variants
2738      */
2739     {
2740         .name          = TYPE_PNV10_CHIP,
2741         .parent        = TYPE_PNV_CHIP,
2742         .instance_init = pnv_chip_power10_instance_init,
2743         .instance_size = sizeof(Pnv10Chip),
2744     },
2745     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2746 
2747     /*
2748      * P9 chip and variants
2749      */
2750     {
2751         .name          = TYPE_PNV9_CHIP,
2752         .parent        = TYPE_PNV_CHIP,
2753         .instance_init = pnv_chip_power9_instance_init,
2754         .instance_size = sizeof(Pnv9Chip),
2755     },
2756     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2757 
2758     /*
2759      * P8 chip and variants
2760      */
2761     {
2762         .name          = TYPE_PNV8_CHIP,
2763         .parent        = TYPE_PNV_CHIP,
2764         .instance_init = pnv_chip_power8_instance_init,
2765         .instance_size = sizeof(Pnv8Chip),
2766     },
2767     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2768     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2769     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2770                           pnv_chip_power8nvl_class_init),
2771 };
2772 
2773 DEFINE_TYPES(types)
2774