xref: /openbmc/qemu/hw/ppc/pnv.c (revision d1214b819f26dcf95329af624e74bf42eeeb1a9a)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
284     int i;
285 
286     pnv_dt_xscom(chip, fdt, 0,
287                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
288                  cpu_to_be64(PNV_XSCOM_SIZE),
289                  compat, sizeof(compat));
290 
291     for (i = 0; i < chip->nr_cores; i++) {
292         PnvCore *pnv_core = chip->cores[i];
293 
294         pnv_dt_core(chip, pnv_core, fdt);
295 
296         /* Interrupt Control Presenters (ICP). One per core. */
297         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
298     }
299 
300     if (chip->ram_size) {
301         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
302     }
303 }
304 
305 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
306 {
307     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
308     int i;
309 
310     pnv_dt_xscom(chip, fdt, 0,
311                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
312                  cpu_to_be64(PNV9_XSCOM_SIZE),
313                  compat, sizeof(compat));
314 
315     for (i = 0; i < chip->nr_cores; i++) {
316         PnvCore *pnv_core = chip->cores[i];
317 
318         pnv_dt_core(chip, pnv_core, fdt);
319     }
320 
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324 
325     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
326 }
327 
328 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
329 {
330     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
331     int i;
332 
333     pnv_dt_xscom(chip, fdt, 0,
334                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
335                  cpu_to_be64(PNV10_XSCOM_SIZE),
336                  compat, sizeof(compat));
337 
338     for (i = 0; i < chip->nr_cores; i++) {
339         PnvCore *pnv_core = chip->cores[i];
340 
341         pnv_dt_core(chip, pnv_core, fdt);
342     }
343 
344     if (chip->ram_size) {
345         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
346     }
347 
348     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
349 }
350 
351 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
352 {
353     uint32_t io_base = d->ioport_id;
354     uint32_t io_regs[] = {
355         cpu_to_be32(1),
356         cpu_to_be32(io_base),
357         cpu_to_be32(2)
358     };
359     char *name;
360     int node;
361 
362     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
363     node = fdt_add_subnode(fdt, lpc_off, name);
364     _FDT(node);
365     g_free(name);
366 
367     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
368     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
369 }
370 
371 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
372 {
373     const char compatible[] = "ns16550\0pnpPNP,501";
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(8)
379     };
380     char *name;
381     int node;
382 
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387 
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
390                       sizeof(compatible))));
391 
392     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
393     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
394     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
396                            fdt_get_phandle(fdt, lpc_off))));
397 
398     /* This is needed by Linux */
399     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
400 }
401 
402 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
403 {
404     const char compatible[] = "bt\0ipmi-bt";
405     uint32_t io_base;
406     uint32_t io_regs[] = {
407         cpu_to_be32(1),
408         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
409         cpu_to_be32(3)
410     };
411     uint32_t irq;
412     char *name;
413     int node;
414 
415     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
416     io_regs[1] = cpu_to_be32(io_base);
417 
418     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
419 
420     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
421     node = fdt_add_subnode(fdt, lpc_off, name);
422     _FDT(node);
423     g_free(name);
424 
425     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
426     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
427                       sizeof(compatible))));
428 
429     /* Mark it as reserved to avoid Linux trying to claim it */
430     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
431     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
433                            fdt_get_phandle(fdt, lpc_off))));
434 }
435 
436 typedef struct ForeachPopulateArgs {
437     void *fdt;
438     int offset;
439 } ForeachPopulateArgs;
440 
441 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
442 {
443     ForeachPopulateArgs *args = opaque;
444     ISADevice *d = ISA_DEVICE(dev);
445 
446     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
447         pnv_dt_rtc(d, args->fdt, args->offset);
448     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
449         pnv_dt_serial(d, args->fdt, args->offset);
450     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
451         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
452     } else {
453         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
454                      d->ioport_id);
455     }
456 
457     return 0;
458 }
459 
460 /*
461  * The default LPC bus of a multichip system is on chip 0. It's
462  * recognized by the firmware (skiboot) using a "primary" property.
463  */
464 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
465 {
466     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
467     ForeachPopulateArgs args = {
468         .fdt = fdt,
469         .offset = isa_offset,
470     };
471     uint32_t phandle;
472 
473     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
474 
475     phandle = qemu_fdt_alloc_phandle(fdt);
476     assert(phandle > 0);
477     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
478 
479     /*
480      * ISA devices are not necessarily parented to the ISA bus so we
481      * can not use object_child_foreach()
482      */
483     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
484                        &args);
485 }
486 
487 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
488 {
489     int off;
490 
491     off = fdt_add_subnode(fdt, 0, "ibm,opal");
492     off = fdt_add_subnode(fdt, off, "power-mgt");
493 
494     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
495 }
496 
497 static void *pnv_dt_create(MachineState *machine)
498 {
499     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
500     PnvMachineState *pnv = PNV_MACHINE(machine);
501     void *fdt;
502     char *buf;
503     int off;
504     int i;
505 
506     fdt = g_malloc0(FDT_MAX_SIZE);
507     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
508 
509     /* /qemu node */
510     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
511 
512     /* Root node */
513     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
514     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
515     _FDT((fdt_setprop_string(fdt, 0, "model",
516                              "IBM PowerNV (emulated by qemu)")));
517     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
518 
519     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
520     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
521     if (qemu_uuid_set) {
522         _FDT((fdt_property_string(fdt, "system-id", buf)));
523     }
524     g_free(buf);
525 
526     off = fdt_add_subnode(fdt, 0, "chosen");
527     if (machine->kernel_cmdline) {
528         _FDT((fdt_setprop_string(fdt, off, "bootargs",
529                                  machine->kernel_cmdline)));
530     }
531 
532     if (pnv->initrd_size) {
533         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
534         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
535 
536         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
537                                &start_prop, sizeof(start_prop))));
538         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
539                                &end_prop, sizeof(end_prop))));
540     }
541 
542     /* Populate device tree for each chip */
543     for (i = 0; i < pnv->num_chips; i++) {
544         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
545     }
546 
547     /* Populate ISA devices on chip 0 */
548     pnv_dt_isa(pnv, fdt);
549 
550     if (pnv->bmc) {
551         pnv_dt_bmc_sensors(pnv->bmc, fdt);
552     }
553 
554     /* Create an extra node for power management on machines that support it */
555     if (pmc->dt_power_mgt) {
556         pmc->dt_power_mgt(pnv, fdt);
557     }
558 
559     return fdt;
560 }
561 
562 static void pnv_powerdown_notify(Notifier *n, void *opaque)
563 {
564     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
565 
566     if (pnv->bmc) {
567         pnv_bmc_powerdown(pnv->bmc);
568     }
569 }
570 
571 static void pnv_reset(MachineState *machine)
572 {
573     void *fdt;
574 
575     qemu_devices_reset();
576 
577     fdt = pnv_dt_create(machine);
578 
579     /* Pack resulting tree */
580     _FDT((fdt_pack(fdt)));
581 
582     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
583     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
584 }
585 
586 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
590 }
591 
592 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
593 {
594     Pnv8Chip *chip8 = PNV8_CHIP(chip);
595     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
596 }
597 
598 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
599 {
600     Pnv9Chip *chip9 = PNV9_CHIP(chip);
601     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
602 }
603 
604 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
605 {
606     Pnv10Chip *chip10 = PNV10_CHIP(chip);
607     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
608 }
609 
610 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
611 {
612     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
613 }
614 
615 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618 
619     ics_pic_print_info(&chip8->psi.ics, mon);
620 }
621 
622 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625 
626     pnv_xive_pic_print_info(&chip9->xive, mon);
627     pnv_psi_pic_print_info(&chip9->psi, mon);
628 }
629 
630 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
631                                                 uint32_t core_id)
632 {
633     return PNV_XSCOM_EX_BASE(core_id);
634 }
635 
636 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
637                                                 uint32_t core_id)
638 {
639     return PNV9_XSCOM_EC_BASE(core_id);
640 }
641 
642 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
643                                                  uint32_t core_id)
644 {
645     return PNV10_XSCOM_EC_BASE(core_id);
646 }
647 
648 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
649 {
650     PowerPCCPUClass *ppc_default =
651         POWERPC_CPU_CLASS(object_class_by_name(default_type));
652     PowerPCCPUClass *ppc =
653         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
654 
655     return ppc_default->pvr_match(ppc_default, ppc->pvr);
656 }
657 
658 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
659 {
660     Object *obj;
661 
662     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
663     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
664     object_property_set_int(obj, irq, "irq", &error_fatal);
665     object_property_set_bool(obj, true, "realized", &error_fatal);
666 }
667 
668 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
669 {
670     Pnv10Chip *chip10 = PNV10_CHIP(chip);
671 
672     pnv_psi_pic_print_info(&chip10->psi, mon);
673 }
674 
675 static void pnv_init(MachineState *machine)
676 {
677     PnvMachineState *pnv = PNV_MACHINE(machine);
678     MachineClass *mc = MACHINE_GET_CLASS(machine);
679     MemoryRegion *ram;
680     char *fw_filename;
681     long fw_size;
682     int i;
683     char *chip_typename;
684     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
685     DeviceState *dev;
686 
687     /* allocate RAM */
688     if (machine->ram_size < (1 * GiB)) {
689         warn_report("skiboot may not work with < 1GB of RAM");
690     }
691 
692     ram = g_new(MemoryRegion, 1);
693     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
694                                          machine->ram_size);
695     memory_region_add_subregion(get_system_memory(), 0, ram);
696 
697     /*
698      * Create our simple PNOR device
699      */
700     dev = qdev_create(NULL, TYPE_PNV_PNOR);
701     if (pnor) {
702         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
703                             &error_abort);
704     }
705     qdev_init_nofail(dev);
706     pnv->pnor = PNV_PNOR(dev);
707 
708     /* load skiboot firmware  */
709     if (bios_name == NULL) {
710         bios_name = FW_FILE_NAME;
711     }
712 
713     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
714     if (!fw_filename) {
715         error_report("Could not find OPAL firmware '%s'", bios_name);
716         exit(1);
717     }
718 
719     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
720     if (fw_size < 0) {
721         error_report("Could not load OPAL firmware '%s'", fw_filename);
722         exit(1);
723     }
724     g_free(fw_filename);
725 
726     /* load kernel */
727     if (machine->kernel_filename) {
728         long kernel_size;
729 
730         kernel_size = load_image_targphys(machine->kernel_filename,
731                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
732         if (kernel_size < 0) {
733             error_report("Could not load kernel '%s'",
734                          machine->kernel_filename);
735             exit(1);
736         }
737     }
738 
739     /* load initrd */
740     if (machine->initrd_filename) {
741         pnv->initrd_base = INITRD_LOAD_ADDR;
742         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
743                                   pnv->initrd_base, INITRD_MAX_SIZE);
744         if (pnv->initrd_size < 0) {
745             error_report("Could not load initial ram disk '%s'",
746                          machine->initrd_filename);
747             exit(1);
748         }
749     }
750 
751     /*
752      * Check compatibility of the specified CPU with the machine
753      * default.
754      */
755     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
756         error_report("invalid CPU model '%s' for %s machine",
757                      machine->cpu_type, mc->name);
758         exit(1);
759     }
760 
761     /* Create the processor chips */
762     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
763     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
764                                     i, machine->cpu_type);
765     if (!object_class_by_name(chip_typename)) {
766         error_report("invalid chip model '%.*s' for %s machine",
767                      i, machine->cpu_type, mc->name);
768         exit(1);
769     }
770 
771     pnv->num_chips =
772         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
773     /*
774      * TODO: should we decide on how many chips we can create based
775      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
776      */
777     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
778         error_report("invalid number of chips: '%d'", pnv->num_chips);
779         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
780         exit(1);
781     }
782 
783     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
784     for (i = 0; i < pnv->num_chips; i++) {
785         char chip_name[32];
786         Object *chip = object_new(chip_typename);
787 
788         pnv->chips[i] = PNV_CHIP(chip);
789 
790         /*
791          * TODO: put all the memory in one node on chip 0 until we find a
792          * way to specify different ranges for each chip
793          */
794         if (i == 0) {
795             object_property_set_int(chip, machine->ram_size, "ram-size",
796                                     &error_fatal);
797         }
798 
799         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
800         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
801         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
802                                 &error_fatal);
803         object_property_set_int(chip, machine->smp.cores,
804                                 "nr-cores", &error_fatal);
805         /*
806          * The POWER8 machine use the XICS interrupt interface.
807          * Propagate the XICS fabric to the chip and its controllers.
808          */
809         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
810             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
811         }
812         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
813             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
814                                      &error_abort);
815         }
816         object_property_set_bool(chip, true, "realized", &error_fatal);
817     }
818     g_free(chip_typename);
819 
820     /* Create the machine BMC simulator */
821     pnv->bmc = pnv_bmc_create();
822 
823     /* Instantiate ISA bus on chip 0 */
824     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
825 
826     /* Create serial port */
827     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
828 
829     /* Create an RTC ISA device too */
830     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
831 
832     /* Create the IPMI BT device for communication with the BMC */
833     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
834 
835     /*
836      * OpenPOWER systems use a IPMI SEL Event message to notify the
837      * host to powerdown
838      */
839     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
840     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
841 }
842 
843 /*
844  *    0:21  Reserved - Read as zeros
845  *   22:24  Chip ID
846  *   25:28  Core number
847  *   29:31  Thread ID
848  */
849 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
850 {
851     return (chip->chip_id << 7) | (core_id << 3);
852 }
853 
854 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
855                                         Error **errp)
856 {
857     Pnv8Chip *chip8 = PNV8_CHIP(chip);
858     Error *local_err = NULL;
859     Object *obj;
860     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
861 
862     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
863     if (local_err) {
864         error_propagate(errp, local_err);
865         return;
866     }
867 
868     pnv_cpu->intc = obj;
869 }
870 
871 
872 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
873 {
874     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
875 
876     icp_reset(ICP(pnv_cpu->intc));
877 }
878 
879 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
880 {
881     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
882 
883     icp_destroy(ICP(pnv_cpu->intc));
884     pnv_cpu->intc = NULL;
885 }
886 
887 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
888                                             Monitor *mon)
889 {
890     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
891 }
892 
893 /*
894  *    0:48  Reserved - Read as zeroes
895  *   49:52  Node ID
896  *   53:55  Chip ID
897  *   56     Reserved - Read as zero
898  *   57:61  Core number
899  *   62:63  Thread ID
900  *
901  * We only care about the lower bits. uint32_t is fine for the moment.
902  */
903 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
904 {
905     return (chip->chip_id << 8) | (core_id << 2);
906 }
907 
908 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
909 {
910     return (chip->chip_id << 8) | (core_id << 2);
911 }
912 
913 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
914                                         Error **errp)
915 {
916     Pnv9Chip *chip9 = PNV9_CHIP(chip);
917     Error *local_err = NULL;
918     Object *obj;
919     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
920 
921     /*
922      * The core creates its interrupt presenter but the XIVE interrupt
923      * controller object is initialized afterwards. Hopefully, it's
924      * only used at runtime.
925      */
926     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
927     if (local_err) {
928         error_propagate(errp, local_err);
929         return;
930     }
931 
932     pnv_cpu->intc = obj;
933 }
934 
935 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
936 {
937     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
938 
939     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
940 }
941 
942 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
943 {
944     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
945 
946     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
947     pnv_cpu->intc = NULL;
948 }
949 
950 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
951                                             Monitor *mon)
952 {
953     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
954 }
955 
956 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
957                                         Error **errp)
958 {
959     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960 
961     /* Will be defined when the interrupt controller is */
962     pnv_cpu->intc = NULL;
963 }
964 
965 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
966 {
967     ;
968 }
969 
970 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
971 {
972     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
973 
974     pnv_cpu->intc = NULL;
975 }
976 
977 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
978                                              Monitor *mon)
979 {
980 }
981 
982 /*
983  * Allowed core identifiers on a POWER8 Processor Chip :
984  *
985  * <EX0 reserved>
986  *  EX1  - Venice only
987  *  EX2  - Venice only
988  *  EX3  - Venice only
989  *  EX4
990  *  EX5
991  *  EX6
992  * <EX7,8 reserved> <reserved>
993  *  EX9  - Venice only
994  *  EX10 - Venice only
995  *  EX11 - Venice only
996  *  EX12
997  *  EX13
998  *  EX14
999  * <EX15 reserved>
1000  */
1001 #define POWER8E_CORE_MASK  (0x7070ull)
1002 #define POWER8_CORE_MASK   (0x7e7eull)
1003 
1004 /*
1005  * POWER9 has 24 cores, ids starting at 0x0
1006  */
1007 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1008 
1009 
1010 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1011 
1012 static void pnv_chip_power8_instance_init(Object *obj)
1013 {
1014     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1015 
1016     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1017                              (Object **)&chip8->xics,
1018                              object_property_allow_set_link,
1019                              OBJ_PROP_LINK_STRONG,
1020                              &error_abort);
1021 
1022     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1023                             TYPE_PNV8_PSI, &error_abort, NULL);
1024 
1025     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1026                             TYPE_PNV8_LPC, &error_abort, NULL);
1027 
1028     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1029                             TYPE_PNV8_OCC, &error_abort, NULL);
1030 
1031     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1032                             TYPE_PNV8_HOMER, &error_abort, NULL);
1033 }
1034 
1035 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1036  {
1037     PnvChip *chip = PNV_CHIP(chip8);
1038     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1039     int i, j;
1040     char *name;
1041 
1042     name = g_strdup_printf("icp-%x", chip->chip_id);
1043     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1044     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1045     g_free(name);
1046 
1047     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1048 
1049     /* Map the ICP registers for each thread */
1050     for (i = 0; i < chip->nr_cores; i++) {
1051         PnvCore *pnv_core = chip->cores[i];
1052         int core_hwid = CPU_CORE(pnv_core)->core_id;
1053 
1054         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1055             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1056             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1057 
1058             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1059                                         &icp->mmio);
1060         }
1061     }
1062 }
1063 
1064 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1065 {
1066     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1067     PnvChip *chip = PNV_CHIP(dev);
1068     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1069     Pnv8Psi *psi8 = &chip8->psi;
1070     Error *local_err = NULL;
1071 
1072     assert(chip8->xics);
1073 
1074     /* XSCOM bridge is first */
1075     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1076     if (local_err) {
1077         error_propagate(errp, local_err);
1078         return;
1079     }
1080     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1081 
1082     pcc->parent_realize(dev, &local_err);
1083     if (local_err) {
1084         error_propagate(errp, local_err);
1085         return;
1086     }
1087 
1088     /* Processor Service Interface (PSI) Host Bridge */
1089     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1090                             "bar", &error_fatal);
1091     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1092                              ICS_PROP_XICS, &error_abort);
1093     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1094     if (local_err) {
1095         error_propagate(errp, local_err);
1096         return;
1097     }
1098     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1099                             &PNV_PSI(psi8)->xscom_regs);
1100 
1101     /* Create LPC controller */
1102     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1103                              &error_abort);
1104     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1105                              &error_fatal);
1106     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1107 
1108     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1109                                             (uint64_t) PNV_XSCOM_BASE(chip),
1110                                             PNV_XSCOM_LPC_BASE);
1111 
1112     /*
1113      * Interrupt Management Area. This is the memory region holding
1114      * all the Interrupt Control Presenter (ICP) registers
1115      */
1116     pnv_chip_icp_realize(chip8, &local_err);
1117     if (local_err) {
1118         error_propagate(errp, local_err);
1119         return;
1120     }
1121 
1122     /* Create the simplified OCC model */
1123     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1124                              &error_abort);
1125     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1126     if (local_err) {
1127         error_propagate(errp, local_err);
1128         return;
1129     }
1130     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1131 
1132     /* OCC SRAM model */
1133     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1134                                 &chip8->occ.sram_regs);
1135 
1136     /* HOMER */
1137     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1138                              &error_abort);
1139     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1140                              &local_err);
1141     if (local_err) {
1142         error_propagate(errp, local_err);
1143         return;
1144     }
1145     /* Homer Xscom region */
1146     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1147 
1148     /* Homer mmio region */
1149     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1150                                 &chip8->homer.regs);
1151 }
1152 
1153 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1154 {
1155     addr &= (PNV_XSCOM_SIZE - 1);
1156     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1157 }
1158 
1159 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1160 {
1161     DeviceClass *dc = DEVICE_CLASS(klass);
1162     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1163 
1164     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1165     k->cores_mask = POWER8E_CORE_MASK;
1166     k->core_pir = pnv_chip_core_pir_p8;
1167     k->intc_create = pnv_chip_power8_intc_create;
1168     k->intc_reset = pnv_chip_power8_intc_reset;
1169     k->intc_destroy = pnv_chip_power8_intc_destroy;
1170     k->intc_print_info = pnv_chip_power8_intc_print_info;
1171     k->isa_create = pnv_chip_power8_isa_create;
1172     k->dt_populate = pnv_chip_power8_dt_populate;
1173     k->pic_print_info = pnv_chip_power8_pic_print_info;
1174     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1175     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1176     dc->desc = "PowerNV Chip POWER8E";
1177 
1178     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1179                                     &k->parent_realize);
1180 }
1181 
1182 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1183 {
1184     DeviceClass *dc = DEVICE_CLASS(klass);
1185     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1186 
1187     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1188     k->cores_mask = POWER8_CORE_MASK;
1189     k->core_pir = pnv_chip_core_pir_p8;
1190     k->intc_create = pnv_chip_power8_intc_create;
1191     k->intc_reset = pnv_chip_power8_intc_reset;
1192     k->intc_destroy = pnv_chip_power8_intc_destroy;
1193     k->intc_print_info = pnv_chip_power8_intc_print_info;
1194     k->isa_create = pnv_chip_power8_isa_create;
1195     k->dt_populate = pnv_chip_power8_dt_populate;
1196     k->pic_print_info = pnv_chip_power8_pic_print_info;
1197     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1198     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1199     dc->desc = "PowerNV Chip POWER8";
1200 
1201     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1202                                     &k->parent_realize);
1203 }
1204 
1205 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1206 {
1207     DeviceClass *dc = DEVICE_CLASS(klass);
1208     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1209 
1210     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1211     k->cores_mask = POWER8_CORE_MASK;
1212     k->core_pir = pnv_chip_core_pir_p8;
1213     k->intc_create = pnv_chip_power8_intc_create;
1214     k->intc_reset = pnv_chip_power8_intc_reset;
1215     k->intc_destroy = pnv_chip_power8_intc_destroy;
1216     k->intc_print_info = pnv_chip_power8_intc_print_info;
1217     k->isa_create = pnv_chip_power8nvl_isa_create;
1218     k->dt_populate = pnv_chip_power8_dt_populate;
1219     k->pic_print_info = pnv_chip_power8_pic_print_info;
1220     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1221     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1222     dc->desc = "PowerNV Chip POWER8NVL";
1223 
1224     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1225                                     &k->parent_realize);
1226 }
1227 
1228 static void pnv_chip_power9_instance_init(Object *obj)
1229 {
1230     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1231 
1232     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1233                             TYPE_PNV_XIVE, &error_abort, NULL);
1234     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1235                               "xive-fabric", &error_abort);
1236 
1237     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1238                             TYPE_PNV9_PSI, &error_abort, NULL);
1239 
1240     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1241                             TYPE_PNV9_LPC, &error_abort, NULL);
1242 
1243     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1244                             TYPE_PNV9_OCC, &error_abort, NULL);
1245 
1246     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1247                             TYPE_PNV9_HOMER, &error_abort, NULL);
1248 }
1249 
1250 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1251 {
1252     PnvChip *chip = PNV_CHIP(chip9);
1253     int i;
1254 
1255     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1256     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1257 
1258     for (i = 0; i < chip9->nr_quads; i++) {
1259         char eq_name[32];
1260         PnvQuad *eq = &chip9->quads[i];
1261         PnvCore *pnv_core = chip->cores[i * 4];
1262         int core_id = CPU_CORE(pnv_core)->core_id;
1263 
1264         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1265         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1266                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1267 
1268         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1269         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1270 
1271         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1272                                 &eq->xscom_regs);
1273     }
1274 }
1275 
1276 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1277 {
1278     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1279     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1280     PnvChip *chip = PNV_CHIP(dev);
1281     Pnv9Psi *psi9 = &chip9->psi;
1282     Error *local_err = NULL;
1283 
1284     /* XSCOM bridge is first */
1285     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1286     if (local_err) {
1287         error_propagate(errp, local_err);
1288         return;
1289     }
1290     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1291 
1292     pcc->parent_realize(dev, &local_err);
1293     if (local_err) {
1294         error_propagate(errp, local_err);
1295         return;
1296     }
1297 
1298     pnv_chip_quad_realize(chip9, &local_err);
1299     if (local_err) {
1300         error_propagate(errp, local_err);
1301         return;
1302     }
1303 
1304     /* XIVE interrupt controller (POWER9) */
1305     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1306                             "ic-bar", &error_fatal);
1307     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1308                             "vc-bar", &error_fatal);
1309     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1310                             "pc-bar", &error_fatal);
1311     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1312                             "tm-bar", &error_fatal);
1313     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1314                              &error_abort);
1315     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1316                              &local_err);
1317     if (local_err) {
1318         error_propagate(errp, local_err);
1319         return;
1320     }
1321     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1322                             &chip9->xive.xscom_regs);
1323 
1324     /* Processor Service Interface (PSI) Host Bridge */
1325     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1326                             "bar", &error_fatal);
1327     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1328     if (local_err) {
1329         error_propagate(errp, local_err);
1330         return;
1331     }
1332     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1333                             &PNV_PSI(psi9)->xscom_regs);
1334 
1335     /* LPC */
1336     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1337                              &error_abort);
1338     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1339     if (local_err) {
1340         error_propagate(errp, local_err);
1341         return;
1342     }
1343     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1344                                 &chip9->lpc.xscom_regs);
1345 
1346     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1347                                             (uint64_t) PNV9_LPCM_BASE(chip));
1348 
1349     /* Create the simplified OCC model */
1350     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1351                              &error_abort);
1352     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1353     if (local_err) {
1354         error_propagate(errp, local_err);
1355         return;
1356     }
1357     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1358 
1359     /* OCC SRAM model */
1360     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1361                                 &chip9->occ.sram_regs);
1362 
1363     /* HOMER */
1364     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1365                              &error_abort);
1366     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1367                              &local_err);
1368     if (local_err) {
1369         error_propagate(errp, local_err);
1370         return;
1371     }
1372     /* Homer Xscom region */
1373     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1374 
1375     /* Homer mmio region */
1376     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1377                                 &chip9->homer.regs);
1378 }
1379 
1380 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1381 {
1382     addr &= (PNV9_XSCOM_SIZE - 1);
1383     return addr >> 3;
1384 }
1385 
1386 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1387 {
1388     DeviceClass *dc = DEVICE_CLASS(klass);
1389     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1390 
1391     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1392     k->cores_mask = POWER9_CORE_MASK;
1393     k->core_pir = pnv_chip_core_pir_p9;
1394     k->intc_create = pnv_chip_power9_intc_create;
1395     k->intc_reset = pnv_chip_power9_intc_reset;
1396     k->intc_destroy = pnv_chip_power9_intc_destroy;
1397     k->intc_print_info = pnv_chip_power9_intc_print_info;
1398     k->isa_create = pnv_chip_power9_isa_create;
1399     k->dt_populate = pnv_chip_power9_dt_populate;
1400     k->pic_print_info = pnv_chip_power9_pic_print_info;
1401     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1402     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1403     dc->desc = "PowerNV Chip POWER9";
1404 
1405     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1406                                     &k->parent_realize);
1407 }
1408 
1409 static void pnv_chip_power10_instance_init(Object *obj)
1410 {
1411     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1412 
1413     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1414                             TYPE_PNV10_PSI, &error_abort, NULL);
1415     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1416                             TYPE_PNV10_LPC, &error_abort, NULL);
1417 }
1418 
1419 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1420 {
1421     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1422     PnvChip *chip = PNV_CHIP(dev);
1423     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1424     Error *local_err = NULL;
1425 
1426     /* XSCOM bridge is first */
1427     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1428     if (local_err) {
1429         error_propagate(errp, local_err);
1430         return;
1431     }
1432     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1433 
1434     pcc->parent_realize(dev, &local_err);
1435     if (local_err) {
1436         error_propagate(errp, local_err);
1437         return;
1438     }
1439 
1440     /* Processor Service Interface (PSI) Host Bridge */
1441     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1442                             "bar", &error_fatal);
1443     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1444                              &local_err);
1445     if (local_err) {
1446         error_propagate(errp, local_err);
1447         return;
1448     }
1449     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1450                             &PNV_PSI(&chip10->psi)->xscom_regs);
1451 
1452     /* LPC */
1453     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1454                              &error_abort);
1455     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1456                              &local_err);
1457     if (local_err) {
1458         error_propagate(errp, local_err);
1459         return;
1460     }
1461     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1462                                 &chip10->lpc.xscom_regs);
1463 
1464     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1465                                             (uint64_t) PNV10_LPCM_BASE(chip));
1466 }
1467 
1468 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1469 {
1470     addr &= (PNV10_XSCOM_SIZE - 1);
1471     return addr >> 3;
1472 }
1473 
1474 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1475 {
1476     DeviceClass *dc = DEVICE_CLASS(klass);
1477     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1478 
1479     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1480     k->cores_mask = POWER10_CORE_MASK;
1481     k->core_pir = pnv_chip_core_pir_p10;
1482     k->intc_create = pnv_chip_power10_intc_create;
1483     k->intc_reset = pnv_chip_power10_intc_reset;
1484     k->intc_destroy = pnv_chip_power10_intc_destroy;
1485     k->intc_print_info = pnv_chip_power10_intc_print_info;
1486     k->isa_create = pnv_chip_power10_isa_create;
1487     k->dt_populate = pnv_chip_power10_dt_populate;
1488     k->pic_print_info = pnv_chip_power10_pic_print_info;
1489     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1490     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1491     dc->desc = "PowerNV Chip POWER10";
1492 
1493     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1494                                     &k->parent_realize);
1495 }
1496 
1497 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1498 {
1499     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1500     int cores_max;
1501 
1502     /*
1503      * No custom mask for this chip, let's use the default one from *
1504      * the chip class
1505      */
1506     if (!chip->cores_mask) {
1507         chip->cores_mask = pcc->cores_mask;
1508     }
1509 
1510     /* filter alien core ids ! some are reserved */
1511     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1512         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1513                    chip->cores_mask);
1514         return;
1515     }
1516     chip->cores_mask &= pcc->cores_mask;
1517 
1518     /* now that we have a sane layout, let check the number of cores */
1519     cores_max = ctpop64(chip->cores_mask);
1520     if (chip->nr_cores > cores_max) {
1521         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1522                    cores_max);
1523         return;
1524     }
1525 }
1526 
1527 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1528 {
1529     MachineState *ms = MACHINE(qdev_get_machine());
1530     Error *error = NULL;
1531     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1532     const char *typename = pnv_chip_core_typename(chip);
1533     int i, core_hwid;
1534 
1535     if (!object_class_by_name(typename)) {
1536         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1537         return;
1538     }
1539 
1540     /* Cores */
1541     pnv_chip_core_sanitize(chip, &error);
1542     if (error) {
1543         error_propagate(errp, error);
1544         return;
1545     }
1546 
1547     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1548 
1549     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1550              && (i < chip->nr_cores); core_hwid++) {
1551         char core_name[32];
1552         PnvCore *pnv_core;
1553         uint64_t xscom_core_base;
1554 
1555         if (!(chip->cores_mask & (1ull << core_hwid))) {
1556             continue;
1557         }
1558 
1559         pnv_core = PNV_CORE(object_new(typename));
1560 
1561         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1562         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1563                                   &error_abort);
1564         chip->cores[i] = pnv_core;
1565         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1566                                 &error_fatal);
1567         object_property_set_int(OBJECT(pnv_core), core_hwid,
1568                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1569         object_property_set_int(OBJECT(pnv_core),
1570                                 pcc->core_pir(chip, core_hwid),
1571                                 "pir", &error_fatal);
1572         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1573                                  &error_abort);
1574         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1575                                  &error_fatal);
1576 
1577         /* Each core has an XSCOM MMIO region */
1578         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1579 
1580         pnv_xscom_add_subregion(chip, xscom_core_base,
1581                                 &pnv_core->xscom_regs);
1582         i++;
1583     }
1584 }
1585 
1586 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1587 {
1588     PnvChip *chip = PNV_CHIP(dev);
1589     Error *error = NULL;
1590 
1591     /* Cores */
1592     pnv_chip_core_realize(chip, &error);
1593     if (error) {
1594         error_propagate(errp, error);
1595         return;
1596     }
1597 }
1598 
1599 static Property pnv_chip_properties[] = {
1600     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1601     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1602     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1603     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1604     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1605     DEFINE_PROP_END_OF_LIST(),
1606 };
1607 
1608 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1609 {
1610     DeviceClass *dc = DEVICE_CLASS(klass);
1611 
1612     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1613     dc->realize = pnv_chip_realize;
1614     dc->props = pnv_chip_properties;
1615     dc->desc = "PowerNV Chip";
1616 }
1617 
1618 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1619 {
1620     int i, j;
1621 
1622     for (i = 0; i < chip->nr_cores; i++) {
1623         PnvCore *pc = chip->cores[i];
1624         CPUCore *cc = CPU_CORE(pc);
1625 
1626         for (j = 0; j < cc->nr_threads; j++) {
1627             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1628                 return pc->threads[j];
1629             }
1630         }
1631     }
1632     return NULL;
1633 }
1634 
1635 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1636 {
1637     PnvMachineState *pnv = PNV_MACHINE(xi);
1638     int i;
1639 
1640     for (i = 0; i < pnv->num_chips; i++) {
1641         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1642 
1643         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1644             return &chip8->psi.ics;
1645         }
1646     }
1647     return NULL;
1648 }
1649 
1650 static void pnv_ics_resend(XICSFabric *xi)
1651 {
1652     PnvMachineState *pnv = PNV_MACHINE(xi);
1653     int i;
1654 
1655     for (i = 0; i < pnv->num_chips; i++) {
1656         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1657         ics_resend(&chip8->psi.ics);
1658     }
1659 }
1660 
1661 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1662 {
1663     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1664 
1665     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1666 }
1667 
1668 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1669                                Monitor *mon)
1670 {
1671     PnvMachineState *pnv = PNV_MACHINE(obj);
1672     int i;
1673     CPUState *cs;
1674 
1675     CPU_FOREACH(cs) {
1676         PowerPCCPU *cpu = POWERPC_CPU(cs);
1677 
1678         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1679         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1680                                                            mon);
1681     }
1682 
1683     for (i = 0; i < pnv->num_chips; i++) {
1684         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1685     }
1686 }
1687 
1688 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1689                          uint8_t nvt_blk, uint32_t nvt_idx,
1690                          bool cam_ignore, uint8_t priority,
1691                          uint32_t logic_serv,
1692                          XiveTCTXMatch *match)
1693 {
1694     PnvMachineState *pnv = PNV_MACHINE(xfb);
1695     int total_count = 0;
1696     int i;
1697 
1698     for (i = 0; i < pnv->num_chips; i++) {
1699         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1700         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1701         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1702         int count;
1703 
1704         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1705                                priority, logic_serv, match);
1706 
1707         if (count < 0) {
1708             return count;
1709         }
1710 
1711         total_count += count;
1712     }
1713 
1714     return total_count;
1715 }
1716 
1717 PnvChip *pnv_get_chip(uint32_t chip_id)
1718 {
1719     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1720     int i;
1721 
1722     for (i = 0; i < pnv->num_chips; i++) {
1723         PnvChip *chip = pnv->chips[i];
1724         if (chip->chip_id == chip_id) {
1725             return chip;
1726         }
1727     }
1728     return NULL;
1729 }
1730 
1731 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1732 {
1733     MachineClass *mc = MACHINE_CLASS(oc);
1734     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1735     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1736     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1737 
1738     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1739     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1740 
1741     xic->icp_get = pnv_icp_get;
1742     xic->ics_get = pnv_ics_get;
1743     xic->ics_resend = pnv_ics_resend;
1744 
1745     pmc->compat = compat;
1746     pmc->compat_size = sizeof(compat);
1747 }
1748 
1749 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1750 {
1751     MachineClass *mc = MACHINE_CLASS(oc);
1752     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1753     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1754     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1755 
1756     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1757     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1758     xfc->match_nvt = pnv_match_nvt;
1759 
1760     mc->alias = "powernv";
1761 
1762     pmc->compat = compat;
1763     pmc->compat_size = sizeof(compat);
1764     pmc->dt_power_mgt = pnv_dt_power_mgt;
1765 }
1766 
1767 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1768 {
1769     MachineClass *mc = MACHINE_CLASS(oc);
1770     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1771     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1772 
1773     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1774     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1775 
1776     pmc->compat = compat;
1777     pmc->compat_size = sizeof(compat);
1778     pmc->dt_power_mgt = pnv_dt_power_mgt;
1779 }
1780 
1781 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1782 {
1783     MachineClass *mc = MACHINE_CLASS(oc);
1784     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1785 
1786     mc->desc = "IBM PowerNV (Non-Virtualized)";
1787     mc->init = pnv_init;
1788     mc->reset = pnv_reset;
1789     mc->max_cpus = MAX_CPUS;
1790     /* Pnv provides a AHCI device for storage */
1791     mc->block_default_type = IF_IDE;
1792     mc->no_parallel = 1;
1793     mc->default_boot_order = NULL;
1794     /*
1795      * RAM defaults to less than 2048 for 32-bit hosts, and large
1796      * enough to fit the maximum initrd size at it's load address
1797      */
1798     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1799     ispc->print_info = pnv_pic_print_info;
1800 }
1801 
1802 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1803     {                                             \
1804         .name          = type,                    \
1805         .class_init    = class_initfn,            \
1806         .parent        = TYPE_PNV8_CHIP,          \
1807     }
1808 
1809 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1810     {                                             \
1811         .name          = type,                    \
1812         .class_init    = class_initfn,            \
1813         .parent        = TYPE_PNV9_CHIP,          \
1814     }
1815 
1816 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1817     {                                              \
1818         .name          = type,                     \
1819         .class_init    = class_initfn,             \
1820         .parent        = TYPE_PNV10_CHIP,          \
1821     }
1822 
1823 static const TypeInfo types[] = {
1824     {
1825         .name          = MACHINE_TYPE_NAME("powernv10"),
1826         .parent        = TYPE_PNV_MACHINE,
1827         .class_init    = pnv_machine_power10_class_init,
1828     },
1829     {
1830         .name          = MACHINE_TYPE_NAME("powernv9"),
1831         .parent        = TYPE_PNV_MACHINE,
1832         .class_init    = pnv_machine_power9_class_init,
1833         .interfaces = (InterfaceInfo[]) {
1834             { TYPE_XIVE_FABRIC },
1835             { },
1836         },
1837     },
1838     {
1839         .name          = MACHINE_TYPE_NAME("powernv8"),
1840         .parent        = TYPE_PNV_MACHINE,
1841         .class_init    = pnv_machine_power8_class_init,
1842         .interfaces = (InterfaceInfo[]) {
1843             { TYPE_XICS_FABRIC },
1844             { },
1845         },
1846     },
1847     {
1848         .name          = TYPE_PNV_MACHINE,
1849         .parent        = TYPE_MACHINE,
1850         .abstract       = true,
1851         .instance_size = sizeof(PnvMachineState),
1852         .class_init    = pnv_machine_class_init,
1853         .class_size    = sizeof(PnvMachineClass),
1854         .interfaces = (InterfaceInfo[]) {
1855             { TYPE_INTERRUPT_STATS_PROVIDER },
1856             { },
1857         },
1858     },
1859     {
1860         .name          = TYPE_PNV_CHIP,
1861         .parent        = TYPE_SYS_BUS_DEVICE,
1862         .class_init    = pnv_chip_class_init,
1863         .instance_size = sizeof(PnvChip),
1864         .class_size    = sizeof(PnvChipClass),
1865         .abstract      = true,
1866     },
1867 
1868     /*
1869      * P10 chip and variants
1870      */
1871     {
1872         .name          = TYPE_PNV10_CHIP,
1873         .parent        = TYPE_PNV_CHIP,
1874         .instance_init = pnv_chip_power10_instance_init,
1875         .instance_size = sizeof(Pnv10Chip),
1876     },
1877     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
1878 
1879     /*
1880      * P9 chip and variants
1881      */
1882     {
1883         .name          = TYPE_PNV9_CHIP,
1884         .parent        = TYPE_PNV_CHIP,
1885         .instance_init = pnv_chip_power9_instance_init,
1886         .instance_size = sizeof(Pnv9Chip),
1887     },
1888     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1889 
1890     /*
1891      * P8 chip and variants
1892      */
1893     {
1894         .name          = TYPE_PNV8_CHIP,
1895         .parent        = TYPE_PNV_CHIP,
1896         .instance_init = pnv_chip_power8_instance_init,
1897         .instance_size = sizeof(Pnv8Chip),
1898     },
1899     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1900     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1901     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1902                           pnv_chip_power8nvl_class_init),
1903 };
1904 
1905 DEFINE_TYPES(types)
1906