xref: /openbmc/qemu/hw/ppc/pnv.c (revision ca661fae81d3b36b72c316a63165d9318dbd2439)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     const char *typename = pnv_chip_core_typename(chip);
284     size_t typesize = object_type_get_instance_size(typename);
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0);
288 
289     for (i = 0; i < chip->nr_cores; i++) {
290         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
291 
292         pnv_dt_core(chip, pnv_core, fdt);
293 
294         /* Interrupt Control Presenters (ICP). One per core. */
295         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
296     }
297 
298     if (chip->ram_size) {
299         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
300     }
301 }
302 
303 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
304 {
305     const char *typename = pnv_chip_core_typename(chip);
306     size_t typesize = object_type_get_instance_size(typename);
307     int i;
308 
309     pnv_dt_xscom(chip, fdt, 0);
310 
311     for (i = 0; i < chip->nr_cores; i++) {
312         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
313 
314         pnv_dt_core(chip, pnv_core, fdt);
315     }
316 
317     if (chip->ram_size) {
318         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
319     }
320 
321     pnv_dt_lpc(chip, fdt, 0);
322 }
323 
324 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
325 {
326     uint32_t io_base = d->ioport_id;
327     uint32_t io_regs[] = {
328         cpu_to_be32(1),
329         cpu_to_be32(io_base),
330         cpu_to_be32(2)
331     };
332     char *name;
333     int node;
334 
335     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
336     node = fdt_add_subnode(fdt, lpc_off, name);
337     _FDT(node);
338     g_free(name);
339 
340     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
341     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
342 }
343 
344 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
345 {
346     const char compatible[] = "ns16550\0pnpPNP,501";
347     uint32_t io_base = d->ioport_id;
348     uint32_t io_regs[] = {
349         cpu_to_be32(1),
350         cpu_to_be32(io_base),
351         cpu_to_be32(8)
352     };
353     char *name;
354     int node;
355 
356     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
357     node = fdt_add_subnode(fdt, lpc_off, name);
358     _FDT(node);
359     g_free(name);
360 
361     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
362     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
363                       sizeof(compatible))));
364 
365     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
366     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
367     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
368     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
369                            fdt_get_phandle(fdt, lpc_off))));
370 
371     /* This is needed by Linux */
372     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
373 }
374 
375 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
376 {
377     const char compatible[] = "bt\0ipmi-bt";
378     uint32_t io_base;
379     uint32_t io_regs[] = {
380         cpu_to_be32(1),
381         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
382         cpu_to_be32(3)
383     };
384     uint32_t irq;
385     char *name;
386     int node;
387 
388     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
389     io_regs[1] = cpu_to_be32(io_base);
390 
391     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
392 
393     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
394     node = fdt_add_subnode(fdt, lpc_off, name);
395     _FDT(node);
396     g_free(name);
397 
398     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
399     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
400                       sizeof(compatible))));
401 
402     /* Mark it as reserved to avoid Linux trying to claim it */
403     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
404     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
405     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
406                            fdt_get_phandle(fdt, lpc_off))));
407 }
408 
409 typedef struct ForeachPopulateArgs {
410     void *fdt;
411     int offset;
412 } ForeachPopulateArgs;
413 
414 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
415 {
416     ForeachPopulateArgs *args = opaque;
417     ISADevice *d = ISA_DEVICE(dev);
418 
419     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
420         pnv_dt_rtc(d, args->fdt, args->offset);
421     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
422         pnv_dt_serial(d, args->fdt, args->offset);
423     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
424         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
425     } else {
426         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
427                      d->ioport_id);
428     }
429 
430     return 0;
431 }
432 
433 /*
434  * The default LPC bus of a multichip system is on chip 0. It's
435  * recognized by the firmware (skiboot) using a "primary" property.
436  */
437 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
438 {
439     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
440     ForeachPopulateArgs args = {
441         .fdt = fdt,
442         .offset = isa_offset,
443     };
444     uint32_t phandle;
445 
446     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
447 
448     phandle = qemu_fdt_alloc_phandle(fdt);
449     assert(phandle > 0);
450     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
451 
452     /*
453      * ISA devices are not necessarily parented to the ISA bus so we
454      * can not use object_child_foreach()
455      */
456     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
457                        &args);
458 }
459 
460 static void pnv_dt_power_mgt(void *fdt)
461 {
462     int off;
463 
464     off = fdt_add_subnode(fdt, 0, "ibm,opal");
465     off = fdt_add_subnode(fdt, off, "power-mgt");
466 
467     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
468 }
469 
470 static void *pnv_dt_create(MachineState *machine)
471 {
472     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
473     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
474     PnvMachineState *pnv = PNV_MACHINE(machine);
475     void *fdt;
476     char *buf;
477     int off;
478     int i;
479 
480     fdt = g_malloc0(FDT_MAX_SIZE);
481     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
482 
483     /* /qemu node */
484     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
485 
486     /* Root node */
487     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
488     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
489     _FDT((fdt_setprop_string(fdt, 0, "model",
490                              "IBM PowerNV (emulated by qemu)")));
491     if (pnv_is_power9(pnv)) {
492         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
493                           sizeof(plat_compat9))));
494     } else {
495         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
496                           sizeof(plat_compat8))));
497     }
498 
499 
500     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
501     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
502     if (qemu_uuid_set) {
503         _FDT((fdt_property_string(fdt, "system-id", buf)));
504     }
505     g_free(buf);
506 
507     off = fdt_add_subnode(fdt, 0, "chosen");
508     if (machine->kernel_cmdline) {
509         _FDT((fdt_setprop_string(fdt, off, "bootargs",
510                                  machine->kernel_cmdline)));
511     }
512 
513     if (pnv->initrd_size) {
514         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
515         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
516 
517         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
518                                &start_prop, sizeof(start_prop))));
519         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
520                                &end_prop, sizeof(end_prop))));
521     }
522 
523     /* Populate device tree for each chip */
524     for (i = 0; i < pnv->num_chips; i++) {
525         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
526     }
527 
528     /* Populate ISA devices on chip 0 */
529     pnv_dt_isa(pnv, fdt);
530 
531     if (pnv->bmc) {
532         pnv_dt_bmc_sensors(pnv->bmc, fdt);
533     }
534 
535     /* Create an extra node for power management on Power9 */
536     if (pnv_is_power9(pnv)) {
537         pnv_dt_power_mgt(fdt);
538     }
539 
540     return fdt;
541 }
542 
543 static void pnv_powerdown_notify(Notifier *n, void *opaque)
544 {
545     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
546 
547     if (pnv->bmc) {
548         pnv_bmc_powerdown(pnv->bmc);
549     }
550 }
551 
552 static void pnv_reset(MachineState *machine)
553 {
554     PnvMachineState *pnv = PNV_MACHINE(machine);
555     void *fdt;
556     Object *obj;
557 
558     qemu_devices_reset();
559 
560     /*
561      * OpenPOWER systems have a BMC, which can be defined on the
562      * command line with:
563      *
564      *   -device ipmi-bmc-sim,id=bmc0
565      *
566      * This is the internal simulator but it could also be an external
567      * BMC.
568      */
569     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
570     if (obj) {
571         pnv->bmc = IPMI_BMC(obj);
572         pnv_bmc_hiomap(pnv->bmc);
573     }
574 
575     fdt = pnv_dt_create(machine);
576 
577     /* Pack resulting tree */
578     _FDT((fdt_pack(fdt)));
579 
580     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
581     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
582 }
583 
584 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
585 {
586     Pnv8Chip *chip8 = PNV8_CHIP(chip);
587     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
588 }
589 
590 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
591 {
592     Pnv8Chip *chip8 = PNV8_CHIP(chip);
593     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
594 }
595 
596 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
597 {
598     Pnv9Chip *chip9 = PNV9_CHIP(chip);
599     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
600 }
601 
602 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
603 {
604     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
605 }
606 
607 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
608 {
609     Pnv8Chip *chip8 = PNV8_CHIP(chip);
610 
611     ics_pic_print_info(&chip8->psi.ics, mon);
612 }
613 
614 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
615 {
616     Pnv9Chip *chip9 = PNV9_CHIP(chip);
617 
618     pnv_xive_pic_print_info(&chip9->xive, mon);
619     pnv_psi_pic_print_info(&chip9->psi, mon);
620 }
621 
622 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
623 {
624     PowerPCCPUClass *ppc_default =
625         POWERPC_CPU_CLASS(object_class_by_name(default_type));
626     PowerPCCPUClass *ppc =
627         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
628 
629     return ppc_default->pvr_match(ppc_default, ppc->pvr);
630 }
631 
632 static void pnv_init(MachineState *machine)
633 {
634     PnvMachineState *pnv = PNV_MACHINE(machine);
635     MachineClass *mc = MACHINE_GET_CLASS(machine);
636     MemoryRegion *ram;
637     char *fw_filename;
638     long fw_size;
639     int i;
640     char *chip_typename;
641     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
642     DeviceState *dev;
643 
644     /* allocate RAM */
645     if (machine->ram_size < (1 * GiB)) {
646         warn_report("skiboot may not work with < 1GB of RAM");
647     }
648 
649     ram = g_new(MemoryRegion, 1);
650     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
651                                          machine->ram_size);
652     memory_region_add_subregion(get_system_memory(), 0, ram);
653 
654     /*
655      * Create our simple PNOR device
656      */
657     dev = qdev_create(NULL, TYPE_PNV_PNOR);
658     if (pnor) {
659         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
660                             &error_abort);
661     }
662     qdev_init_nofail(dev);
663     pnv->pnor = PNV_PNOR(dev);
664 
665     /* load skiboot firmware  */
666     if (bios_name == NULL) {
667         bios_name = FW_FILE_NAME;
668     }
669 
670     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
671     if (!fw_filename) {
672         error_report("Could not find OPAL firmware '%s'", bios_name);
673         exit(1);
674     }
675 
676     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
677     if (fw_size < 0) {
678         error_report("Could not load OPAL firmware '%s'", fw_filename);
679         exit(1);
680     }
681     g_free(fw_filename);
682 
683     /* load kernel */
684     if (machine->kernel_filename) {
685         long kernel_size;
686 
687         kernel_size = load_image_targphys(machine->kernel_filename,
688                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
689         if (kernel_size < 0) {
690             error_report("Could not load kernel '%s'",
691                          machine->kernel_filename);
692             exit(1);
693         }
694     }
695 
696     /* load initrd */
697     if (machine->initrd_filename) {
698         pnv->initrd_base = INITRD_LOAD_ADDR;
699         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
700                                   pnv->initrd_base, INITRD_MAX_SIZE);
701         if (pnv->initrd_size < 0) {
702             error_report("Could not load initial ram disk '%s'",
703                          machine->initrd_filename);
704             exit(1);
705         }
706     }
707 
708     /*
709      * Check compatibility of the specified CPU with the machine
710      * default.
711      */
712     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
713         error_report("invalid CPU model '%s' for %s machine",
714                      machine->cpu_type, mc->name);
715         exit(1);
716     }
717 
718     /* Create the processor chips */
719     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
720     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
721                                     i, machine->cpu_type);
722     if (!object_class_by_name(chip_typename)) {
723         error_report("invalid chip model '%.*s' for %s machine",
724                      i, machine->cpu_type, mc->name);
725         exit(1);
726     }
727 
728     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
729     for (i = 0; i < pnv->num_chips; i++) {
730         char chip_name[32];
731         Object *chip = object_new(chip_typename);
732 
733         pnv->chips[i] = PNV_CHIP(chip);
734 
735         /*
736          * TODO: put all the memory in one node on chip 0 until we find a
737          * way to specify different ranges for each chip
738          */
739         if (i == 0) {
740             object_property_set_int(chip, machine->ram_size, "ram-size",
741                                     &error_fatal);
742         }
743 
744         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
745         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
746         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
747                                 &error_fatal);
748         object_property_set_int(chip, machine->smp.cores,
749                                 "nr-cores", &error_fatal);
750         object_property_set_bool(chip, true, "realized", &error_fatal);
751     }
752     g_free(chip_typename);
753 
754     /* Instantiate ISA bus on chip 0 */
755     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
756 
757     /* Create serial port */
758     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
759 
760     /* Create an RTC ISA device too */
761     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
762 
763     /*
764      * OpenPOWER systems use a IPMI SEL Event message to notify the
765      * host to powerdown
766      */
767     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
768     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
769 }
770 
771 /*
772  *    0:21  Reserved - Read as zeros
773  *   22:24  Chip ID
774  *   25:28  Core number
775  *   29:31  Thread ID
776  */
777 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
778 {
779     return (chip->chip_id << 7) | (core_id << 3);
780 }
781 
782 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
783                                         Error **errp)
784 {
785     Error *local_err = NULL;
786     Object *obj;
787     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
788 
789     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
790                      &local_err);
791     if (local_err) {
792         error_propagate(errp, local_err);
793         return;
794     }
795 
796     pnv_cpu->intc = obj;
797 }
798 
799 
800 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
801 {
802     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
803 
804     icp_reset(ICP(pnv_cpu->intc));
805 }
806 
807 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
808 {
809     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
810 
811     icp_destroy(ICP(pnv_cpu->intc));
812     pnv_cpu->intc = NULL;
813 }
814 
815 /*
816  *    0:48  Reserved - Read as zeroes
817  *   49:52  Node ID
818  *   53:55  Chip ID
819  *   56     Reserved - Read as zero
820  *   57:61  Core number
821  *   62:63  Thread ID
822  *
823  * We only care about the lower bits. uint32_t is fine for the moment.
824  */
825 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
826 {
827     return (chip->chip_id << 8) | (core_id << 2);
828 }
829 
830 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
831                                         Error **errp)
832 {
833     Pnv9Chip *chip9 = PNV9_CHIP(chip);
834     Error *local_err = NULL;
835     Object *obj;
836     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
837 
838     /*
839      * The core creates its interrupt presenter but the XIVE interrupt
840      * controller object is initialized afterwards. Hopefully, it's
841      * only used at runtime.
842      */
843     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
844     if (local_err) {
845         error_propagate(errp, local_err);
846         return;
847     }
848 
849     pnv_cpu->intc = obj;
850 }
851 
852 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
853 {
854     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
855 
856     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
857 }
858 
859 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
860 {
861     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
862 
863     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
864     pnv_cpu->intc = NULL;
865 }
866 
867 /*
868  * Allowed core identifiers on a POWER8 Processor Chip :
869  *
870  * <EX0 reserved>
871  *  EX1  - Venice only
872  *  EX2  - Venice only
873  *  EX3  - Venice only
874  *  EX4
875  *  EX5
876  *  EX6
877  * <EX7,8 reserved> <reserved>
878  *  EX9  - Venice only
879  *  EX10 - Venice only
880  *  EX11 - Venice only
881  *  EX12
882  *  EX13
883  *  EX14
884  * <EX15 reserved>
885  */
886 #define POWER8E_CORE_MASK  (0x7070ull)
887 #define POWER8_CORE_MASK   (0x7e7eull)
888 
889 /*
890  * POWER9 has 24 cores, ids starting at 0x0
891  */
892 #define POWER9_CORE_MASK   (0xffffffffffffffull)
893 
894 static void pnv_chip_power8_instance_init(Object *obj)
895 {
896     Pnv8Chip *chip8 = PNV8_CHIP(obj);
897 
898     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
899                             TYPE_PNV8_PSI, &error_abort, NULL);
900     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
901                                    OBJECT(qdev_get_machine()), &error_abort);
902 
903     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
904                             TYPE_PNV8_LPC, &error_abort, NULL);
905 
906     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
907                             TYPE_PNV8_OCC, &error_abort, NULL);
908 
909     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
910                             TYPE_PNV8_HOMER, &error_abort, NULL);
911 }
912 
913 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
914  {
915     PnvChip *chip = PNV_CHIP(chip8);
916     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
917     const char *typename = pnv_chip_core_typename(chip);
918     size_t typesize = object_type_get_instance_size(typename);
919     int i, j;
920     char *name;
921     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
922 
923     name = g_strdup_printf("icp-%x", chip->chip_id);
924     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
925     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
926     g_free(name);
927 
928     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
929 
930     /* Map the ICP registers for each thread */
931     for (i = 0; i < chip->nr_cores; i++) {
932         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
933         int core_hwid = CPU_CORE(pnv_core)->core_id;
934 
935         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
936             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
937             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
938 
939             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
940                                         &icp->mmio);
941         }
942     }
943 }
944 
945 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
946 {
947     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
948     PnvChip *chip = PNV_CHIP(dev);
949     Pnv8Chip *chip8 = PNV8_CHIP(dev);
950     Pnv8Psi *psi8 = &chip8->psi;
951     Error *local_err = NULL;
952 
953     /* XSCOM bridge is first */
954     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
955     if (local_err) {
956         error_propagate(errp, local_err);
957         return;
958     }
959     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
960 
961     pcc->parent_realize(dev, &local_err);
962     if (local_err) {
963         error_propagate(errp, local_err);
964         return;
965     }
966 
967     /* Processor Service Interface (PSI) Host Bridge */
968     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
969                             "bar", &error_fatal);
970     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
971     if (local_err) {
972         error_propagate(errp, local_err);
973         return;
974     }
975     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
976                             &PNV_PSI(psi8)->xscom_regs);
977 
978     /* Create LPC controller */
979     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
980                              &error_abort);
981     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
982                              &error_fatal);
983     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
984 
985     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
986                                             (uint64_t) PNV_XSCOM_BASE(chip),
987                                             PNV_XSCOM_LPC_BASE);
988 
989     /*
990      * Interrupt Management Area. This is the memory region holding
991      * all the Interrupt Control Presenter (ICP) registers
992      */
993     pnv_chip_icp_realize(chip8, &local_err);
994     if (local_err) {
995         error_propagate(errp, local_err);
996         return;
997     }
998 
999     /* Create the simplified OCC model */
1000     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1001                              &error_abort);
1002     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1003     if (local_err) {
1004         error_propagate(errp, local_err);
1005         return;
1006     }
1007     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1008 
1009     /* OCC SRAM model */
1010     memory_region_add_subregion(get_system_memory(), PNV_OCC_COMMON_AREA(chip),
1011                                 &chip8->occ.sram_regs);
1012 
1013     /* HOMER */
1014     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1015                              &error_abort);
1016     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1017                              &local_err);
1018     if (local_err) {
1019         error_propagate(errp, local_err);
1020         return;
1021     }
1022     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1023                                 &chip8->homer.regs);
1024 }
1025 
1026 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1027 {
1028     DeviceClass *dc = DEVICE_CLASS(klass);
1029     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1030 
1031     k->chip_type = PNV_CHIP_POWER8E;
1032     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1033     k->cores_mask = POWER8E_CORE_MASK;
1034     k->core_pir = pnv_chip_core_pir_p8;
1035     k->intc_create = pnv_chip_power8_intc_create;
1036     k->intc_reset = pnv_chip_power8_intc_reset;
1037     k->intc_destroy = pnv_chip_power8_intc_destroy;
1038     k->isa_create = pnv_chip_power8_isa_create;
1039     k->dt_populate = pnv_chip_power8_dt_populate;
1040     k->pic_print_info = pnv_chip_power8_pic_print_info;
1041     dc->desc = "PowerNV Chip POWER8E";
1042 
1043     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1044                                     &k->parent_realize);
1045 }
1046 
1047 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1048 {
1049     DeviceClass *dc = DEVICE_CLASS(klass);
1050     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1051 
1052     k->chip_type = PNV_CHIP_POWER8;
1053     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1054     k->cores_mask = POWER8_CORE_MASK;
1055     k->core_pir = pnv_chip_core_pir_p8;
1056     k->intc_create = pnv_chip_power8_intc_create;
1057     k->intc_reset = pnv_chip_power8_intc_reset;
1058     k->intc_destroy = pnv_chip_power8_intc_destroy;
1059     k->isa_create = pnv_chip_power8_isa_create;
1060     k->dt_populate = pnv_chip_power8_dt_populate;
1061     k->pic_print_info = pnv_chip_power8_pic_print_info;
1062     dc->desc = "PowerNV Chip POWER8";
1063 
1064     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1065                                     &k->parent_realize);
1066 }
1067 
1068 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1069 {
1070     DeviceClass *dc = DEVICE_CLASS(klass);
1071     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1072 
1073     k->chip_type = PNV_CHIP_POWER8NVL;
1074     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1075     k->cores_mask = POWER8_CORE_MASK;
1076     k->core_pir = pnv_chip_core_pir_p8;
1077     k->intc_create = pnv_chip_power8_intc_create;
1078     k->intc_reset = pnv_chip_power8_intc_reset;
1079     k->intc_destroy = pnv_chip_power8_intc_destroy;
1080     k->isa_create = pnv_chip_power8nvl_isa_create;
1081     k->dt_populate = pnv_chip_power8_dt_populate;
1082     k->pic_print_info = pnv_chip_power8_pic_print_info;
1083     dc->desc = "PowerNV Chip POWER8NVL";
1084 
1085     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1086                                     &k->parent_realize);
1087 }
1088 
1089 static void pnv_chip_power9_instance_init(Object *obj)
1090 {
1091     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1092 
1093     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1094                             TYPE_PNV_XIVE, &error_abort, NULL);
1095 
1096     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1097                             TYPE_PNV9_PSI, &error_abort, NULL);
1098 
1099     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1100                             TYPE_PNV9_LPC, &error_abort, NULL);
1101 
1102     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1103                             TYPE_PNV9_OCC, &error_abort, NULL);
1104 
1105     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1106                             TYPE_PNV9_HOMER, &error_abort, NULL);
1107 }
1108 
1109 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1110 {
1111     PnvChip *chip = PNV_CHIP(chip9);
1112     const char *typename = pnv_chip_core_typename(chip);
1113     size_t typesize = object_type_get_instance_size(typename);
1114     int i;
1115 
1116     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1117     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1118 
1119     for (i = 0; i < chip9->nr_quads; i++) {
1120         char eq_name[32];
1121         PnvQuad *eq = &chip9->quads[i];
1122         PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1123         int core_id = CPU_CORE(pnv_core)->core_id;
1124 
1125         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1126         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1127                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1128 
1129         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1130         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1131 
1132         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1133                                 &eq->xscom_regs);
1134     }
1135 }
1136 
1137 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1138 {
1139     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1140     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1141     PnvChip *chip = PNV_CHIP(dev);
1142     Pnv9Psi *psi9 = &chip9->psi;
1143     Error *local_err = NULL;
1144 
1145     /* XSCOM bridge is first */
1146     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1147     if (local_err) {
1148         error_propagate(errp, local_err);
1149         return;
1150     }
1151     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1152 
1153     pcc->parent_realize(dev, &local_err);
1154     if (local_err) {
1155         error_propagate(errp, local_err);
1156         return;
1157     }
1158 
1159     pnv_chip_quad_realize(chip9, &local_err);
1160     if (local_err) {
1161         error_propagate(errp, local_err);
1162         return;
1163     }
1164 
1165     /* XIVE interrupt controller (POWER9) */
1166     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1167                             "ic-bar", &error_fatal);
1168     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1169                             "vc-bar", &error_fatal);
1170     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1171                             "pc-bar", &error_fatal);
1172     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1173                             "tm-bar", &error_fatal);
1174     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1175                              &error_abort);
1176     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1177                              &local_err);
1178     if (local_err) {
1179         error_propagate(errp, local_err);
1180         return;
1181     }
1182     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1183                             &chip9->xive.xscom_regs);
1184 
1185     /* Processor Service Interface (PSI) Host Bridge */
1186     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1187                             "bar", &error_fatal);
1188     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1189     if (local_err) {
1190         error_propagate(errp, local_err);
1191         return;
1192     }
1193     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1194                             &PNV_PSI(psi9)->xscom_regs);
1195 
1196     /* LPC */
1197     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1198                              &error_abort);
1199     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1200     if (local_err) {
1201         error_propagate(errp, local_err);
1202         return;
1203     }
1204     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1205                                 &chip9->lpc.xscom_regs);
1206 
1207     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1208                                             (uint64_t) PNV9_LPCM_BASE(chip));
1209 
1210     /* Create the simplified OCC model */
1211     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1212                              &error_abort);
1213     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1214     if (local_err) {
1215         error_propagate(errp, local_err);
1216         return;
1217     }
1218     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1219 
1220     /* OCC SRAM model */
1221     memory_region_add_subregion(get_system_memory(), PNV9_OCC_COMMON_AREA(chip),
1222                                 &chip9->occ.sram_regs);
1223 
1224     /* HOMER */
1225     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1226                              &error_abort);
1227     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1228                              &local_err);
1229     if (local_err) {
1230         error_propagate(errp, local_err);
1231         return;
1232     }
1233     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1234                                 &chip9->homer.regs);
1235 }
1236 
1237 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1238 {
1239     DeviceClass *dc = DEVICE_CLASS(klass);
1240     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1241 
1242     k->chip_type = PNV_CHIP_POWER9;
1243     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1244     k->cores_mask = POWER9_CORE_MASK;
1245     k->core_pir = pnv_chip_core_pir_p9;
1246     k->intc_create = pnv_chip_power9_intc_create;
1247     k->intc_reset = pnv_chip_power9_intc_reset;
1248     k->intc_destroy = pnv_chip_power9_intc_destroy;
1249     k->isa_create = pnv_chip_power9_isa_create;
1250     k->dt_populate = pnv_chip_power9_dt_populate;
1251     k->pic_print_info = pnv_chip_power9_pic_print_info;
1252     dc->desc = "PowerNV Chip POWER9";
1253 
1254     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1255                                     &k->parent_realize);
1256 }
1257 
1258 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1259 {
1260     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1261     int cores_max;
1262 
1263     /*
1264      * No custom mask for this chip, let's use the default one from *
1265      * the chip class
1266      */
1267     if (!chip->cores_mask) {
1268         chip->cores_mask = pcc->cores_mask;
1269     }
1270 
1271     /* filter alien core ids ! some are reserved */
1272     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1273         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1274                    chip->cores_mask);
1275         return;
1276     }
1277     chip->cores_mask &= pcc->cores_mask;
1278 
1279     /* now that we have a sane layout, let check the number of cores */
1280     cores_max = ctpop64(chip->cores_mask);
1281     if (chip->nr_cores > cores_max) {
1282         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1283                    cores_max);
1284         return;
1285     }
1286 }
1287 
1288 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1289 {
1290     MachineState *ms = MACHINE(qdev_get_machine());
1291     Error *error = NULL;
1292     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1293     const char *typename = pnv_chip_core_typename(chip);
1294     size_t typesize = object_type_get_instance_size(typename);
1295     int i, core_hwid;
1296 
1297     if (!object_class_by_name(typename)) {
1298         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1299         return;
1300     }
1301 
1302     /* Cores */
1303     pnv_chip_core_sanitize(chip, &error);
1304     if (error) {
1305         error_propagate(errp, error);
1306         return;
1307     }
1308 
1309     chip->cores = g_malloc0(typesize * chip->nr_cores);
1310 
1311     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1312              && (i < chip->nr_cores); core_hwid++) {
1313         char core_name[32];
1314         void *pnv_core = chip->cores + i * typesize;
1315         uint64_t xscom_core_base;
1316 
1317         if (!(chip->cores_mask & (1ull << core_hwid))) {
1318             continue;
1319         }
1320 
1321         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1322         object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1323                                 typename, &error_fatal, NULL);
1324         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1325                                 &error_fatal);
1326         object_property_set_int(OBJECT(pnv_core), core_hwid,
1327                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1328         object_property_set_int(OBJECT(pnv_core),
1329                                 pcc->core_pir(chip, core_hwid),
1330                                 "pir", &error_fatal);
1331         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1332                                  &error_abort);
1333         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1334                                  &error_fatal);
1335 
1336         /* Each core has an XSCOM MMIO region */
1337         if (!pnv_chip_is_power9(chip)) {
1338             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1339         } else {
1340             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1341         }
1342 
1343         pnv_xscom_add_subregion(chip, xscom_core_base,
1344                                 &PNV_CORE(pnv_core)->xscom_regs);
1345         i++;
1346     }
1347 }
1348 
1349 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1350 {
1351     PnvChip *chip = PNV_CHIP(dev);
1352     Error *error = NULL;
1353 
1354     /* Cores */
1355     pnv_chip_core_realize(chip, &error);
1356     if (error) {
1357         error_propagate(errp, error);
1358         return;
1359     }
1360 }
1361 
1362 static Property pnv_chip_properties[] = {
1363     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1364     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1365     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1366     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1367     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1368     DEFINE_PROP_END_OF_LIST(),
1369 };
1370 
1371 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1372 {
1373     DeviceClass *dc = DEVICE_CLASS(klass);
1374 
1375     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1376     dc->realize = pnv_chip_realize;
1377     dc->props = pnv_chip_properties;
1378     dc->desc = "PowerNV Chip";
1379 }
1380 
1381 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1382 {
1383     PnvMachineState *pnv = PNV_MACHINE(xi);
1384     int i;
1385 
1386     for (i = 0; i < pnv->num_chips; i++) {
1387         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1388 
1389         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1390             return &chip8->psi.ics;
1391         }
1392     }
1393     return NULL;
1394 }
1395 
1396 static void pnv_ics_resend(XICSFabric *xi)
1397 {
1398     PnvMachineState *pnv = PNV_MACHINE(xi);
1399     int i;
1400 
1401     for (i = 0; i < pnv->num_chips; i++) {
1402         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1403         ics_resend(&chip8->psi.ics);
1404     }
1405 }
1406 
1407 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1408 {
1409     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1410 
1411     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1412 }
1413 
1414 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1415                                Monitor *mon)
1416 {
1417     PnvMachineState *pnv = PNV_MACHINE(obj);
1418     int i;
1419     CPUState *cs;
1420 
1421     CPU_FOREACH(cs) {
1422         PowerPCCPU *cpu = POWERPC_CPU(cs);
1423 
1424         if (pnv_chip_is_power9(pnv->chips[0])) {
1425             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1426         } else {
1427             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1428         }
1429     }
1430 
1431     for (i = 0; i < pnv->num_chips; i++) {
1432         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1433     }
1434 }
1435 
1436 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1437                               void *opaque, Error **errp)
1438 {
1439     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1440 }
1441 
1442 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1443                               void *opaque, Error **errp)
1444 {
1445     PnvMachineState *pnv = PNV_MACHINE(obj);
1446     uint32_t num_chips;
1447     Error *local_err = NULL;
1448 
1449     visit_type_uint32(v, name, &num_chips, &local_err);
1450     if (local_err) {
1451         error_propagate(errp, local_err);
1452         return;
1453     }
1454 
1455     /*
1456      * TODO: should we decide on how many chips we can create based
1457      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1458      */
1459     if (!is_power_of_2(num_chips) || num_chips > 4) {
1460         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1461         return;
1462     }
1463 
1464     pnv->num_chips = num_chips;
1465 }
1466 
1467 static void pnv_machine_instance_init(Object *obj)
1468 {
1469     PnvMachineState *pnv = PNV_MACHINE(obj);
1470     pnv->num_chips = 1;
1471 }
1472 
1473 static void pnv_machine_class_props_init(ObjectClass *oc)
1474 {
1475     object_class_property_add(oc, "num-chips", "uint32",
1476                               pnv_get_num_chips, pnv_set_num_chips,
1477                               NULL, NULL, NULL);
1478     object_class_property_set_description(oc, "num-chips",
1479                               "Specifies the number of processor chips",
1480                               NULL);
1481 }
1482 
1483 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1484 {
1485     MachineClass *mc = MACHINE_CLASS(oc);
1486     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1487 
1488     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1489     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1490 
1491     xic->icp_get = pnv_icp_get;
1492     xic->ics_get = pnv_ics_get;
1493     xic->ics_resend = pnv_ics_resend;
1494 }
1495 
1496 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1497 {
1498     MachineClass *mc = MACHINE_CLASS(oc);
1499 
1500     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1501     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1502 
1503     mc->alias = "powernv";
1504 }
1505 
1506 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1507 {
1508     MachineClass *mc = MACHINE_CLASS(oc);
1509     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1510 
1511     mc->desc = "IBM PowerNV (Non-Virtualized)";
1512     mc->init = pnv_init;
1513     mc->reset = pnv_reset;
1514     mc->max_cpus = MAX_CPUS;
1515     /* Pnv provides a AHCI device for storage */
1516     mc->block_default_type = IF_IDE;
1517     mc->no_parallel = 1;
1518     mc->default_boot_order = NULL;
1519     /*
1520      * RAM defaults to less than 2048 for 32-bit hosts, and large
1521      * enough to fit the maximum initrd size at it's load address
1522      */
1523     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1524     ispc->print_info = pnv_pic_print_info;
1525 
1526     pnv_machine_class_props_init(oc);
1527 }
1528 
1529 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1530     {                                             \
1531         .name          = type,                    \
1532         .class_init    = class_initfn,            \
1533         .parent        = TYPE_PNV8_CHIP,          \
1534     }
1535 
1536 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1537     {                                             \
1538         .name          = type,                    \
1539         .class_init    = class_initfn,            \
1540         .parent        = TYPE_PNV9_CHIP,          \
1541     }
1542 
1543 static const TypeInfo types[] = {
1544     {
1545         .name          = MACHINE_TYPE_NAME("powernv9"),
1546         .parent        = TYPE_PNV_MACHINE,
1547         .class_init    = pnv_machine_power9_class_init,
1548     },
1549     {
1550         .name          = MACHINE_TYPE_NAME("powernv8"),
1551         .parent        = TYPE_PNV_MACHINE,
1552         .class_init    = pnv_machine_power8_class_init,
1553         .interfaces = (InterfaceInfo[]) {
1554             { TYPE_XICS_FABRIC },
1555             { },
1556         },
1557     },
1558     {
1559         .name          = TYPE_PNV_MACHINE,
1560         .parent        = TYPE_MACHINE,
1561         .abstract       = true,
1562         .instance_size = sizeof(PnvMachineState),
1563         .instance_init = pnv_machine_instance_init,
1564         .class_init    = pnv_machine_class_init,
1565         .interfaces = (InterfaceInfo[]) {
1566             { TYPE_INTERRUPT_STATS_PROVIDER },
1567             { },
1568         },
1569     },
1570     {
1571         .name          = TYPE_PNV_CHIP,
1572         .parent        = TYPE_SYS_BUS_DEVICE,
1573         .class_init    = pnv_chip_class_init,
1574         .instance_size = sizeof(PnvChip),
1575         .class_size    = sizeof(PnvChipClass),
1576         .abstract      = true,
1577     },
1578 
1579     /*
1580      * P9 chip and variants
1581      */
1582     {
1583         .name          = TYPE_PNV9_CHIP,
1584         .parent        = TYPE_PNV_CHIP,
1585         .instance_init = pnv_chip_power9_instance_init,
1586         .instance_size = sizeof(Pnv9Chip),
1587     },
1588     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1589 
1590     /*
1591      * P8 chip and variants
1592      */
1593     {
1594         .name          = TYPE_PNV8_CHIP,
1595         .parent        = TYPE_PNV_CHIP,
1596         .instance_init = pnv_chip_power8_instance_init,
1597         .instance_size = sizeof(Pnv8Chip),
1598     },
1599     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1600     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1601     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1602                           pnv_chip_power8nvl_class_init),
1603 };
1604 
1605 DEFINE_TYPES(types)
1606