xref: /openbmc/qemu/hw/ppc/pnv.c (revision c396c58a02f16af7b44448a39f61ebf0af7b95b5)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
284     int i;
285 
286     pnv_dt_xscom(chip, fdt, 0,
287                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
288                  cpu_to_be64(PNV_XSCOM_SIZE),
289                  compat, sizeof(compat));
290 
291     for (i = 0; i < chip->nr_cores; i++) {
292         PnvCore *pnv_core = chip->cores[i];
293 
294         pnv_dt_core(chip, pnv_core, fdt);
295 
296         /* Interrupt Control Presenters (ICP). One per core. */
297         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
298     }
299 
300     if (chip->ram_size) {
301         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
302     }
303 }
304 
305 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
306 {
307     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
308     int i;
309 
310     pnv_dt_xscom(chip, fdt, 0,
311                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
312                  cpu_to_be64(PNV9_XSCOM_SIZE),
313                  compat, sizeof(compat));
314 
315     for (i = 0; i < chip->nr_cores; i++) {
316         PnvCore *pnv_core = chip->cores[i];
317 
318         pnv_dt_core(chip, pnv_core, fdt);
319     }
320 
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324 
325     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
326 }
327 
328 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
329 {
330     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
331     int i;
332 
333     pnv_dt_xscom(chip, fdt, 0,
334                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
335                  cpu_to_be64(PNV10_XSCOM_SIZE),
336                  compat, sizeof(compat));
337 
338     for (i = 0; i < chip->nr_cores; i++) {
339         PnvCore *pnv_core = chip->cores[i];
340 
341         pnv_dt_core(chip, pnv_core, fdt);
342     }
343 
344     if (chip->ram_size) {
345         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
346     }
347 
348     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
349 }
350 
351 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
352 {
353     uint32_t io_base = d->ioport_id;
354     uint32_t io_regs[] = {
355         cpu_to_be32(1),
356         cpu_to_be32(io_base),
357         cpu_to_be32(2)
358     };
359     char *name;
360     int node;
361 
362     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
363     node = fdt_add_subnode(fdt, lpc_off, name);
364     _FDT(node);
365     g_free(name);
366 
367     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
368     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
369 }
370 
371 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
372 {
373     const char compatible[] = "ns16550\0pnpPNP,501";
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(8)
379     };
380     char *name;
381     int node;
382 
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387 
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
390                       sizeof(compatible))));
391 
392     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
393     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
394     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
396                            fdt_get_phandle(fdt, lpc_off))));
397 
398     /* This is needed by Linux */
399     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
400 }
401 
402 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
403 {
404     const char compatible[] = "bt\0ipmi-bt";
405     uint32_t io_base;
406     uint32_t io_regs[] = {
407         cpu_to_be32(1),
408         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
409         cpu_to_be32(3)
410     };
411     uint32_t irq;
412     char *name;
413     int node;
414 
415     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
416     io_regs[1] = cpu_to_be32(io_base);
417 
418     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
419 
420     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
421     node = fdt_add_subnode(fdt, lpc_off, name);
422     _FDT(node);
423     g_free(name);
424 
425     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
426     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
427                       sizeof(compatible))));
428 
429     /* Mark it as reserved to avoid Linux trying to claim it */
430     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
431     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
433                            fdt_get_phandle(fdt, lpc_off))));
434 }
435 
436 typedef struct ForeachPopulateArgs {
437     void *fdt;
438     int offset;
439 } ForeachPopulateArgs;
440 
441 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
442 {
443     ForeachPopulateArgs *args = opaque;
444     ISADevice *d = ISA_DEVICE(dev);
445 
446     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
447         pnv_dt_rtc(d, args->fdt, args->offset);
448     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
449         pnv_dt_serial(d, args->fdt, args->offset);
450     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
451         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
452     } else {
453         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
454                      d->ioport_id);
455     }
456 
457     return 0;
458 }
459 
460 /*
461  * The default LPC bus of a multichip system is on chip 0. It's
462  * recognized by the firmware (skiboot) using a "primary" property.
463  */
464 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
465 {
466     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
467     ForeachPopulateArgs args = {
468         .fdt = fdt,
469         .offset = isa_offset,
470     };
471     uint32_t phandle;
472 
473     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
474 
475     phandle = qemu_fdt_alloc_phandle(fdt);
476     assert(phandle > 0);
477     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
478 
479     /*
480      * ISA devices are not necessarily parented to the ISA bus so we
481      * can not use object_child_foreach()
482      */
483     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
484                        &args);
485 }
486 
487 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
488 {
489     int off;
490 
491     off = fdt_add_subnode(fdt, 0, "ibm,opal");
492     off = fdt_add_subnode(fdt, off, "power-mgt");
493 
494     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
495 }
496 
497 static void *pnv_dt_create(MachineState *machine)
498 {
499     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
500     PnvMachineState *pnv = PNV_MACHINE(machine);
501     void *fdt;
502     char *buf;
503     int off;
504     int i;
505 
506     fdt = g_malloc0(FDT_MAX_SIZE);
507     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
508 
509     /* /qemu node */
510     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
511 
512     /* Root node */
513     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
514     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
515     _FDT((fdt_setprop_string(fdt, 0, "model",
516                              "IBM PowerNV (emulated by qemu)")));
517     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
518 
519     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
520     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
521     if (qemu_uuid_set) {
522         _FDT((fdt_property_string(fdt, "system-id", buf)));
523     }
524     g_free(buf);
525 
526     off = fdt_add_subnode(fdt, 0, "chosen");
527     if (machine->kernel_cmdline) {
528         _FDT((fdt_setprop_string(fdt, off, "bootargs",
529                                  machine->kernel_cmdline)));
530     }
531 
532     if (pnv->initrd_size) {
533         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
534         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
535 
536         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
537                                &start_prop, sizeof(start_prop))));
538         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
539                                &end_prop, sizeof(end_prop))));
540     }
541 
542     /* Populate device tree for each chip */
543     for (i = 0; i < pnv->num_chips; i++) {
544         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
545     }
546 
547     /* Populate ISA devices on chip 0 */
548     pnv_dt_isa(pnv, fdt);
549 
550     if (pnv->bmc) {
551         pnv_dt_bmc_sensors(pnv->bmc, fdt);
552     }
553 
554     /* Create an extra node for power management on machines that support it */
555     if (pmc->dt_power_mgt) {
556         pmc->dt_power_mgt(pnv, fdt);
557     }
558 
559     return fdt;
560 }
561 
562 static void pnv_powerdown_notify(Notifier *n, void *opaque)
563 {
564     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
565 
566     if (pnv->bmc) {
567         pnv_bmc_powerdown(pnv->bmc);
568     }
569 }
570 
571 static void pnv_reset(MachineState *machine)
572 {
573     void *fdt;
574 
575     qemu_devices_reset();
576 
577     fdt = pnv_dt_create(machine);
578 
579     /* Pack resulting tree */
580     _FDT((fdt_pack(fdt)));
581 
582     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
583     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
584 }
585 
586 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
590 }
591 
592 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
593 {
594     Pnv8Chip *chip8 = PNV8_CHIP(chip);
595     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
596 }
597 
598 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
599 {
600     Pnv9Chip *chip9 = PNV9_CHIP(chip);
601     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
602 }
603 
604 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
605 {
606     Pnv10Chip *chip10 = PNV10_CHIP(chip);
607     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
608 }
609 
610 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
611 {
612     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
613 }
614 
615 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618 
619     ics_pic_print_info(&chip8->psi.ics, mon);
620 }
621 
622 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625 
626     pnv_xive_pic_print_info(&chip9->xive, mon);
627     pnv_psi_pic_print_info(&chip9->psi, mon);
628 }
629 
630 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
631                                                 uint32_t core_id)
632 {
633     return PNV_XSCOM_EX_BASE(core_id);
634 }
635 
636 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
637                                                 uint32_t core_id)
638 {
639     return PNV9_XSCOM_EC_BASE(core_id);
640 }
641 
642 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
643                                                  uint32_t core_id)
644 {
645     return PNV10_XSCOM_EC_BASE(core_id);
646 }
647 
648 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
649 {
650     PowerPCCPUClass *ppc_default =
651         POWERPC_CPU_CLASS(object_class_by_name(default_type));
652     PowerPCCPUClass *ppc =
653         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
654 
655     return ppc_default->pvr_match(ppc_default, ppc->pvr);
656 }
657 
658 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
659 {
660     Object *obj;
661 
662     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
663     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
664     object_property_set_int(obj, irq, "irq", &error_fatal);
665     object_property_set_bool(obj, true, "realized", &error_fatal);
666 }
667 
668 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
669 {
670     Pnv10Chip *chip10 = PNV10_CHIP(chip);
671 
672     pnv_psi_pic_print_info(&chip10->psi, mon);
673 }
674 
675 static void pnv_init(MachineState *machine)
676 {
677     PnvMachineState *pnv = PNV_MACHINE(machine);
678     MachineClass *mc = MACHINE_GET_CLASS(machine);
679     MemoryRegion *ram;
680     char *fw_filename;
681     long fw_size;
682     int i;
683     char *chip_typename;
684     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
685     DeviceState *dev;
686 
687     /* allocate RAM */
688     if (machine->ram_size < (1 * GiB)) {
689         warn_report("skiboot may not work with < 1GB of RAM");
690     }
691 
692     ram = g_new(MemoryRegion, 1);
693     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
694                                          machine->ram_size);
695     memory_region_add_subregion(get_system_memory(), 0, ram);
696 
697     /*
698      * Create our simple PNOR device
699      */
700     dev = qdev_create(NULL, TYPE_PNV_PNOR);
701     if (pnor) {
702         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
703                             &error_abort);
704     }
705     qdev_init_nofail(dev);
706     pnv->pnor = PNV_PNOR(dev);
707 
708     /* load skiboot firmware  */
709     if (bios_name == NULL) {
710         bios_name = FW_FILE_NAME;
711     }
712 
713     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
714     if (!fw_filename) {
715         error_report("Could not find OPAL firmware '%s'", bios_name);
716         exit(1);
717     }
718 
719     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
720     if (fw_size < 0) {
721         error_report("Could not load OPAL firmware '%s'", fw_filename);
722         exit(1);
723     }
724     g_free(fw_filename);
725 
726     /* load kernel */
727     if (machine->kernel_filename) {
728         long kernel_size;
729 
730         kernel_size = load_image_targphys(machine->kernel_filename,
731                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
732         if (kernel_size < 0) {
733             error_report("Could not load kernel '%s'",
734                          machine->kernel_filename);
735             exit(1);
736         }
737     }
738 
739     /* load initrd */
740     if (machine->initrd_filename) {
741         pnv->initrd_base = INITRD_LOAD_ADDR;
742         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
743                                   pnv->initrd_base, INITRD_MAX_SIZE);
744         if (pnv->initrd_size < 0) {
745             error_report("Could not load initial ram disk '%s'",
746                          machine->initrd_filename);
747             exit(1);
748         }
749     }
750 
751     /*
752      * Check compatibility of the specified CPU with the machine
753      * default.
754      */
755     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
756         error_report("invalid CPU model '%s' for %s machine",
757                      machine->cpu_type, mc->name);
758         exit(1);
759     }
760 
761     /* Create the processor chips */
762     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
763     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
764                                     i, machine->cpu_type);
765     if (!object_class_by_name(chip_typename)) {
766         error_report("invalid chip model '%.*s' for %s machine",
767                      i, machine->cpu_type, mc->name);
768         exit(1);
769     }
770 
771     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
772     for (i = 0; i < pnv->num_chips; i++) {
773         char chip_name[32];
774         Object *chip = object_new(chip_typename);
775 
776         pnv->chips[i] = PNV_CHIP(chip);
777 
778         /*
779          * TODO: put all the memory in one node on chip 0 until we find a
780          * way to specify different ranges for each chip
781          */
782         if (i == 0) {
783             object_property_set_int(chip, machine->ram_size, "ram-size",
784                                     &error_fatal);
785         }
786 
787         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
788         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
789         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
790                                 &error_fatal);
791         object_property_set_int(chip, machine->smp.cores,
792                                 "nr-cores", &error_fatal);
793         object_property_set_bool(chip, true, "realized", &error_fatal);
794     }
795     g_free(chip_typename);
796 
797     /* Create the machine BMC simulator */
798     pnv->bmc = pnv_bmc_create();
799 
800     /* Instantiate ISA bus on chip 0 */
801     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
802 
803     /* Create serial port */
804     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
805 
806     /* Create an RTC ISA device too */
807     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
808 
809     /* Create the IPMI BT device for communication with the BMC */
810     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
811 
812     /*
813      * OpenPOWER systems use a IPMI SEL Event message to notify the
814      * host to powerdown
815      */
816     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
817     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
818 }
819 
820 /*
821  *    0:21  Reserved - Read as zeros
822  *   22:24  Chip ID
823  *   25:28  Core number
824  *   29:31  Thread ID
825  */
826 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
827 {
828     return (chip->chip_id << 7) | (core_id << 3);
829 }
830 
831 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
832                                         Error **errp)
833 {
834     Error *local_err = NULL;
835     Object *obj;
836     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
837 
838     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
839                      &local_err);
840     if (local_err) {
841         error_propagate(errp, local_err);
842         return;
843     }
844 
845     pnv_cpu->intc = obj;
846 }
847 
848 
849 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
850 {
851     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
852 
853     icp_reset(ICP(pnv_cpu->intc));
854 }
855 
856 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
857 {
858     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
859 
860     icp_destroy(ICP(pnv_cpu->intc));
861     pnv_cpu->intc = NULL;
862 }
863 
864 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
865                                             Monitor *mon)
866 {
867     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
868 }
869 
870 /*
871  *    0:48  Reserved - Read as zeroes
872  *   49:52  Node ID
873  *   53:55  Chip ID
874  *   56     Reserved - Read as zero
875  *   57:61  Core number
876  *   62:63  Thread ID
877  *
878  * We only care about the lower bits. uint32_t is fine for the moment.
879  */
880 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
881 {
882     return (chip->chip_id << 8) | (core_id << 2);
883 }
884 
885 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
886 {
887     return (chip->chip_id << 8) | (core_id << 2);
888 }
889 
890 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
891                                         Error **errp)
892 {
893     Pnv9Chip *chip9 = PNV9_CHIP(chip);
894     Error *local_err = NULL;
895     Object *obj;
896     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
897 
898     /*
899      * The core creates its interrupt presenter but the XIVE interrupt
900      * controller object is initialized afterwards. Hopefully, it's
901      * only used at runtime.
902      */
903     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
904     if (local_err) {
905         error_propagate(errp, local_err);
906         return;
907     }
908 
909     pnv_cpu->intc = obj;
910 }
911 
912 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
913 {
914     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
915 
916     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
917 }
918 
919 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
920 {
921     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
922 
923     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
924     pnv_cpu->intc = NULL;
925 }
926 
927 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
928                                             Monitor *mon)
929 {
930     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
931 }
932 
933 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
934                                         Error **errp)
935 {
936     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
937 
938     /* Will be defined when the interrupt controller is */
939     pnv_cpu->intc = NULL;
940 }
941 
942 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
943 {
944     ;
945 }
946 
947 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
948 {
949     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
950 
951     pnv_cpu->intc = NULL;
952 }
953 
954 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
955                                              Monitor *mon)
956 {
957 }
958 
959 /*
960  * Allowed core identifiers on a POWER8 Processor Chip :
961  *
962  * <EX0 reserved>
963  *  EX1  - Venice only
964  *  EX2  - Venice only
965  *  EX3  - Venice only
966  *  EX4
967  *  EX5
968  *  EX6
969  * <EX7,8 reserved> <reserved>
970  *  EX9  - Venice only
971  *  EX10 - Venice only
972  *  EX11 - Venice only
973  *  EX12
974  *  EX13
975  *  EX14
976  * <EX15 reserved>
977  */
978 #define POWER8E_CORE_MASK  (0x7070ull)
979 #define POWER8_CORE_MASK   (0x7e7eull)
980 
981 /*
982  * POWER9 has 24 cores, ids starting at 0x0
983  */
984 #define POWER9_CORE_MASK   (0xffffffffffffffull)
985 
986 
987 #define POWER10_CORE_MASK  (0xffffffffffffffull)
988 
989 static void pnv_chip_power8_instance_init(Object *obj)
990 {
991     Pnv8Chip *chip8 = PNV8_CHIP(obj);
992 
993     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
994                             TYPE_PNV8_PSI, &error_abort, NULL);
995     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
996                                    OBJECT(qdev_get_machine()), &error_abort);
997 
998     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
999                             TYPE_PNV8_LPC, &error_abort, NULL);
1000 
1001     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1002                             TYPE_PNV8_OCC, &error_abort, NULL);
1003 
1004     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1005                             TYPE_PNV8_HOMER, &error_abort, NULL);
1006 }
1007 
1008 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1009  {
1010     PnvChip *chip = PNV_CHIP(chip8);
1011     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1012     int i, j;
1013     char *name;
1014     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
1015 
1016     name = g_strdup_printf("icp-%x", chip->chip_id);
1017     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1018     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1019     g_free(name);
1020 
1021     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1022 
1023     /* Map the ICP registers for each thread */
1024     for (i = 0; i < chip->nr_cores; i++) {
1025         PnvCore *pnv_core = chip->cores[i];
1026         int core_hwid = CPU_CORE(pnv_core)->core_id;
1027 
1028         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1029             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1030             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
1031 
1032             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1033                                         &icp->mmio);
1034         }
1035     }
1036 }
1037 
1038 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1039 {
1040     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1041     PnvChip *chip = PNV_CHIP(dev);
1042     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1043     Pnv8Psi *psi8 = &chip8->psi;
1044     Error *local_err = NULL;
1045 
1046     /* XSCOM bridge is first */
1047     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1048     if (local_err) {
1049         error_propagate(errp, local_err);
1050         return;
1051     }
1052     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1053 
1054     pcc->parent_realize(dev, &local_err);
1055     if (local_err) {
1056         error_propagate(errp, local_err);
1057         return;
1058     }
1059 
1060     /* Processor Service Interface (PSI) Host Bridge */
1061     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1062                             "bar", &error_fatal);
1063     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1064     if (local_err) {
1065         error_propagate(errp, local_err);
1066         return;
1067     }
1068     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1069                             &PNV_PSI(psi8)->xscom_regs);
1070 
1071     /* Create LPC controller */
1072     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1073                              &error_abort);
1074     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1075                              &error_fatal);
1076     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1077 
1078     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1079                                             (uint64_t) PNV_XSCOM_BASE(chip),
1080                                             PNV_XSCOM_LPC_BASE);
1081 
1082     /*
1083      * Interrupt Management Area. This is the memory region holding
1084      * all the Interrupt Control Presenter (ICP) registers
1085      */
1086     pnv_chip_icp_realize(chip8, &local_err);
1087     if (local_err) {
1088         error_propagate(errp, local_err);
1089         return;
1090     }
1091 
1092     /* Create the simplified OCC model */
1093     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1094                              &error_abort);
1095     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1096     if (local_err) {
1097         error_propagate(errp, local_err);
1098         return;
1099     }
1100     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1101 
1102     /* OCC SRAM model */
1103     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1104                                 &chip8->occ.sram_regs);
1105 
1106     /* HOMER */
1107     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1108                              &error_abort);
1109     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1110                              &local_err);
1111     if (local_err) {
1112         error_propagate(errp, local_err);
1113         return;
1114     }
1115     /* Homer Xscom region */
1116     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1117 
1118     /* Homer mmio region */
1119     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1120                                 &chip8->homer.regs);
1121 }
1122 
1123 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1124 {
1125     DeviceClass *dc = DEVICE_CLASS(klass);
1126     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1127 
1128     k->chip_type = PNV_CHIP_POWER8E;
1129     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1130     k->cores_mask = POWER8E_CORE_MASK;
1131     k->core_pir = pnv_chip_core_pir_p8;
1132     k->intc_create = pnv_chip_power8_intc_create;
1133     k->intc_reset = pnv_chip_power8_intc_reset;
1134     k->intc_destroy = pnv_chip_power8_intc_destroy;
1135     k->intc_print_info = pnv_chip_power8_intc_print_info;
1136     k->isa_create = pnv_chip_power8_isa_create;
1137     k->dt_populate = pnv_chip_power8_dt_populate;
1138     k->pic_print_info = pnv_chip_power8_pic_print_info;
1139     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1140     dc->desc = "PowerNV Chip POWER8E";
1141 
1142     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1143                                     &k->parent_realize);
1144 }
1145 
1146 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1147 {
1148     DeviceClass *dc = DEVICE_CLASS(klass);
1149     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1150 
1151     k->chip_type = PNV_CHIP_POWER8;
1152     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1153     k->cores_mask = POWER8_CORE_MASK;
1154     k->core_pir = pnv_chip_core_pir_p8;
1155     k->intc_create = pnv_chip_power8_intc_create;
1156     k->intc_reset = pnv_chip_power8_intc_reset;
1157     k->intc_destroy = pnv_chip_power8_intc_destroy;
1158     k->intc_print_info = pnv_chip_power8_intc_print_info;
1159     k->isa_create = pnv_chip_power8_isa_create;
1160     k->dt_populate = pnv_chip_power8_dt_populate;
1161     k->pic_print_info = pnv_chip_power8_pic_print_info;
1162     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1163     dc->desc = "PowerNV Chip POWER8";
1164 
1165     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1166                                     &k->parent_realize);
1167 }
1168 
1169 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1170 {
1171     DeviceClass *dc = DEVICE_CLASS(klass);
1172     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1173 
1174     k->chip_type = PNV_CHIP_POWER8NVL;
1175     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1176     k->cores_mask = POWER8_CORE_MASK;
1177     k->core_pir = pnv_chip_core_pir_p8;
1178     k->intc_create = pnv_chip_power8_intc_create;
1179     k->intc_reset = pnv_chip_power8_intc_reset;
1180     k->intc_destroy = pnv_chip_power8_intc_destroy;
1181     k->intc_print_info = pnv_chip_power8_intc_print_info;
1182     k->isa_create = pnv_chip_power8nvl_isa_create;
1183     k->dt_populate = pnv_chip_power8_dt_populate;
1184     k->pic_print_info = pnv_chip_power8_pic_print_info;
1185     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1186     dc->desc = "PowerNV Chip POWER8NVL";
1187 
1188     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1189                                     &k->parent_realize);
1190 }
1191 
1192 static void pnv_chip_power9_instance_init(Object *obj)
1193 {
1194     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1195 
1196     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1197                             TYPE_PNV_XIVE, &error_abort, NULL);
1198 
1199     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1200                             TYPE_PNV9_PSI, &error_abort, NULL);
1201 
1202     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1203                             TYPE_PNV9_LPC, &error_abort, NULL);
1204 
1205     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1206                             TYPE_PNV9_OCC, &error_abort, NULL);
1207 
1208     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1209                             TYPE_PNV9_HOMER, &error_abort, NULL);
1210 }
1211 
1212 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1213 {
1214     PnvChip *chip = PNV_CHIP(chip9);
1215     int i;
1216 
1217     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1218     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1219 
1220     for (i = 0; i < chip9->nr_quads; i++) {
1221         char eq_name[32];
1222         PnvQuad *eq = &chip9->quads[i];
1223         PnvCore *pnv_core = chip->cores[i * 4];
1224         int core_id = CPU_CORE(pnv_core)->core_id;
1225 
1226         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1227         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1228                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1229 
1230         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1231         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1232 
1233         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1234                                 &eq->xscom_regs);
1235     }
1236 }
1237 
1238 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1239 {
1240     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1241     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1242     PnvChip *chip = PNV_CHIP(dev);
1243     Pnv9Psi *psi9 = &chip9->psi;
1244     Error *local_err = NULL;
1245 
1246     /* XSCOM bridge is first */
1247     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1248     if (local_err) {
1249         error_propagate(errp, local_err);
1250         return;
1251     }
1252     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1253 
1254     pcc->parent_realize(dev, &local_err);
1255     if (local_err) {
1256         error_propagate(errp, local_err);
1257         return;
1258     }
1259 
1260     pnv_chip_quad_realize(chip9, &local_err);
1261     if (local_err) {
1262         error_propagate(errp, local_err);
1263         return;
1264     }
1265 
1266     /* XIVE interrupt controller (POWER9) */
1267     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1268                             "ic-bar", &error_fatal);
1269     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1270                             "vc-bar", &error_fatal);
1271     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1272                             "pc-bar", &error_fatal);
1273     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1274                             "tm-bar", &error_fatal);
1275     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1276                              &error_abort);
1277     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1278                              &local_err);
1279     if (local_err) {
1280         error_propagate(errp, local_err);
1281         return;
1282     }
1283     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1284                             &chip9->xive.xscom_regs);
1285 
1286     /* Processor Service Interface (PSI) Host Bridge */
1287     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1288                             "bar", &error_fatal);
1289     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1290     if (local_err) {
1291         error_propagate(errp, local_err);
1292         return;
1293     }
1294     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1295                             &PNV_PSI(psi9)->xscom_regs);
1296 
1297     /* LPC */
1298     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1299                              &error_abort);
1300     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1301     if (local_err) {
1302         error_propagate(errp, local_err);
1303         return;
1304     }
1305     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1306                                 &chip9->lpc.xscom_regs);
1307 
1308     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1309                                             (uint64_t) PNV9_LPCM_BASE(chip));
1310 
1311     /* Create the simplified OCC model */
1312     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1313                              &error_abort);
1314     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1315     if (local_err) {
1316         error_propagate(errp, local_err);
1317         return;
1318     }
1319     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1320 
1321     /* OCC SRAM model */
1322     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1323                                 &chip9->occ.sram_regs);
1324 
1325     /* HOMER */
1326     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1327                              &error_abort);
1328     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1329                              &local_err);
1330     if (local_err) {
1331         error_propagate(errp, local_err);
1332         return;
1333     }
1334     /* Homer Xscom region */
1335     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1336 
1337     /* Homer mmio region */
1338     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1339                                 &chip9->homer.regs);
1340 }
1341 
1342 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1343 {
1344     DeviceClass *dc = DEVICE_CLASS(klass);
1345     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1346 
1347     k->chip_type = PNV_CHIP_POWER9;
1348     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1349     k->cores_mask = POWER9_CORE_MASK;
1350     k->core_pir = pnv_chip_core_pir_p9;
1351     k->intc_create = pnv_chip_power9_intc_create;
1352     k->intc_reset = pnv_chip_power9_intc_reset;
1353     k->intc_destroy = pnv_chip_power9_intc_destroy;
1354     k->intc_print_info = pnv_chip_power9_intc_print_info;
1355     k->isa_create = pnv_chip_power9_isa_create;
1356     k->dt_populate = pnv_chip_power9_dt_populate;
1357     k->pic_print_info = pnv_chip_power9_pic_print_info;
1358     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1359     dc->desc = "PowerNV Chip POWER9";
1360 
1361     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1362                                     &k->parent_realize);
1363 }
1364 
1365 static void pnv_chip_power10_instance_init(Object *obj)
1366 {
1367     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1368 
1369     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1370                             TYPE_PNV10_PSI, &error_abort, NULL);
1371     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1372                             TYPE_PNV10_LPC, &error_abort, NULL);
1373 }
1374 
1375 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1376 {
1377     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1378     PnvChip *chip = PNV_CHIP(dev);
1379     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1380     Error *local_err = NULL;
1381 
1382     /* XSCOM bridge is first */
1383     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1384     if (local_err) {
1385         error_propagate(errp, local_err);
1386         return;
1387     }
1388     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1389 
1390     pcc->parent_realize(dev, &local_err);
1391     if (local_err) {
1392         error_propagate(errp, local_err);
1393         return;
1394     }
1395 
1396     /* Processor Service Interface (PSI) Host Bridge */
1397     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1398                             "bar", &error_fatal);
1399     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1400                              &local_err);
1401     if (local_err) {
1402         error_propagate(errp, local_err);
1403         return;
1404     }
1405     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1406                             &PNV_PSI(&chip10->psi)->xscom_regs);
1407 
1408     /* LPC */
1409     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1410                              &error_abort);
1411     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1412                              &local_err);
1413     if (local_err) {
1414         error_propagate(errp, local_err);
1415         return;
1416     }
1417     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1418                                 &chip10->lpc.xscom_regs);
1419 
1420     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1421                                             (uint64_t) PNV10_LPCM_BASE(chip));
1422 }
1423 
1424 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1425 {
1426     DeviceClass *dc = DEVICE_CLASS(klass);
1427     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1428 
1429     k->chip_type = PNV_CHIP_POWER10;
1430     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1431     k->cores_mask = POWER10_CORE_MASK;
1432     k->core_pir = pnv_chip_core_pir_p10;
1433     k->intc_create = pnv_chip_power10_intc_create;
1434     k->intc_reset = pnv_chip_power10_intc_reset;
1435     k->intc_destroy = pnv_chip_power10_intc_destroy;
1436     k->intc_print_info = pnv_chip_power10_intc_print_info;
1437     k->isa_create = pnv_chip_power10_isa_create;
1438     k->dt_populate = pnv_chip_power10_dt_populate;
1439     k->pic_print_info = pnv_chip_power10_pic_print_info;
1440     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1441     dc->desc = "PowerNV Chip POWER10";
1442 
1443     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1444                                     &k->parent_realize);
1445 }
1446 
1447 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1448 {
1449     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1450     int cores_max;
1451 
1452     /*
1453      * No custom mask for this chip, let's use the default one from *
1454      * the chip class
1455      */
1456     if (!chip->cores_mask) {
1457         chip->cores_mask = pcc->cores_mask;
1458     }
1459 
1460     /* filter alien core ids ! some are reserved */
1461     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1462         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1463                    chip->cores_mask);
1464         return;
1465     }
1466     chip->cores_mask &= pcc->cores_mask;
1467 
1468     /* now that we have a sane layout, let check the number of cores */
1469     cores_max = ctpop64(chip->cores_mask);
1470     if (chip->nr_cores > cores_max) {
1471         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1472                    cores_max);
1473         return;
1474     }
1475 }
1476 
1477 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1478 {
1479     MachineState *ms = MACHINE(qdev_get_machine());
1480     Error *error = NULL;
1481     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1482     const char *typename = pnv_chip_core_typename(chip);
1483     int i, core_hwid;
1484 
1485     if (!object_class_by_name(typename)) {
1486         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1487         return;
1488     }
1489 
1490     /* Cores */
1491     pnv_chip_core_sanitize(chip, &error);
1492     if (error) {
1493         error_propagate(errp, error);
1494         return;
1495     }
1496 
1497     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1498 
1499     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1500              && (i < chip->nr_cores); core_hwid++) {
1501         char core_name[32];
1502         PnvCore *pnv_core;
1503         uint64_t xscom_core_base;
1504 
1505         if (!(chip->cores_mask & (1ull << core_hwid))) {
1506             continue;
1507         }
1508 
1509         pnv_core = PNV_CORE(object_new(typename));
1510 
1511         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1512         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1513                                   &error_abort);
1514         chip->cores[i] = pnv_core;
1515         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1516                                 &error_fatal);
1517         object_property_set_int(OBJECT(pnv_core), core_hwid,
1518                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1519         object_property_set_int(OBJECT(pnv_core),
1520                                 pcc->core_pir(chip, core_hwid),
1521                                 "pir", &error_fatal);
1522         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1523                                  &error_abort);
1524         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1525                                  &error_fatal);
1526 
1527         /* Each core has an XSCOM MMIO region */
1528         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1529 
1530         pnv_xscom_add_subregion(chip, xscom_core_base,
1531                                 &pnv_core->xscom_regs);
1532         i++;
1533     }
1534 }
1535 
1536 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1537 {
1538     PnvChip *chip = PNV_CHIP(dev);
1539     Error *error = NULL;
1540 
1541     /* Cores */
1542     pnv_chip_core_realize(chip, &error);
1543     if (error) {
1544         error_propagate(errp, error);
1545         return;
1546     }
1547 }
1548 
1549 static Property pnv_chip_properties[] = {
1550     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1551     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1552     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1553     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1554     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1555     DEFINE_PROP_END_OF_LIST(),
1556 };
1557 
1558 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1559 {
1560     DeviceClass *dc = DEVICE_CLASS(klass);
1561 
1562     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1563     dc->realize = pnv_chip_realize;
1564     dc->props = pnv_chip_properties;
1565     dc->desc = "PowerNV Chip";
1566 }
1567 
1568 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1569 {
1570     int i, j;
1571 
1572     for (i = 0; i < chip->nr_cores; i++) {
1573         PnvCore *pc = chip->cores[i];
1574         CPUCore *cc = CPU_CORE(pc);
1575 
1576         for (j = 0; j < cc->nr_threads; j++) {
1577             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1578                 return pc->threads[j];
1579             }
1580         }
1581     }
1582     return NULL;
1583 }
1584 
1585 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1586 {
1587     PnvMachineState *pnv = PNV_MACHINE(xi);
1588     int i;
1589 
1590     for (i = 0; i < pnv->num_chips; i++) {
1591         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1592 
1593         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1594             return &chip8->psi.ics;
1595         }
1596     }
1597     return NULL;
1598 }
1599 
1600 static void pnv_ics_resend(XICSFabric *xi)
1601 {
1602     PnvMachineState *pnv = PNV_MACHINE(xi);
1603     int i;
1604 
1605     for (i = 0; i < pnv->num_chips; i++) {
1606         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1607         ics_resend(&chip8->psi.ics);
1608     }
1609 }
1610 
1611 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1612 {
1613     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1614 
1615     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1616 }
1617 
1618 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1619                                Monitor *mon)
1620 {
1621     PnvMachineState *pnv = PNV_MACHINE(obj);
1622     int i;
1623     CPUState *cs;
1624 
1625     CPU_FOREACH(cs) {
1626         PowerPCCPU *cpu = POWERPC_CPU(cs);
1627 
1628         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1629         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1630                                                            mon);
1631     }
1632 
1633     for (i = 0; i < pnv->num_chips; i++) {
1634         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1635     }
1636 }
1637 
1638 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1639                          uint8_t nvt_blk, uint32_t nvt_idx,
1640                          bool cam_ignore, uint8_t priority,
1641                          uint32_t logic_serv,
1642                          XiveTCTXMatch *match)
1643 {
1644     PnvMachineState *pnv = PNV_MACHINE(xfb);
1645     int total_count = 0;
1646     int i;
1647 
1648     for (i = 0; i < pnv->num_chips; i++) {
1649         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1650         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1651         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1652         int count;
1653 
1654         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1655                                priority, logic_serv, match);
1656 
1657         if (count < 0) {
1658             return count;
1659         }
1660 
1661         total_count += count;
1662     }
1663 
1664     return total_count;
1665 }
1666 
1667 PnvChip *pnv_get_chip(uint32_t chip_id)
1668 {
1669     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1670     int i;
1671 
1672     for (i = 0; i < pnv->num_chips; i++) {
1673         PnvChip *chip = pnv->chips[i];
1674         if (chip->chip_id == chip_id) {
1675             return chip;
1676         }
1677     }
1678     return NULL;
1679 }
1680 
1681 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1682                               void *opaque, Error **errp)
1683 {
1684     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1685 }
1686 
1687 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1688                               void *opaque, Error **errp)
1689 {
1690     PnvMachineState *pnv = PNV_MACHINE(obj);
1691     uint32_t num_chips;
1692     Error *local_err = NULL;
1693 
1694     visit_type_uint32(v, name, &num_chips, &local_err);
1695     if (local_err) {
1696         error_propagate(errp, local_err);
1697         return;
1698     }
1699 
1700     /*
1701      * TODO: should we decide on how many chips we can create based
1702      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1703      */
1704     if (!is_power_of_2(num_chips) || num_chips > 4) {
1705         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1706         return;
1707     }
1708 
1709     pnv->num_chips = num_chips;
1710 }
1711 
1712 static void pnv_machine_instance_init(Object *obj)
1713 {
1714     PnvMachineState *pnv = PNV_MACHINE(obj);
1715     pnv->num_chips = 1;
1716 }
1717 
1718 static void pnv_machine_class_props_init(ObjectClass *oc)
1719 {
1720     object_class_property_add(oc, "num-chips", "uint32",
1721                               pnv_get_num_chips, pnv_set_num_chips,
1722                               NULL, NULL, NULL);
1723     object_class_property_set_description(oc, "num-chips",
1724                               "Specifies the number of processor chips",
1725                               NULL);
1726 }
1727 
1728 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1729 {
1730     MachineClass *mc = MACHINE_CLASS(oc);
1731     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1732     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1733     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1734 
1735     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1736     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1737 
1738     xic->icp_get = pnv_icp_get;
1739     xic->ics_get = pnv_ics_get;
1740     xic->ics_resend = pnv_ics_resend;
1741 
1742     pmc->compat = compat;
1743     pmc->compat_size = sizeof(compat);
1744 }
1745 
1746 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1747 {
1748     MachineClass *mc = MACHINE_CLASS(oc);
1749     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1750     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1751     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1752 
1753     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1754     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1755     xfc->match_nvt = pnv_match_nvt;
1756 
1757     mc->alias = "powernv";
1758 
1759     pmc->compat = compat;
1760     pmc->compat_size = sizeof(compat);
1761     pmc->dt_power_mgt = pnv_dt_power_mgt;
1762 }
1763 
1764 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1765 {
1766     MachineClass *mc = MACHINE_CLASS(oc);
1767     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1768     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1769 
1770     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1771     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1772 
1773     pmc->compat = compat;
1774     pmc->compat_size = sizeof(compat);
1775     pmc->dt_power_mgt = pnv_dt_power_mgt;
1776 }
1777 
1778 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1779 {
1780     MachineClass *mc = MACHINE_CLASS(oc);
1781     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1782 
1783     mc->desc = "IBM PowerNV (Non-Virtualized)";
1784     mc->init = pnv_init;
1785     mc->reset = pnv_reset;
1786     mc->max_cpus = MAX_CPUS;
1787     /* Pnv provides a AHCI device for storage */
1788     mc->block_default_type = IF_IDE;
1789     mc->no_parallel = 1;
1790     mc->default_boot_order = NULL;
1791     /*
1792      * RAM defaults to less than 2048 for 32-bit hosts, and large
1793      * enough to fit the maximum initrd size at it's load address
1794      */
1795     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1796     ispc->print_info = pnv_pic_print_info;
1797 
1798     pnv_machine_class_props_init(oc);
1799 }
1800 
1801 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1802     {                                             \
1803         .name          = type,                    \
1804         .class_init    = class_initfn,            \
1805         .parent        = TYPE_PNV8_CHIP,          \
1806     }
1807 
1808 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1809     {                                             \
1810         .name          = type,                    \
1811         .class_init    = class_initfn,            \
1812         .parent        = TYPE_PNV9_CHIP,          \
1813     }
1814 
1815 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1816     {                                              \
1817         .name          = type,                     \
1818         .class_init    = class_initfn,             \
1819         .parent        = TYPE_PNV10_CHIP,          \
1820     }
1821 
1822 static const TypeInfo types[] = {
1823     {
1824         .name          = MACHINE_TYPE_NAME("powernv10"),
1825         .parent        = TYPE_PNV_MACHINE,
1826         .class_init    = pnv_machine_power10_class_init,
1827     },
1828     {
1829         .name          = MACHINE_TYPE_NAME("powernv9"),
1830         .parent        = TYPE_PNV_MACHINE,
1831         .class_init    = pnv_machine_power9_class_init,
1832         .interfaces = (InterfaceInfo[]) {
1833             { TYPE_XIVE_FABRIC },
1834             { },
1835         },
1836     },
1837     {
1838         .name          = MACHINE_TYPE_NAME("powernv8"),
1839         .parent        = TYPE_PNV_MACHINE,
1840         .class_init    = pnv_machine_power8_class_init,
1841         .interfaces = (InterfaceInfo[]) {
1842             { TYPE_XICS_FABRIC },
1843             { },
1844         },
1845     },
1846     {
1847         .name          = TYPE_PNV_MACHINE,
1848         .parent        = TYPE_MACHINE,
1849         .abstract       = true,
1850         .instance_size = sizeof(PnvMachineState),
1851         .instance_init = pnv_machine_instance_init,
1852         .class_init    = pnv_machine_class_init,
1853         .class_size    = sizeof(PnvMachineClass),
1854         .interfaces = (InterfaceInfo[]) {
1855             { TYPE_INTERRUPT_STATS_PROVIDER },
1856             { },
1857         },
1858     },
1859     {
1860         .name          = TYPE_PNV_CHIP,
1861         .parent        = TYPE_SYS_BUS_DEVICE,
1862         .class_init    = pnv_chip_class_init,
1863         .instance_size = sizeof(PnvChip),
1864         .class_size    = sizeof(PnvChipClass),
1865         .abstract      = true,
1866     },
1867 
1868     /*
1869      * P10 chip and variants
1870      */
1871     {
1872         .name          = TYPE_PNV10_CHIP,
1873         .parent        = TYPE_PNV_CHIP,
1874         .instance_init = pnv_chip_power10_instance_init,
1875         .instance_size = sizeof(Pnv10Chip),
1876     },
1877     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
1878 
1879     /*
1880      * P9 chip and variants
1881      */
1882     {
1883         .name          = TYPE_PNV9_CHIP,
1884         .parent        = TYPE_PNV_CHIP,
1885         .instance_init = pnv_chip_power9_instance_init,
1886         .instance_size = sizeof(Pnv9Chip),
1887     },
1888     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1889 
1890     /*
1891      * P8 chip and variants
1892      */
1893     {
1894         .name          = TYPE_PNV8_CHIP,
1895         .parent        = TYPE_PNV_CHIP,
1896         .instance_init = pnv_chip_power8_instance_init,
1897         .instance_size = sizeof(Pnv8Chip),
1898     },
1899     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1900     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1901     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1902                           pnv_chip_power8nvl_class_init),
1903 };
1904 
1905 DEFINE_TYPES(types)
1906