xref: /openbmc/qemu/hw/ppc/pnv.c (revision bc8c553b893c39a7f68518e181c675ec20c74594)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "qapi/type-helpers.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
147     int i;
148     uint32_t pir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 
246     return offset;
247 }
248 
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
250                        uint32_t nr_threads)
251 {
252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
253     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
254     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
255     char *name;
256     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
257     uint32_t irange[2], i, rsize;
258     uint64_t *reg;
259     int offset;
260 
261     irange[0] = cpu_to_be32(pir);
262     irange[1] = cpu_to_be32(nr_threads);
263 
264     rsize = sizeof(uint64_t) * 2 * nr_threads;
265     reg = g_malloc(rsize);
266     for (i = 0; i < nr_threads; i++) {
267         /* We know P8 PIR is linear with thread id */
268         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
269         reg[i * 2 + 1] = cpu_to_be64(0x1000);
270     }
271 
272     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
273     offset = fdt_add_subnode(fdt, 0, name);
274     _FDT(offset);
275     g_free(name);
276 
277     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
278     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
279     _FDT((fdt_setprop_string(fdt, offset, "device_type",
280                               "PowerPC-External-Interrupt-Presentation")));
281     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
282     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
283                        irange, sizeof(irange))));
284     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
285     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
286     g_free(reg);
287 }
288 
289 /*
290  * Adds a PnvPHB to the chip on P8.
291  * Implemented here, like for defaults PHBs
292  */
293 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 {
295     Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 
297     phb->chip = chip;
298 
299     chip8->phbs[chip8->num_phbs] = phb;
300     chip8->num_phbs++;
301     return chip;
302 }
303 
304 /*
305  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
306  * HTM is always enabled because TCG does implement HTM, it's just a
307  * degenerate implementation.
308  */
309 static const uint8_t pa_features_207[] = { 24, 0,
310                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
311                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
312                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
313                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 
315 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 {
317     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
318     int i;
319 
320     pnv_dt_xscom(chip, fdt, 0,
321                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
322                  cpu_to_be64(PNV_XSCOM_SIZE),
323                  compat, sizeof(compat));
324 
325     for (i = 0; i < chip->nr_cores; i++) {
326         PnvCore *pnv_core = chip->cores[i];
327         int offset;
328 
329         offset = pnv_dt_core(chip, pnv_core, fdt);
330 
331         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
332                            pa_features_207, sizeof(pa_features_207))));
333 
334         /* Interrupt Control Presenters (ICP). One per core. */
335         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
336     }
337 
338     if (chip->ram_size) {
339         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
340     }
341 }
342 
343 /*
344  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345  */
346 static const uint8_t pa_features_300[] = { 66, 0,
347     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
348     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
349     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
350     /* 6: DS207 */
351     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
352     /* 16: Vector */
353     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
354     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
356     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
358     /* 32: LE atomic, 34: EBB + ext EBB */
359     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
360     /* 40: Radix MMU */
361     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
362     /* 42: PM, 44: PC RA, 46: SC vec'd */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
364     /* 48: SIMD, 50: QP BFP, 52: String */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
366     /* 54: DecFP, 56: DecI, 58: SHA */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
368     /* 60: NM atomic, 62: RNG */
369     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
370 };
371 
372 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 {
374     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
375     int i;
376 
377     pnv_dt_xscom(chip, fdt, 0,
378                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
379                  cpu_to_be64(PNV9_XSCOM_SIZE),
380                  compat, sizeof(compat));
381 
382     for (i = 0; i < chip->nr_cores; i++) {
383         PnvCore *pnv_core = chip->cores[i];
384         int offset;
385 
386         offset = pnv_dt_core(chip, pnv_core, fdt);
387 
388         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
389                            pa_features_300, sizeof(pa_features_300))));
390     }
391 
392     if (chip->ram_size) {
393         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
394     }
395 
396     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
397 }
398 
399 /*
400  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
401  * always disables copy/paste.
402  */
403 static const uint8_t pa_features_31[] = { 74, 0,
404     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
405     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
406     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
407     /* 6: DS207 */
408     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
409     /* 16: Vector */
410     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
411     /* 18: Vec. Scalar, 20: Vec. XOR */
412     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
413     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
414     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
415     /* 32: LE atomic, 34: EBB + ext EBB */
416     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
417     /* 40: Radix MMU */
418     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
419     /* 42: PM, 44: PC RA, 46: SC vec'd */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
421     /* 48: SIMD, 50: QP BFP, 52: String */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
423     /* 54: DecFP, 56: DecI, 58: SHA */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
425     /* 60: NM atomic, 62: RNG */
426     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
427     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
428     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
429     /* 72: [P]HASHST/[P]HASHCHK */
430     0x80, 0x00,                         /* 72 - 73 */
431 };
432 
433 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 {
435     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
436     int i;
437 
438     pnv_dt_xscom(chip, fdt, 0,
439                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
440                  cpu_to_be64(PNV10_XSCOM_SIZE),
441                  compat, sizeof(compat));
442 
443     for (i = 0; i < chip->nr_cores; i++) {
444         PnvCore *pnv_core = chip->cores[i];
445         int offset;
446 
447         offset = pnv_dt_core(chip, pnv_core, fdt);
448 
449         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
450                            pa_features_31, sizeof(pa_features_31))));
451     }
452 
453     if (chip->ram_size) {
454         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
455     }
456 
457     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
458 }
459 
460 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 {
462     uint32_t io_base = d->ioport_id;
463     uint32_t io_regs[] = {
464         cpu_to_be32(1),
465         cpu_to_be32(io_base),
466         cpu_to_be32(2)
467     };
468     char *name;
469     int node;
470 
471     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
472     node = fdt_add_subnode(fdt, lpc_off, name);
473     _FDT(node);
474     g_free(name);
475 
476     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
477     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
478 }
479 
480 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 {
482     const char compatible[] = "ns16550\0pnpPNP,501";
483     uint32_t io_base = d->ioport_id;
484     uint32_t io_regs[] = {
485         cpu_to_be32(1),
486         cpu_to_be32(io_base),
487         cpu_to_be32(8)
488     };
489     uint32_t irq;
490     char *name;
491     int node;
492 
493     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
505     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 
510     /* This is needed by Linux */
511     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
512 }
513 
514 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "bt\0ipmi-bt";
517     uint32_t io_base;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
521         cpu_to_be32(3)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
528     io_regs[1] = cpu_to_be32(io_base);
529 
530     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 
532     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
533     node = fdt_add_subnode(fdt, lpc_off, name);
534     _FDT(node);
535     g_free(name);
536 
537     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
538     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
539                       sizeof(compatible))));
540 
541     /* Mark it as reserved to avoid Linux trying to claim it */
542     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
544     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
545                            fdt_get_phandle(fdt, lpc_off))));
546 }
547 
548 typedef struct ForeachPopulateArgs {
549     void *fdt;
550     int offset;
551 } ForeachPopulateArgs;
552 
553 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 {
555     ForeachPopulateArgs *args = opaque;
556     ISADevice *d = ISA_DEVICE(dev);
557 
558     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
559         pnv_dt_rtc(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
561         pnv_dt_serial(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
563         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
564     } else {
565         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
566                      d->ioport_id);
567     }
568 
569     return 0;
570 }
571 
572 /*
573  * The default LPC bus of a multichip system is on chip 0. It's
574  * recognized by the firmware (skiboot) using a "primary" property.
575  */
576 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 {
578     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
579     ForeachPopulateArgs args = {
580         .fdt = fdt,
581         .offset = isa_offset,
582     };
583     uint32_t phandle;
584 
585     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 
587     phandle = qemu_fdt_alloc_phandle(fdt);
588     assert(phandle > 0);
589     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
590 
591     /*
592      * ISA devices are not necessarily parented to the ISA bus so we
593      * can not use object_child_foreach()
594      */
595     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
596                        &args);
597 }
598 
599 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 {
601     int off;
602 
603     off = fdt_add_subnode(fdt, 0, "ibm,opal");
604     off = fdt_add_subnode(fdt, off, "power-mgt");
605 
606     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
607 }
608 
609 static void *pnv_dt_create(MachineState *machine)
610 {
611     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
612     PnvMachineState *pnv = PNV_MACHINE(machine);
613     void *fdt;
614     char *buf;
615     int off;
616     int i;
617 
618     fdt = g_malloc0(FDT_MAX_SIZE);
619     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 
621     /* /qemu node */
622     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 
624     /* Root node */
625     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
626     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
627     _FDT((fdt_setprop_string(fdt, 0, "model",
628                              "IBM PowerNV (emulated by qemu)")));
629     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 
631     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
632     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
633     if (qemu_uuid_set) {
634         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635     }
636     g_free(buf);
637 
638     off = fdt_add_subnode(fdt, 0, "chosen");
639     if (machine->kernel_cmdline) {
640         _FDT((fdt_setprop_string(fdt, off, "bootargs",
641                                  machine->kernel_cmdline)));
642     }
643 
644     if (pnv->initrd_size) {
645         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
646         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
649                                &start_prop, sizeof(start_prop))));
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
651                                &end_prop, sizeof(end_prop))));
652     }
653 
654     /* Populate device tree for each chip */
655     for (i = 0; i < pnv->num_chips; i++) {
656         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
657     }
658 
659     /* Populate ISA devices on chip 0 */
660     pnv_dt_isa(pnv, fdt);
661 
662     if (pnv->bmc) {
663         pnv_dt_bmc_sensors(pnv->bmc, fdt);
664     }
665 
666     /* Create an extra node for power management on machines that support it */
667     if (pmc->dt_power_mgt) {
668         pmc->dt_power_mgt(pnv, fdt);
669     }
670 
671     return fdt;
672 }
673 
674 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 {
676     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 
678     if (pnv->bmc) {
679         pnv_bmc_powerdown(pnv->bmc);
680     }
681 }
682 
683 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 {
685     PnvMachineState *pnv = PNV_MACHINE(machine);
686     IPMIBmc *bmc;
687     void *fdt;
688 
689     qemu_devices_reset(reason);
690 
691     /*
692      * The machine should provide by default an internal BMC simulator.
693      * If not, try to use the BMC device that was provided on the command
694      * line.
695      */
696     bmc = pnv_bmc_find(&error_fatal);
697     if (!pnv->bmc) {
698         if (!bmc) {
699             if (!qtest_enabled()) {
700                 warn_report("machine has no BMC device. Use '-device "
701                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
702                             "to define one");
703             }
704         } else {
705             pnv_bmc_set_pnor(bmc, pnv->pnor);
706             pnv->bmc = bmc;
707         }
708     }
709 
710     fdt = pnv_dt_create(machine);
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
716     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
717 
718     /*
719      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
720      * the existing machine->fdt to avoid leaking it during
721      * a reset.
722      */
723     g_free(machine->fdt);
724     machine->fdt = fdt;
725 }
726 
727 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 {
729     Pnv8Chip *chip8 = PNV8_CHIP(chip);
730     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 
732     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
733     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
734 }
735 
736 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 {
738     Pnv8Chip *chip8 = PNV8_CHIP(chip);
739     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 
741     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 
750     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
751     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
752 }
753 
754 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 {
756     Pnv10Chip *chip10 = PNV10_CHIP(chip);
757     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 
759     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
760     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
761 }
762 
763 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 {
765     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
766 }
767 
768 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 {
770     Pnv8Chip *chip8 = PNV8_CHIP(chip);
771     int i;
772 
773     g_autoptr(GString) buf = g_string_new("");
774     g_autoptr(HumanReadableText) info = NULL;
775 
776     ics_pic_print_info(&chip8->psi.ics, buf);
777 
778     for (i = 0; i < chip8->num_phbs; i++) {
779         PnvPHB *phb = chip8->phbs[i];
780         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
781 
782         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
783         ics_pic_print_info(&phb3->lsis, buf);
784     }
785 
786     info = human_readable_text_from_str(buf);
787     monitor_puts(mon, info->human_readable_text);
788 }
789 
790 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
791 {
792     Monitor *mon = opaque;
793     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
794     g_autoptr(GString) buf = g_string_new("");
795     g_autoptr(HumanReadableText) info = NULL;
796 
797     if (!phb) {
798         return 0;
799     }
800 
801     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
802     info = human_readable_text_from_str(buf);
803     monitor_puts(mon, info->human_readable_text);
804 
805     return 0;
806 }
807 
808 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
809 {
810     Pnv9Chip *chip9 = PNV9_CHIP(chip);
811 
812     pnv_xive_pic_print_info(&chip9->xive, mon);
813     pnv_psi_pic_print_info(&chip9->psi, mon);
814 
815     object_child_foreach_recursive(OBJECT(chip),
816                          pnv_chip_power9_pic_print_info_child, mon);
817 }
818 
819 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
820                                                 uint32_t core_id)
821 {
822     return PNV_XSCOM_EX_BASE(core_id);
823 }
824 
825 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
826                                                 uint32_t core_id)
827 {
828     return PNV9_XSCOM_EC_BASE(core_id);
829 }
830 
831 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
832                                                  uint32_t core_id)
833 {
834     return PNV10_XSCOM_EC_BASE(core_id);
835 }
836 
837 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
838 {
839     PowerPCCPUClass *ppc_default =
840         POWERPC_CPU_CLASS(object_class_by_name(default_type));
841     PowerPCCPUClass *ppc =
842         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
843 
844     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
845 }
846 
847 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
848 {
849     ISADevice *dev = isa_new("isa-ipmi-bt");
850 
851     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
852     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
853     isa_realize_and_unref(dev, bus, &error_fatal);
854 }
855 
856 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
857 {
858     Pnv10Chip *chip10 = PNV10_CHIP(chip);
859 
860     pnv_xive2_pic_print_info(&chip10->xive, mon);
861     pnv_psi_pic_print_info(&chip10->psi, mon);
862 
863     object_child_foreach_recursive(OBJECT(chip),
864                          pnv_chip_power9_pic_print_info_child, mon);
865 }
866 
867 /* Always give the first 1GB to chip 0 else we won't boot */
868 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
869 {
870     MachineState *machine = MACHINE(pnv);
871     uint64_t ram_per_chip;
872 
873     assert(machine->ram_size >= 1 * GiB);
874 
875     ram_per_chip = machine->ram_size / pnv->num_chips;
876     if (ram_per_chip >= 1 * GiB) {
877         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
878     }
879 
880     assert(pnv->num_chips > 1);
881 
882     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
883     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
884 }
885 
886 static void pnv_init(MachineState *machine)
887 {
888     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
889     PnvMachineState *pnv = PNV_MACHINE(machine);
890     MachineClass *mc = MACHINE_GET_CLASS(machine);
891     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
892     char *fw_filename;
893     long fw_size;
894     uint64_t chip_ram_start = 0;
895     int i;
896     char *chip_typename;
897     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
898     DeviceState *dev;
899 
900     if (kvm_enabled()) {
901         error_report("machine %s does not support the KVM accelerator",
902                      mc->name);
903         exit(EXIT_FAILURE);
904     }
905 
906     /* allocate RAM */
907     if (machine->ram_size < mc->default_ram_size) {
908         char *sz = size_to_str(mc->default_ram_size);
909         error_report("Invalid RAM size, should be bigger than %s", sz);
910         g_free(sz);
911         exit(EXIT_FAILURE);
912     }
913     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
914 
915     /*
916      * Create our simple PNOR device
917      */
918     dev = qdev_new(TYPE_PNV_PNOR);
919     if (pnor) {
920         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
921     }
922     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
923     pnv->pnor = PNV_PNOR(dev);
924 
925     /* load skiboot firmware  */
926     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
927     if (!fw_filename) {
928         error_report("Could not find OPAL firmware '%s'", bios_name);
929         exit(1);
930     }
931 
932     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
933     if (fw_size < 0) {
934         error_report("Could not load OPAL firmware '%s'", fw_filename);
935         exit(1);
936     }
937     g_free(fw_filename);
938 
939     /* load kernel */
940     if (machine->kernel_filename) {
941         long kernel_size;
942 
943         kernel_size = load_image_targphys(machine->kernel_filename,
944                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
945         if (kernel_size < 0) {
946             error_report("Could not load kernel '%s'",
947                          machine->kernel_filename);
948             exit(1);
949         }
950     }
951 
952     /* load initrd */
953     if (machine->initrd_filename) {
954         pnv->initrd_base = INITRD_LOAD_ADDR;
955         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
956                                   pnv->initrd_base, INITRD_MAX_SIZE);
957         if (pnv->initrd_size < 0) {
958             error_report("Could not load initial ram disk '%s'",
959                          machine->initrd_filename);
960             exit(1);
961         }
962     }
963 
964     /* MSIs are supported on this platform */
965     msi_nonbroken = true;
966 
967     /*
968      * Check compatibility of the specified CPU with the machine
969      * default.
970      */
971     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
972         error_report("invalid CPU model '%s' for %s machine",
973                      machine->cpu_type, mc->name);
974         exit(1);
975     }
976 
977     /* Create the processor chips */
978     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
979     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
980                                     i, machine->cpu_type);
981     if (!object_class_by_name(chip_typename)) {
982         error_report("invalid chip model '%.*s' for %s machine",
983                      i, machine->cpu_type, mc->name);
984         exit(1);
985     }
986 
987     pnv->num_chips =
988         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
989 
990     if (machine->smp.threads > 8) {
991         error_report("Cannot support more than 8 threads/core "
992                      "on a powernv machine");
993         exit(1);
994     }
995     if (!is_power_of_2(machine->smp.threads)) {
996         error_report("Cannot support %d threads/core on a powernv"
997                      "machine because it must be a power of 2",
998                      machine->smp.threads);
999         exit(1);
1000     }
1001     /*
1002      * TODO: should we decide on how many chips we can create based
1003      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1004      */
1005     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1006         error_report("invalid number of chips: '%d'", pnv->num_chips);
1007         error_printf(
1008             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1009         exit(1);
1010     }
1011 
1012     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1013     for (i = 0; i < pnv->num_chips; i++) {
1014         char chip_name[32];
1015         Object *chip = OBJECT(qdev_new(chip_typename));
1016         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1017 
1018         pnv->chips[i] = PNV_CHIP(chip);
1019 
1020         /* Distribute RAM among the chips  */
1021         object_property_set_int(chip, "ram-start", chip_ram_start,
1022                                 &error_fatal);
1023         object_property_set_int(chip, "ram-size", chip_ram_size,
1024                                 &error_fatal);
1025         chip_ram_start += chip_ram_size;
1026 
1027         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1028         object_property_add_child(OBJECT(pnv), chip_name, chip);
1029         object_property_set_int(chip, "chip-id", i, &error_fatal);
1030         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1031                                 &error_fatal);
1032         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1033                                 &error_fatal);
1034         /*
1035          * The POWER8 machine use the XICS interrupt interface.
1036          * Propagate the XICS fabric to the chip and its controllers.
1037          */
1038         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1039             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1040         }
1041         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1042             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1043                                      &error_abort);
1044         }
1045         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1046     }
1047     g_free(chip_typename);
1048 
1049     /* Instantiate ISA bus on chip 0 */
1050     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1051 
1052     /* Create serial port */
1053     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1054 
1055     /* Create an RTC ISA device too */
1056     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1057 
1058     /*
1059      * Create the machine BMC simulator and the IPMI BT device for
1060      * communication with the BMC
1061      */
1062     if (defaults_enabled()) {
1063         pnv->bmc = pnv_bmc_create(pnv->pnor);
1064         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1065     }
1066 
1067     /*
1068      * The PNOR is mapped on the LPC FW address space by the BMC.
1069      * Since we can not reach the remote BMC machine with LPC memops,
1070      * map it always for now.
1071      */
1072     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1073                                 &pnv->pnor->mmio);
1074 
1075     /*
1076      * OpenPOWER systems use a IPMI SEL Event message to notify the
1077      * host to powerdown
1078      */
1079     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1080     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1081 
1082     /*
1083      * Create/Connect any machine-specific I2C devices
1084      */
1085     if (pmc->i2c_init) {
1086         pmc->i2c_init(pnv);
1087     }
1088 }
1089 
1090 /*
1091  *    0:21  Reserved - Read as zeros
1092  *   22:24  Chip ID
1093  *   25:28  Core number
1094  *   29:31  Thread ID
1095  */
1096 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1097                                 uint32_t thread_id)
1098 {
1099     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1100 }
1101 
1102 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1103                                         Error **errp)
1104 {
1105     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1106     Error *local_err = NULL;
1107     Object *obj;
1108     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1109 
1110     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1111     if (local_err) {
1112         error_propagate(errp, local_err);
1113         return;
1114     }
1115 
1116     pnv_cpu->intc = obj;
1117 }
1118 
1119 
1120 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1121 {
1122     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1123 
1124     icp_reset(ICP(pnv_cpu->intc));
1125 }
1126 
1127 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1128 {
1129     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1130 
1131     icp_destroy(ICP(pnv_cpu->intc));
1132     pnv_cpu->intc = NULL;
1133 }
1134 
1135 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1136                                             GString *buf)
1137 {
1138     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1139 }
1140 
1141 /*
1142  *    0:48  Reserved - Read as zeroes
1143  *   49:52  Node ID
1144  *   53:55  Chip ID
1145  *   56     Reserved - Read as zero
1146  *   57:61  Core number
1147  *   62:63  Thread ID
1148  *
1149  * We only care about the lower bits. uint32_t is fine for the moment.
1150  */
1151 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1152                                 uint32_t thread_id)
1153 {
1154     if (chip->nr_threads == 8) {
1155         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1156                (thread_id >> 1);
1157     } else {
1158         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1159     }
1160 }
1161 
1162 /*
1163  *    0:48  Reserved - Read as zeroes
1164  *   49:52  Node ID
1165  *   53:55  Chip ID
1166  *   56     Reserved - Read as zero
1167  *   57:59  Quad ID
1168  *   60     Core Chiplet Pair ID
1169  *   61:63  Thread/Core Chiplet ID t0-t2
1170  *
1171  * We only care about the lower bits. uint32_t is fine for the moment.
1172  */
1173 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1174                                  uint32_t thread_id)
1175 {
1176     if (chip->nr_threads == 8) {
1177         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1178                ((core_id % 2) << 3) | thread_id;
1179     } else {
1180         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1181     }
1182 }
1183 
1184 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1185                                         Error **errp)
1186 {
1187     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1188     Error *local_err = NULL;
1189     Object *obj;
1190     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1191 
1192     /*
1193      * The core creates its interrupt presenter but the XIVE interrupt
1194      * controller object is initialized afterwards. Hopefully, it's
1195      * only used at runtime.
1196      */
1197     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1198                            &local_err);
1199     if (local_err) {
1200         error_propagate(errp, local_err);
1201         return;
1202     }
1203 
1204     pnv_cpu->intc = obj;
1205 }
1206 
1207 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1208 {
1209     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1210 
1211     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1212 }
1213 
1214 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1215 {
1216     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1217 
1218     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1219     pnv_cpu->intc = NULL;
1220 }
1221 
1222 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1223                                             GString *buf)
1224 {
1225     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1226 }
1227 
1228 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1229                                         Error **errp)
1230 {
1231     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1232     Error *local_err = NULL;
1233     Object *obj;
1234     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1235 
1236     /*
1237      * The core creates its interrupt presenter but the XIVE2 interrupt
1238      * controller object is initialized afterwards. Hopefully, it's
1239      * only used at runtime.
1240      */
1241     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1242                            &local_err);
1243     if (local_err) {
1244         error_propagate(errp, local_err);
1245         return;
1246     }
1247 
1248     pnv_cpu->intc = obj;
1249 }
1250 
1251 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1252 {
1253     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1254 
1255     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1256 }
1257 
1258 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1259 {
1260     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1261 
1262     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1263     pnv_cpu->intc = NULL;
1264 }
1265 
1266 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1267                                              GString *buf)
1268 {
1269     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1270 }
1271 
1272 /*
1273  * Allowed core identifiers on a POWER8 Processor Chip :
1274  *
1275  * <EX0 reserved>
1276  *  EX1  - Venice only
1277  *  EX2  - Venice only
1278  *  EX3  - Venice only
1279  *  EX4
1280  *  EX5
1281  *  EX6
1282  * <EX7,8 reserved> <reserved>
1283  *  EX9  - Venice only
1284  *  EX10 - Venice only
1285  *  EX11 - Venice only
1286  *  EX12
1287  *  EX13
1288  *  EX14
1289  * <EX15 reserved>
1290  */
1291 #define POWER8E_CORE_MASK  (0x7070ull)
1292 #define POWER8_CORE_MASK   (0x7e7eull)
1293 
1294 /*
1295  * POWER9 has 24 cores, ids starting at 0x0
1296  */
1297 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1298 
1299 
1300 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1301 
1302 static void pnv_chip_power8_instance_init(Object *obj)
1303 {
1304     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1305     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1306     int i;
1307 
1308     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1309                              (Object **)&chip8->xics,
1310                              object_property_allow_set_link,
1311                              OBJ_PROP_LINK_STRONG);
1312 
1313     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1314 
1315     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1316 
1317     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1318 
1319     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1320 
1321     if (defaults_enabled()) {
1322         chip8->num_phbs = pcc->num_phbs;
1323 
1324         for (i = 0; i < chip8->num_phbs; i++) {
1325             Object *phb = object_new(TYPE_PNV_PHB);
1326 
1327             /*
1328              * We need the chip to parent the PHB to allow the DT
1329              * to build correctly (via pnv_xscom_dt()).
1330              *
1331              * TODO: the PHB should be parented by a PEC device that, at
1332              * this moment, is not modelled powernv8/phb3.
1333              */
1334             object_property_add_child(obj, "phb[*]", phb);
1335             chip8->phbs[i] = PNV_PHB(phb);
1336         }
1337     }
1338 
1339 }
1340 
1341 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1342  {
1343     PnvChip *chip = PNV_CHIP(chip8);
1344     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1345     int i, j;
1346     char *name;
1347 
1348     name = g_strdup_printf("icp-%x", chip->chip_id);
1349     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1350     g_free(name);
1351     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1352                                 &chip8->icp_mmio);
1353 
1354     /* Map the ICP registers for each thread */
1355     for (i = 0; i < chip->nr_cores; i++) {
1356         PnvCore *pnv_core = chip->cores[i];
1357         int core_hwid = CPU_CORE(pnv_core)->core_id;
1358 
1359         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1360             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1361             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1362 
1363             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1364                                         &icp->mmio);
1365         }
1366     }
1367 }
1368 
1369 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1370 {
1371     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1372     PnvChip *chip = PNV_CHIP(dev);
1373     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1374     Pnv8Psi *psi8 = &chip8->psi;
1375     Error *local_err = NULL;
1376     int i;
1377 
1378     assert(chip8->xics);
1379 
1380     /* XSCOM bridge is first */
1381     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1382 
1383     pcc->parent_realize(dev, &local_err);
1384     if (local_err) {
1385         error_propagate(errp, local_err);
1386         return;
1387     }
1388 
1389     /* Processor Service Interface (PSI) Host Bridge */
1390     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1391                             &error_fatal);
1392     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1393                              OBJECT(chip8->xics), &error_abort);
1394     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1395         return;
1396     }
1397     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1398                             &PNV_PSI(psi8)->xscom_regs);
1399 
1400     /* Create LPC controller */
1401     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1402     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1403 
1404     chip->fw_mr = &chip8->lpc.isa_fw;
1405     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1406                                             (uint64_t) PNV_XSCOM_BASE(chip),
1407                                             PNV_XSCOM_LPC_BASE);
1408 
1409     /*
1410      * Interrupt Management Area. This is the memory region holding
1411      * all the Interrupt Control Presenter (ICP) registers
1412      */
1413     pnv_chip_icp_realize(chip8, &local_err);
1414     if (local_err) {
1415         error_propagate(errp, local_err);
1416         return;
1417     }
1418 
1419     /* Create the simplified OCC model */
1420     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1421         return;
1422     }
1423     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1424     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1425                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1426 
1427     /* OCC SRAM model */
1428     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1429                                 &chip8->occ.sram_regs);
1430 
1431     /* HOMER */
1432     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1433                              &error_abort);
1434     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1435         return;
1436     }
1437     /* Homer Xscom region */
1438     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1439 
1440     /* Homer mmio region */
1441     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1442                                 &chip8->homer.regs);
1443 
1444     /* PHB controllers */
1445     for (i = 0; i < chip8->num_phbs; i++) {
1446         PnvPHB *phb = chip8->phbs[i];
1447 
1448         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1449         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1450                                 &error_fatal);
1451         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1452                                  &error_fatal);
1453         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1454             return;
1455         }
1456     }
1457 }
1458 
1459 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1460 {
1461     addr &= (PNV_XSCOM_SIZE - 1);
1462     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1463 }
1464 
1465 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1466 {
1467     DeviceClass *dc = DEVICE_CLASS(klass);
1468     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1469 
1470     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1471     k->cores_mask = POWER8E_CORE_MASK;
1472     k->num_phbs = 3;
1473     k->chip_pir = pnv_chip_pir_p8;
1474     k->intc_create = pnv_chip_power8_intc_create;
1475     k->intc_reset = pnv_chip_power8_intc_reset;
1476     k->intc_destroy = pnv_chip_power8_intc_destroy;
1477     k->intc_print_info = pnv_chip_power8_intc_print_info;
1478     k->isa_create = pnv_chip_power8_isa_create;
1479     k->dt_populate = pnv_chip_power8_dt_populate;
1480     k->pic_print_info = pnv_chip_power8_pic_print_info;
1481     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1482     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1483     dc->desc = "PowerNV Chip POWER8E";
1484 
1485     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1486                                     &k->parent_realize);
1487 }
1488 
1489 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1490 {
1491     DeviceClass *dc = DEVICE_CLASS(klass);
1492     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1493 
1494     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1495     k->cores_mask = POWER8_CORE_MASK;
1496     k->num_phbs = 3;
1497     k->chip_pir = pnv_chip_pir_p8;
1498     k->intc_create = pnv_chip_power8_intc_create;
1499     k->intc_reset = pnv_chip_power8_intc_reset;
1500     k->intc_destroy = pnv_chip_power8_intc_destroy;
1501     k->intc_print_info = pnv_chip_power8_intc_print_info;
1502     k->isa_create = pnv_chip_power8_isa_create;
1503     k->dt_populate = pnv_chip_power8_dt_populate;
1504     k->pic_print_info = pnv_chip_power8_pic_print_info;
1505     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1506     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1507     dc->desc = "PowerNV Chip POWER8";
1508 
1509     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1510                                     &k->parent_realize);
1511 }
1512 
1513 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1514 {
1515     DeviceClass *dc = DEVICE_CLASS(klass);
1516     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1517 
1518     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1519     k->cores_mask = POWER8_CORE_MASK;
1520     k->num_phbs = 4;
1521     k->chip_pir = pnv_chip_pir_p8;
1522     k->intc_create = pnv_chip_power8_intc_create;
1523     k->intc_reset = pnv_chip_power8_intc_reset;
1524     k->intc_destroy = pnv_chip_power8_intc_destroy;
1525     k->intc_print_info = pnv_chip_power8_intc_print_info;
1526     k->isa_create = pnv_chip_power8nvl_isa_create;
1527     k->dt_populate = pnv_chip_power8_dt_populate;
1528     k->pic_print_info = pnv_chip_power8_pic_print_info;
1529     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1530     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1531     dc->desc = "PowerNV Chip POWER8NVL";
1532 
1533     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1534                                     &k->parent_realize);
1535 }
1536 
1537 static void pnv_chip_power9_instance_init(Object *obj)
1538 {
1539     PnvChip *chip = PNV_CHIP(obj);
1540     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1541     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1542     int i;
1543 
1544     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1545     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1546                               "xive-fabric");
1547 
1548     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1549 
1550     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1551 
1552     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1553 
1554     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1555 
1556     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1557 
1558     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1559 
1560     /* Number of PECs is the chip default */
1561     chip->num_pecs = pcc->num_pecs;
1562 
1563     for (i = 0; i < chip->num_pecs; i++) {
1564         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1565                                 TYPE_PNV_PHB4_PEC);
1566     }
1567 
1568     for (i = 0; i < pcc->i2c_num_engines; i++) {
1569         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1570     }
1571 }
1572 
1573 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1574                                       PnvCore *pnv_core,
1575                                       const char *type)
1576 {
1577     char eq_name[32];
1578     int core_id = CPU_CORE(pnv_core)->core_id;
1579 
1580     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1581     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1582                                        sizeof(*eq), type,
1583                                        &error_fatal, NULL);
1584 
1585     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1586     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1587 }
1588 
1589 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1590 {
1591     PnvChip *chip = PNV_CHIP(chip9);
1592     int i;
1593 
1594     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1595     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1596 
1597     for (i = 0; i < chip9->nr_quads; i++) {
1598         PnvQuad *eq = &chip9->quads[i];
1599 
1600         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1601                                   PNV_QUAD_TYPE_NAME("power9"));
1602 
1603         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1604                                 &eq->xscom_regs);
1605     }
1606 }
1607 
1608 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1609 {
1610     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1611     int i;
1612 
1613     for (i = 0; i < chip->num_pecs; i++) {
1614         PnvPhb4PecState *pec = &chip9->pecs[i];
1615         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1616         uint32_t pec_nest_base;
1617         uint32_t pec_pci_base;
1618 
1619         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1620         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1621                                 &error_fatal);
1622         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1623                                  &error_fatal);
1624         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1625             return;
1626         }
1627 
1628         pec_nest_base = pecc->xscom_nest_base(pec);
1629         pec_pci_base = pecc->xscom_pci_base(pec);
1630 
1631         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1632         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1633     }
1634 }
1635 
1636 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1637 {
1638     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1639     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1640     PnvChip *chip = PNV_CHIP(dev);
1641     Pnv9Psi *psi9 = &chip9->psi;
1642     Error *local_err = NULL;
1643     int i;
1644 
1645     /* XSCOM bridge is first */
1646     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1647 
1648     pcc->parent_realize(dev, &local_err);
1649     if (local_err) {
1650         error_propagate(errp, local_err);
1651         return;
1652     }
1653 
1654     pnv_chip_quad_realize(chip9, &local_err);
1655     if (local_err) {
1656         error_propagate(errp, local_err);
1657         return;
1658     }
1659 
1660     /* XIVE interrupt controller (POWER9) */
1661     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1662                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1663     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1664                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1665     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1666                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1667     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1668                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1669     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1670                              &error_abort);
1671     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1672         return;
1673     }
1674     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1675                             &chip9->xive.xscom_regs);
1676 
1677     /* Processor Service Interface (PSI) Host Bridge */
1678     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1679                             &error_fatal);
1680     /* This is the only device with 4k ESB pages */
1681     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1682                             &error_fatal);
1683     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1684         return;
1685     }
1686     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1687                             &PNV_PSI(psi9)->xscom_regs);
1688 
1689     /* LPC */
1690     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1691         return;
1692     }
1693     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1694                                 &chip9->lpc.xscom_regs);
1695 
1696     chip->fw_mr = &chip9->lpc.isa_fw;
1697     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1698                                             (uint64_t) PNV9_LPCM_BASE(chip));
1699 
1700     /* ChipTOD */
1701     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1702                              chip->chip_id == 0, &error_abort);
1703     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1704                              chip->chip_id == 1, &error_abort);
1705     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1706                              &error_abort);
1707     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1708         return;
1709     }
1710     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1711                             &chip9->chiptod.xscom_regs);
1712 
1713     /* Create the simplified OCC model */
1714     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1715         return;
1716     }
1717     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1718     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1719                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1720 
1721     /* OCC SRAM model */
1722     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1723                                 &chip9->occ.sram_regs);
1724 
1725     /* SBE */
1726     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1727         return;
1728     }
1729     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1730                             &chip9->sbe.xscom_ctrl_regs);
1731     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1732                             &chip9->sbe.xscom_mbox_regs);
1733     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1734                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1735 
1736     /* HOMER */
1737     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1738                              &error_abort);
1739     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1740         return;
1741     }
1742     /* Homer Xscom region */
1743     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1744 
1745     /* Homer mmio region */
1746     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1747                                 &chip9->homer.regs);
1748 
1749     /* PEC PHBs */
1750     pnv_chip_power9_pec_realize(chip, &local_err);
1751     if (local_err) {
1752         error_propagate(errp, local_err);
1753         return;
1754     }
1755 
1756     /*
1757      * I2C
1758      */
1759     for (i = 0; i < pcc->i2c_num_engines; i++) {
1760         Object *obj =  OBJECT(&chip9->i2c[i]);
1761 
1762         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1763         object_property_set_int(obj, "num-busses",
1764                                 pcc->i2c_ports_per_engine[i],
1765                                 &error_fatal);
1766         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1767         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1768             return;
1769         }
1770         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1771                                 (chip9->i2c[i].engine - 1) *
1772                                         PNV9_XSCOM_I2CM_SIZE,
1773                                 &chip9->i2c[i].xscom_regs);
1774         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1775                               qdev_get_gpio_in(DEVICE(psi9),
1776                                                PSIHB9_IRQ_SBE_I2C));
1777     }
1778 }
1779 
1780 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1781 {
1782     addr &= (PNV9_XSCOM_SIZE - 1);
1783     return addr >> 3;
1784 }
1785 
1786 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1787 {
1788     DeviceClass *dc = DEVICE_CLASS(klass);
1789     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1790     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1791 
1792     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1793     k->cores_mask = POWER9_CORE_MASK;
1794     k->chip_pir = pnv_chip_pir_p9;
1795     k->intc_create = pnv_chip_power9_intc_create;
1796     k->intc_reset = pnv_chip_power9_intc_reset;
1797     k->intc_destroy = pnv_chip_power9_intc_destroy;
1798     k->intc_print_info = pnv_chip_power9_intc_print_info;
1799     k->isa_create = pnv_chip_power9_isa_create;
1800     k->dt_populate = pnv_chip_power9_dt_populate;
1801     k->pic_print_info = pnv_chip_power9_pic_print_info;
1802     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1803     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1804     dc->desc = "PowerNV Chip POWER9";
1805     k->num_pecs = PNV9_CHIP_MAX_PEC;
1806     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1807     k->i2c_ports_per_engine = i2c_ports_per_engine;
1808 
1809     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1810                                     &k->parent_realize);
1811 }
1812 
1813 static void pnv_chip_power10_instance_init(Object *obj)
1814 {
1815     PnvChip *chip = PNV_CHIP(obj);
1816     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1817     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1818     int i;
1819 
1820     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1821     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1822                               "xive-fabric");
1823     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1824     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1825     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1826                             TYPE_PNV10_CHIPTOD);
1827     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1828     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1829     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1830     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1831                             TYPE_PNV_N1_CHIPLET);
1832 
1833     chip->num_pecs = pcc->num_pecs;
1834 
1835     for (i = 0; i < chip->num_pecs; i++) {
1836         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1837                                 TYPE_PNV_PHB5_PEC);
1838     }
1839 
1840     for (i = 0; i < pcc->i2c_num_engines; i++) {
1841         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1842     }
1843 }
1844 
1845 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1846 {
1847     PnvChip *chip = PNV_CHIP(chip10);
1848     int i;
1849 
1850     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1851     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1852 
1853     for (i = 0; i < chip10->nr_quads; i++) {
1854         PnvQuad *eq = &chip10->quads[i];
1855 
1856         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1857                                   PNV_QUAD_TYPE_NAME("power10"));
1858 
1859         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1860                                 &eq->xscom_regs);
1861 
1862         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1863                                 &eq->xscom_qme_regs);
1864     }
1865 }
1866 
1867 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1868 {
1869     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1870     int i;
1871 
1872     for (i = 0; i < chip->num_pecs; i++) {
1873         PnvPhb4PecState *pec = &chip10->pecs[i];
1874         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1875         uint32_t pec_nest_base;
1876         uint32_t pec_pci_base;
1877 
1878         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1879         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1880                                 &error_fatal);
1881         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1882                                  &error_fatal);
1883         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1884             return;
1885         }
1886 
1887         pec_nest_base = pecc->xscom_nest_base(pec);
1888         pec_pci_base = pecc->xscom_pci_base(pec);
1889 
1890         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1891         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1892     }
1893 }
1894 
1895 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1896 {
1897     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1898     PnvChip *chip = PNV_CHIP(dev);
1899     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1900     Error *local_err = NULL;
1901     int i;
1902 
1903     /* XSCOM bridge is first */
1904     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1905 
1906     pcc->parent_realize(dev, &local_err);
1907     if (local_err) {
1908         error_propagate(errp, local_err);
1909         return;
1910     }
1911 
1912     pnv_chip_power10_quad_realize(chip10, &local_err);
1913     if (local_err) {
1914         error_propagate(errp, local_err);
1915         return;
1916     }
1917 
1918     /* XIVE2 interrupt controller (POWER10) */
1919     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1920                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1921     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1922                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1923     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1924                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1925     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1926                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1927     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1928                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1929     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1930                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1931     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1932                              &error_abort);
1933     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1934         return;
1935     }
1936     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1937                             &chip10->xive.xscom_regs);
1938 
1939     /* Processor Service Interface (PSI) Host Bridge */
1940     object_property_set_int(OBJECT(&chip10->psi), "bar",
1941                             PNV10_PSIHB_BASE(chip), &error_fatal);
1942     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1943     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1944                             &error_fatal);
1945     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1946         return;
1947     }
1948     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1949                             &PNV_PSI(&chip10->psi)->xscom_regs);
1950 
1951     /* LPC */
1952     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1953         return;
1954     }
1955     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1956                                 &chip10->lpc.xscom_regs);
1957 
1958     chip->fw_mr = &chip10->lpc.isa_fw;
1959     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1960                                             (uint64_t) PNV10_LPCM_BASE(chip));
1961 
1962     /* ChipTOD */
1963     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1964                              chip->chip_id == 0, &error_abort);
1965     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1966                              chip->chip_id == 1, &error_abort);
1967     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1968                              &error_abort);
1969     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1970         return;
1971     }
1972     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1973                             &chip10->chiptod.xscom_regs);
1974 
1975     /* Create the simplified OCC model */
1976     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1977         return;
1978     }
1979     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1980                             &chip10->occ.xscom_regs);
1981     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1982                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1983 
1984     /* OCC SRAM model */
1985     memory_region_add_subregion(get_system_memory(),
1986                                 PNV10_OCC_SENSOR_BASE(chip),
1987                                 &chip10->occ.sram_regs);
1988 
1989     /* SBE */
1990     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1991         return;
1992     }
1993     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1994                             &chip10->sbe.xscom_ctrl_regs);
1995     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1996                             &chip10->sbe.xscom_mbox_regs);
1997     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1998                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1999 
2000     /* HOMER */
2001     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2002                              &error_abort);
2003     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2004         return;
2005     }
2006     /* Homer Xscom region */
2007     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2008                             &chip10->homer.pba_regs);
2009 
2010     /* Homer mmio region */
2011     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2012                                 &chip10->homer.regs);
2013 
2014     /* N1 chiplet */
2015     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2016         return;
2017     }
2018     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2019              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2020 
2021     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2022                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2023 
2024     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2025                            &chip10->n1_chiplet.xscom_pb_es_mr);
2026 
2027     /* PHBs */
2028     pnv_chip_power10_phb_realize(chip, &local_err);
2029     if (local_err) {
2030         error_propagate(errp, local_err);
2031         return;
2032     }
2033 
2034 
2035     /*
2036      * I2C
2037      */
2038     for (i = 0; i < pcc->i2c_num_engines; i++) {
2039         Object *obj =  OBJECT(&chip10->i2c[i]);
2040 
2041         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2042         object_property_set_int(obj, "num-busses",
2043                                 pcc->i2c_ports_per_engine[i],
2044                                 &error_fatal);
2045         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2046         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2047             return;
2048         }
2049         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2050                                 (chip10->i2c[i].engine - 1) *
2051                                         PNV10_XSCOM_I2CM_SIZE,
2052                                 &chip10->i2c[i].xscom_regs);
2053         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2054                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2055                                                PSIHB9_IRQ_SBE_I2C));
2056     }
2057 
2058 }
2059 
2060 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2061 {
2062     int i;
2063     for (i = 0; i < pnv->num_chips; i++) {
2064         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2065 
2066         /*
2067          * Add a PCA9552 I2C device for PCIe hotplug control
2068          * to engine 2, bus 1, address 0x63
2069          */
2070         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2071                                                 "pca9552", 0x63);
2072 
2073         /*
2074          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2075          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2076          * after hypervisor code sets a SLOTx_EN pin high.
2077          */
2078         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2079         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2080         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2081         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2082         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2083 
2084         /*
2085          * Add a PCA9554 I2C device for cable card presence detection
2086          * to engine 2, bus 1, address 0x25
2087          */
2088         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2089     }
2090 }
2091 
2092 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2093 {
2094     addr &= (PNV10_XSCOM_SIZE - 1);
2095     return addr >> 3;
2096 }
2097 
2098 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2099 {
2100     DeviceClass *dc = DEVICE_CLASS(klass);
2101     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2102     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2103 
2104     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2105     k->cores_mask = POWER10_CORE_MASK;
2106     k->chip_pir = pnv_chip_pir_p10;
2107     k->intc_create = pnv_chip_power10_intc_create;
2108     k->intc_reset = pnv_chip_power10_intc_reset;
2109     k->intc_destroy = pnv_chip_power10_intc_destroy;
2110     k->intc_print_info = pnv_chip_power10_intc_print_info;
2111     k->isa_create = pnv_chip_power10_isa_create;
2112     k->dt_populate = pnv_chip_power10_dt_populate;
2113     k->pic_print_info = pnv_chip_power10_pic_print_info;
2114     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2115     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2116     dc->desc = "PowerNV Chip POWER10";
2117     k->num_pecs = PNV10_CHIP_MAX_PEC;
2118     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2119     k->i2c_ports_per_engine = i2c_ports_per_engine;
2120 
2121     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2122                                     &k->parent_realize);
2123 }
2124 
2125 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2126 {
2127     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2128     int cores_max;
2129 
2130     /*
2131      * No custom mask for this chip, let's use the default one from *
2132      * the chip class
2133      */
2134     if (!chip->cores_mask) {
2135         chip->cores_mask = pcc->cores_mask;
2136     }
2137 
2138     /* filter alien core ids ! some are reserved */
2139     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2140         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2141                    chip->cores_mask);
2142         return;
2143     }
2144     chip->cores_mask &= pcc->cores_mask;
2145 
2146     /* now that we have a sane layout, let check the number of cores */
2147     cores_max = ctpop64(chip->cores_mask);
2148     if (chip->nr_cores > cores_max) {
2149         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2150                    cores_max);
2151         return;
2152     }
2153 }
2154 
2155 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2156 {
2157     Error *error = NULL;
2158     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2159     const char *typename = pnv_chip_core_typename(chip);
2160     int i, core_hwid;
2161     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2162 
2163     if (!object_class_by_name(typename)) {
2164         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2165         return;
2166     }
2167 
2168     /* Cores */
2169     pnv_chip_core_sanitize(chip, &error);
2170     if (error) {
2171         error_propagate(errp, error);
2172         return;
2173     }
2174 
2175     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2176 
2177     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2178              && (i < chip->nr_cores); core_hwid++) {
2179         char core_name[32];
2180         PnvCore *pnv_core;
2181         uint64_t xscom_core_base;
2182 
2183         if (!(chip->cores_mask & (1ull << core_hwid))) {
2184             continue;
2185         }
2186 
2187         pnv_core = PNV_CORE(object_new(typename));
2188 
2189         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2190         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2191         chip->cores[i] = pnv_core;
2192         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2193                                 chip->nr_threads, &error_fatal);
2194         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2195                                 core_hwid, &error_fatal);
2196         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2197                                 &error_fatal);
2198         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2199                                 &error_fatal);
2200         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2201                                  &error_abort);
2202         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2203 
2204         /* Each core has an XSCOM MMIO region */
2205         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2206 
2207         pnv_xscom_add_subregion(chip, xscom_core_base,
2208                                 &pnv_core->xscom_regs);
2209         i++;
2210     }
2211 }
2212 
2213 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2214 {
2215     PnvChip *chip = PNV_CHIP(dev);
2216     Error *error = NULL;
2217 
2218     /* Cores */
2219     pnv_chip_core_realize(chip, &error);
2220     if (error) {
2221         error_propagate(errp, error);
2222         return;
2223     }
2224 }
2225 
2226 static Property pnv_chip_properties[] = {
2227     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2228     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2229     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2230     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2231     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2232     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2233     DEFINE_PROP_END_OF_LIST(),
2234 };
2235 
2236 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2237 {
2238     DeviceClass *dc = DEVICE_CLASS(klass);
2239 
2240     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2241     dc->realize = pnv_chip_realize;
2242     device_class_set_props(dc, pnv_chip_properties);
2243     dc->desc = "PowerNV Chip";
2244 }
2245 
2246 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2247 {
2248     int i;
2249 
2250     for (i = 0; i < chip->nr_cores; i++) {
2251         PnvCore *pc = chip->cores[i];
2252         CPUCore *cc = CPU_CORE(pc);
2253 
2254         if (cc->core_id == core_id) {
2255             return pc;
2256         }
2257     }
2258     return NULL;
2259 }
2260 
2261 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2262 {
2263     int i, j;
2264 
2265     for (i = 0; i < chip->nr_cores; i++) {
2266         PnvCore *pc = chip->cores[i];
2267         CPUCore *cc = CPU_CORE(pc);
2268 
2269         for (j = 0; j < cc->nr_threads; j++) {
2270             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2271                 return pc->threads[j];
2272             }
2273         }
2274     }
2275     return NULL;
2276 }
2277 
2278 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2279 {
2280     PnvMachineState *pnv = PNV_MACHINE(xi);
2281     int i, j;
2282 
2283     for (i = 0; i < pnv->num_chips; i++) {
2284         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2285 
2286         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2287             return &chip8->psi.ics;
2288         }
2289 
2290         for (j = 0; j < chip8->num_phbs; j++) {
2291             PnvPHB *phb = chip8->phbs[j];
2292             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2293 
2294             if (ics_valid_irq(&phb3->lsis, irq)) {
2295                 return &phb3->lsis;
2296             }
2297 
2298             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2299                 return ICS(&phb3->msis);
2300             }
2301         }
2302     }
2303     return NULL;
2304 }
2305 
2306 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2307 {
2308     int i;
2309 
2310     for (i = 0; i < pnv->num_chips; i++) {
2311         PnvChip *chip = pnv->chips[i];
2312         if (chip->chip_id == chip_id) {
2313             return chip;
2314         }
2315     }
2316     return NULL;
2317 }
2318 
2319 static void pnv_ics_resend(XICSFabric *xi)
2320 {
2321     PnvMachineState *pnv = PNV_MACHINE(xi);
2322     int i, j;
2323 
2324     for (i = 0; i < pnv->num_chips; i++) {
2325         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2326 
2327         ics_resend(&chip8->psi.ics);
2328 
2329         for (j = 0; j < chip8->num_phbs; j++) {
2330             PnvPHB *phb = chip8->phbs[j];
2331             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2332 
2333             ics_resend(&phb3->lsis);
2334             ics_resend(ICS(&phb3->msis));
2335         }
2336     }
2337 }
2338 
2339 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2340 {
2341     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2342 
2343     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2344 }
2345 
2346 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2347                                Monitor *mon)
2348 {
2349     PnvMachineState *pnv = PNV_MACHINE(obj);
2350     int i;
2351     CPUState *cs;
2352     g_autoptr(GString) buf = g_string_new("");
2353     g_autoptr(HumanReadableText) info = NULL;
2354 
2355     CPU_FOREACH(cs) {
2356         PowerPCCPU *cpu = POWERPC_CPU(cs);
2357 
2358         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2359         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2360                                                            buf);
2361     }
2362     info = human_readable_text_from_str(buf);
2363     monitor_puts(mon, info->human_readable_text);
2364 
2365     for (i = 0; i < pnv->num_chips; i++) {
2366         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2367     }
2368 }
2369 
2370 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2371                          uint8_t nvt_blk, uint32_t nvt_idx,
2372                          bool cam_ignore, uint8_t priority,
2373                          uint32_t logic_serv,
2374                          XiveTCTXMatch *match)
2375 {
2376     PnvMachineState *pnv = PNV_MACHINE(xfb);
2377     int total_count = 0;
2378     int i;
2379 
2380     for (i = 0; i < pnv->num_chips; i++) {
2381         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2382         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2383         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2384         int count;
2385 
2386         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2387                                priority, logic_serv, match);
2388 
2389         if (count < 0) {
2390             return count;
2391         }
2392 
2393         total_count += count;
2394     }
2395 
2396     return total_count;
2397 }
2398 
2399 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2400                                 uint8_t nvt_blk, uint32_t nvt_idx,
2401                                 bool cam_ignore, uint8_t priority,
2402                                 uint32_t logic_serv,
2403                                 XiveTCTXMatch *match)
2404 {
2405     PnvMachineState *pnv = PNV_MACHINE(xfb);
2406     int total_count = 0;
2407     int i;
2408 
2409     for (i = 0; i < pnv->num_chips; i++) {
2410         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2411         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2412         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2413         int count;
2414 
2415         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2416                                priority, logic_serv, match);
2417 
2418         if (count < 0) {
2419             return count;
2420         }
2421 
2422         total_count += count;
2423     }
2424 
2425     return total_count;
2426 }
2427 
2428 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2429 {
2430     MachineClass *mc = MACHINE_CLASS(oc);
2431     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2432     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2433     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2434 
2435     static GlobalProperty phb_compat[] = {
2436         { TYPE_PNV_PHB, "version", "3" },
2437         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2438     };
2439 
2440     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2441     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2442     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2443 
2444     xic->icp_get = pnv_icp_get;
2445     xic->ics_get = pnv_ics_get;
2446     xic->ics_resend = pnv_ics_resend;
2447 
2448     pmc->compat = compat;
2449     pmc->compat_size = sizeof(compat);
2450 
2451     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2452 }
2453 
2454 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2455 {
2456     MachineClass *mc = MACHINE_CLASS(oc);
2457     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2458     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2459     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2460 
2461     static GlobalProperty phb_compat[] = {
2462         { TYPE_PNV_PHB, "version", "4" },
2463         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2464     };
2465 
2466     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2467     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2468     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2469 
2470     xfc->match_nvt = pnv_match_nvt;
2471 
2472     pmc->compat = compat;
2473     pmc->compat_size = sizeof(compat);
2474     pmc->dt_power_mgt = pnv_dt_power_mgt;
2475 
2476     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2477 }
2478 
2479 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2480 {
2481     MachineClass *mc = MACHINE_CLASS(oc);
2482     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2483     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2484     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2485 
2486     static GlobalProperty phb_compat[] = {
2487         { TYPE_PNV_PHB, "version", "5" },
2488         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2489     };
2490 
2491     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2492     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2493 
2494     mc->alias = "powernv";
2495 
2496     pmc->compat = compat;
2497     pmc->compat_size = sizeof(compat);
2498     pmc->dt_power_mgt = pnv_dt_power_mgt;
2499 
2500     xfc->match_nvt = pnv10_xive_match_nvt;
2501 
2502     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2503 }
2504 
2505 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2506 {
2507     MachineClass *mc = MACHINE_CLASS(oc);
2508 
2509     pnv_machine_p10_common_class_init(oc, data);
2510     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2511 }
2512 
2513 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2514 {
2515     MachineClass *mc = MACHINE_CLASS(oc);
2516     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2517 
2518     pnv_machine_p10_common_class_init(oc, data);
2519     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2520     pmc->i2c_init = pnv_rainier_i2c_init;
2521 }
2522 
2523 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2524 {
2525     PnvMachineState *pnv = PNV_MACHINE(obj);
2526 
2527     return !!pnv->fw_load_addr;
2528 }
2529 
2530 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2531 {
2532     PnvMachineState *pnv = PNV_MACHINE(obj);
2533 
2534     if (value) {
2535         pnv->fw_load_addr = 0x8000000;
2536     }
2537 }
2538 
2539 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2540 {
2541     CPUPPCState *env = cpu_env(cs);
2542 
2543     cpu_synchronize_state(cs);
2544     ppc_cpu_do_system_reset(cs);
2545     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2546         /*
2547          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2548          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2549          * (PPC_BIT(43)).
2550          */
2551         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2552             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2553             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2554         }
2555     } else {
2556         /*
2557          * For non-powersave system resets, SRR1[42:45] are defined to be
2558          * implementation-dependent. The POWER9 User Manual specifies that
2559          * an external (SCOM driven, which may come from a BMC nmi command or
2560          * another CPU requesting a NMI IPI) system reset exception should be
2561          * 0b0010 (PPC_BIT(44)).
2562          */
2563         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2564     }
2565 }
2566 
2567 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2568 {
2569     CPUState *cs;
2570 
2571     CPU_FOREACH(cs) {
2572         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2573     }
2574 }
2575 
2576 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2577 {
2578     MachineClass *mc = MACHINE_CLASS(oc);
2579     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2580     NMIClass *nc = NMI_CLASS(oc);
2581 
2582     mc->desc = "IBM PowerNV (Non-Virtualized)";
2583     mc->init = pnv_init;
2584     mc->reset = pnv_reset;
2585     mc->max_cpus = MAX_CPUS;
2586     /* Pnv provides a AHCI device for storage */
2587     mc->block_default_type = IF_IDE;
2588     mc->no_parallel = 1;
2589     mc->default_boot_order = NULL;
2590     /*
2591      * RAM defaults to less than 2048 for 32-bit hosts, and large
2592      * enough to fit the maximum initrd size at it's load address
2593      */
2594     mc->default_ram_size = 1 * GiB;
2595     mc->default_ram_id = "pnv.ram";
2596     ispc->print_info = pnv_pic_print_info;
2597     nc->nmi_monitor_handler = pnv_nmi;
2598 
2599     object_class_property_add_bool(oc, "hb-mode",
2600                                    pnv_machine_get_hb, pnv_machine_set_hb);
2601     object_class_property_set_description(oc, "hb-mode",
2602                               "Use a hostboot like boot loader");
2603 }
2604 
2605 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2606     {                                             \
2607         .name          = type,                    \
2608         .class_init    = class_initfn,            \
2609         .parent        = TYPE_PNV8_CHIP,          \
2610     }
2611 
2612 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2613     {                                             \
2614         .name          = type,                    \
2615         .class_init    = class_initfn,            \
2616         .parent        = TYPE_PNV9_CHIP,          \
2617     }
2618 
2619 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2620     {                                              \
2621         .name          = type,                     \
2622         .class_init    = class_initfn,             \
2623         .parent        = TYPE_PNV10_CHIP,          \
2624     }
2625 
2626 static const TypeInfo types[] = {
2627     {
2628         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2629         .parent        = MACHINE_TYPE_NAME("powernv10"),
2630         .class_init    = pnv_machine_p10_rainier_class_init,
2631     },
2632     {
2633         .name          = MACHINE_TYPE_NAME("powernv10"),
2634         .parent        = TYPE_PNV_MACHINE,
2635         .class_init    = pnv_machine_power10_class_init,
2636         .interfaces = (InterfaceInfo[]) {
2637             { TYPE_XIVE_FABRIC },
2638             { },
2639         },
2640     },
2641     {
2642         .name          = MACHINE_TYPE_NAME("powernv9"),
2643         .parent        = TYPE_PNV_MACHINE,
2644         .class_init    = pnv_machine_power9_class_init,
2645         .interfaces = (InterfaceInfo[]) {
2646             { TYPE_XIVE_FABRIC },
2647             { },
2648         },
2649     },
2650     {
2651         .name          = MACHINE_TYPE_NAME("powernv8"),
2652         .parent        = TYPE_PNV_MACHINE,
2653         .class_init    = pnv_machine_power8_class_init,
2654         .interfaces = (InterfaceInfo[]) {
2655             { TYPE_XICS_FABRIC },
2656             { },
2657         },
2658     },
2659     {
2660         .name          = TYPE_PNV_MACHINE,
2661         .parent        = TYPE_MACHINE,
2662         .abstract       = true,
2663         .instance_size = sizeof(PnvMachineState),
2664         .class_init    = pnv_machine_class_init,
2665         .class_size    = sizeof(PnvMachineClass),
2666         .interfaces = (InterfaceInfo[]) {
2667             { TYPE_INTERRUPT_STATS_PROVIDER },
2668             { TYPE_NMI },
2669             { },
2670         },
2671     },
2672     {
2673         .name          = TYPE_PNV_CHIP,
2674         .parent        = TYPE_SYS_BUS_DEVICE,
2675         .class_init    = pnv_chip_class_init,
2676         .instance_size = sizeof(PnvChip),
2677         .class_size    = sizeof(PnvChipClass),
2678         .abstract      = true,
2679     },
2680 
2681     /*
2682      * P10 chip and variants
2683      */
2684     {
2685         .name          = TYPE_PNV10_CHIP,
2686         .parent        = TYPE_PNV_CHIP,
2687         .instance_init = pnv_chip_power10_instance_init,
2688         .instance_size = sizeof(Pnv10Chip),
2689     },
2690     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2691 
2692     /*
2693      * P9 chip and variants
2694      */
2695     {
2696         .name          = TYPE_PNV9_CHIP,
2697         .parent        = TYPE_PNV_CHIP,
2698         .instance_init = pnv_chip_power9_instance_init,
2699         .instance_size = sizeof(Pnv9Chip),
2700     },
2701     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2702 
2703     /*
2704      * P8 chip and variants
2705      */
2706     {
2707         .name          = TYPE_PNV8_CHIP,
2708         .parent        = TYPE_PNV_CHIP,
2709         .instance_init = pnv_chip_power8_instance_init,
2710         .instance_size = sizeof(Pnv8Chip),
2711     },
2712     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2713     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2714     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2715                           pnv_chip_power8nvl_class_init),
2716 };
2717 
2718 DEFINE_TYPES(types)
2719