xref: /openbmc/qemu/hw/ppc/pnv.c (revision ace6fcde9b398113482b0c5955c237d64413f2e6)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "qapi/type-helpers.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
147     int i;
148     uint32_t pir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 
246     return offset;
247 }
248 
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
250                        uint32_t nr_threads)
251 {
252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
253     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
254     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
255     char *name;
256     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
257     uint32_t irange[2], i, rsize;
258     uint64_t *reg;
259     int offset;
260 
261     irange[0] = cpu_to_be32(pir);
262     irange[1] = cpu_to_be32(nr_threads);
263 
264     rsize = sizeof(uint64_t) * 2 * nr_threads;
265     reg = g_malloc(rsize);
266     for (i = 0; i < nr_threads; i++) {
267         /* We know P8 PIR is linear with thread id */
268         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
269         reg[i * 2 + 1] = cpu_to_be64(0x1000);
270     }
271 
272     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
273     offset = fdt_add_subnode(fdt, 0, name);
274     _FDT(offset);
275     g_free(name);
276 
277     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
278     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
279     _FDT((fdt_setprop_string(fdt, offset, "device_type",
280                               "PowerPC-External-Interrupt-Presentation")));
281     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
282     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
283                        irange, sizeof(irange))));
284     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
285     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
286     g_free(reg);
287 }
288 
289 /*
290  * Adds a PnvPHB to the chip on P8.
291  * Implemented here, like for defaults PHBs
292  */
293 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 {
295     Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 
297     phb->chip = chip;
298 
299     chip8->phbs[chip8->num_phbs] = phb;
300     chip8->num_phbs++;
301     return chip;
302 }
303 
304 /*
305  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
306  * HTM is always enabled because TCG does implement HTM, it's just a
307  * degenerate implementation.
308  */
309 static const uint8_t pa_features_207[] = { 24, 0,
310                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
311                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
312                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
313                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 
315 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 {
317     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
318     int i;
319 
320     pnv_dt_xscom(chip, fdt, 0,
321                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
322                  cpu_to_be64(PNV_XSCOM_SIZE),
323                  compat, sizeof(compat));
324 
325     for (i = 0; i < chip->nr_cores; i++) {
326         PnvCore *pnv_core = chip->cores[i];
327         int offset;
328 
329         offset = pnv_dt_core(chip, pnv_core, fdt);
330 
331         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
332                            pa_features_207, sizeof(pa_features_207))));
333 
334         /* Interrupt Control Presenters (ICP). One per core. */
335         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
336     }
337 
338     if (chip->ram_size) {
339         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
340     }
341 }
342 
343 /*
344  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345  */
346 static const uint8_t pa_features_300[] = { 66, 0,
347     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
348     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
349     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
350     /* 6: DS207 */
351     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
352     /* 16: Vector */
353     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
354     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
356     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
358     /* 32: LE atomic, 34: EBB + ext EBB */
359     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
360     /* 40: Radix MMU */
361     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
362     /* 42: PM, 44: PC RA, 46: SC vec'd */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
364     /* 48: SIMD, 50: QP BFP, 52: String */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
366     /* 54: DecFP, 56: DecI, 58: SHA */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
368     /* 60: NM atomic, 62: RNG */
369     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
370 };
371 
372 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 {
374     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
375     int i;
376 
377     pnv_dt_xscom(chip, fdt, 0,
378                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
379                  cpu_to_be64(PNV9_XSCOM_SIZE),
380                  compat, sizeof(compat));
381 
382     for (i = 0; i < chip->nr_cores; i++) {
383         PnvCore *pnv_core = chip->cores[i];
384         int offset;
385 
386         offset = pnv_dt_core(chip, pnv_core, fdt);
387 
388         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
389                            pa_features_300, sizeof(pa_features_300))));
390     }
391 
392     if (chip->ram_size) {
393         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
394     }
395 
396     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
397 }
398 
399 /*
400  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
401  * always disables copy/paste.
402  */
403 static const uint8_t pa_features_31[] = { 74, 0,
404     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
405     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
406     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
407     /* 6: DS207 */
408     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
409     /* 16: Vector */
410     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
411     /* 18: Vec. Scalar, 20: Vec. XOR */
412     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
413     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
414     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
415     /* 32: LE atomic, 34: EBB + ext EBB */
416     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
417     /* 40: Radix MMU */
418     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
419     /* 42: PM, 44: PC RA, 46: SC vec'd */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
421     /* 48: SIMD, 50: QP BFP, 52: String */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
423     /* 54: DecFP, 56: DecI, 58: SHA */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
425     /* 60: NM atomic, 62: RNG */
426     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
427     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
428     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
429     /* 72: [P]HASHST/[P]HASHCHK */
430     0x80, 0x00,                         /* 72 - 73 */
431 };
432 
433 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 {
435     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
436     int i;
437 
438     pnv_dt_xscom(chip, fdt, 0,
439                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
440                  cpu_to_be64(PNV10_XSCOM_SIZE),
441                  compat, sizeof(compat));
442 
443     for (i = 0; i < chip->nr_cores; i++) {
444         PnvCore *pnv_core = chip->cores[i];
445         int offset;
446 
447         offset = pnv_dt_core(chip, pnv_core, fdt);
448 
449         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
450                            pa_features_31, sizeof(pa_features_31))));
451     }
452 
453     if (chip->ram_size) {
454         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
455     }
456 
457     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
458 }
459 
460 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 {
462     uint32_t io_base = d->ioport_id;
463     uint32_t io_regs[] = {
464         cpu_to_be32(1),
465         cpu_to_be32(io_base),
466         cpu_to_be32(2)
467     };
468     char *name;
469     int node;
470 
471     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
472     node = fdt_add_subnode(fdt, lpc_off, name);
473     _FDT(node);
474     g_free(name);
475 
476     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
477     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
478 }
479 
480 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 {
482     const char compatible[] = "ns16550\0pnpPNP,501";
483     uint32_t io_base = d->ioport_id;
484     uint32_t io_regs[] = {
485         cpu_to_be32(1),
486         cpu_to_be32(io_base),
487         cpu_to_be32(8)
488     };
489     uint32_t irq;
490     char *name;
491     int node;
492 
493     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
505     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 
510     /* This is needed by Linux */
511     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
512 }
513 
514 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "bt\0ipmi-bt";
517     uint32_t io_base;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
521         cpu_to_be32(3)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
528     io_regs[1] = cpu_to_be32(io_base);
529 
530     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 
532     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
533     node = fdt_add_subnode(fdt, lpc_off, name);
534     _FDT(node);
535     g_free(name);
536 
537     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
538     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
539                       sizeof(compatible))));
540 
541     /* Mark it as reserved to avoid Linux trying to claim it */
542     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
544     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
545                            fdt_get_phandle(fdt, lpc_off))));
546 }
547 
548 typedef struct ForeachPopulateArgs {
549     void *fdt;
550     int offset;
551 } ForeachPopulateArgs;
552 
553 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 {
555     ForeachPopulateArgs *args = opaque;
556     ISADevice *d = ISA_DEVICE(dev);
557 
558     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
559         pnv_dt_rtc(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
561         pnv_dt_serial(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
563         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
564     } else {
565         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
566                      d->ioport_id);
567     }
568 
569     return 0;
570 }
571 
572 /*
573  * The default LPC bus of a multichip system is on chip 0. It's
574  * recognized by the firmware (skiboot) using a "primary" property.
575  */
576 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 {
578     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
579     ForeachPopulateArgs args = {
580         .fdt = fdt,
581         .offset = isa_offset,
582     };
583     uint32_t phandle;
584 
585     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 
587     phandle = qemu_fdt_alloc_phandle(fdt);
588     assert(phandle > 0);
589     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
590 
591     /*
592      * ISA devices are not necessarily parented to the ISA bus so we
593      * can not use object_child_foreach()
594      */
595     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
596                        &args);
597 }
598 
599 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 {
601     int off;
602 
603     off = fdt_add_subnode(fdt, 0, "ibm,opal");
604     off = fdt_add_subnode(fdt, off, "power-mgt");
605 
606     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
607 }
608 
609 static void *pnv_dt_create(MachineState *machine)
610 {
611     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
612     PnvMachineState *pnv = PNV_MACHINE(machine);
613     void *fdt;
614     char *buf;
615     int off;
616     int i;
617 
618     fdt = g_malloc0(FDT_MAX_SIZE);
619     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 
621     /* /qemu node */
622     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 
624     /* Root node */
625     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
626     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
627     _FDT((fdt_setprop_string(fdt, 0, "model",
628                              "IBM PowerNV (emulated by qemu)")));
629     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 
631     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
632     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
633     if (qemu_uuid_set) {
634         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635     }
636     g_free(buf);
637 
638     off = fdt_add_subnode(fdt, 0, "chosen");
639     if (machine->kernel_cmdline) {
640         _FDT((fdt_setprop_string(fdt, off, "bootargs",
641                                  machine->kernel_cmdline)));
642     }
643 
644     if (pnv->initrd_size) {
645         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
646         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
649                                &start_prop, sizeof(start_prop))));
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
651                                &end_prop, sizeof(end_prop))));
652     }
653 
654     /* Populate device tree for each chip */
655     for (i = 0; i < pnv->num_chips; i++) {
656         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
657     }
658 
659     /* Populate ISA devices on chip 0 */
660     pnv_dt_isa(pnv, fdt);
661 
662     if (pnv->bmc) {
663         pnv_dt_bmc_sensors(pnv->bmc, fdt);
664     }
665 
666     /* Create an extra node for power management on machines that support it */
667     if (pmc->dt_power_mgt) {
668         pmc->dt_power_mgt(pnv, fdt);
669     }
670 
671     return fdt;
672 }
673 
674 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 {
676     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 
678     if (pnv->bmc) {
679         pnv_bmc_powerdown(pnv->bmc);
680     }
681 }
682 
683 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 {
685     PnvMachineState *pnv = PNV_MACHINE(machine);
686     IPMIBmc *bmc;
687     void *fdt;
688 
689     qemu_devices_reset(reason);
690 
691     /*
692      * The machine should provide by default an internal BMC simulator.
693      * If not, try to use the BMC device that was provided on the command
694      * line.
695      */
696     bmc = pnv_bmc_find(&error_fatal);
697     if (!pnv->bmc) {
698         if (!bmc) {
699             if (!qtest_enabled()) {
700                 warn_report("machine has no BMC device. Use '-device "
701                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
702                             "to define one");
703             }
704         } else {
705             pnv_bmc_set_pnor(bmc, pnv->pnor);
706             pnv->bmc = bmc;
707         }
708     }
709 
710     fdt = pnv_dt_create(machine);
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
716     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
717 
718     /*
719      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
720      * the existing machine->fdt to avoid leaking it during
721      * a reset.
722      */
723     g_free(machine->fdt);
724     machine->fdt = fdt;
725 }
726 
727 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 {
729     Pnv8Chip *chip8 = PNV8_CHIP(chip);
730     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 
732     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
733     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
734 }
735 
736 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 {
738     Pnv8Chip *chip8 = PNV8_CHIP(chip);
739     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 
741     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 
750     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
751     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
752 }
753 
754 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 {
756     Pnv10Chip *chip10 = PNV10_CHIP(chip);
757     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 
759     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
760     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
761 }
762 
763 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 {
765     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
766 }
767 
768 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 {
770     Pnv8Chip *chip8 = PNV8_CHIP(chip);
771     int i;
772 
773     g_autoptr(GString) buf = g_string_new("");
774     g_autoptr(HumanReadableText) info = NULL;
775 
776     ics_pic_print_info(&chip8->psi.ics, buf);
777 
778     for (i = 0; i < chip8->num_phbs; i++) {
779         PnvPHB *phb = chip8->phbs[i];
780         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
781 
782         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
783         ics_pic_print_info(&phb3->lsis, buf);
784     }
785 
786     info = human_readable_text_from_str(buf);
787     monitor_puts(mon, info->human_readable_text);
788 }
789 
790 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
791 {
792     Monitor *mon = opaque;
793     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
794 
795     if (!phb) {
796         return 0;
797     }
798 
799     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
800 
801     return 0;
802 }
803 
804 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
805 {
806     Pnv9Chip *chip9 = PNV9_CHIP(chip);
807 
808     pnv_xive_pic_print_info(&chip9->xive, mon);
809     pnv_psi_pic_print_info(&chip9->psi, mon);
810 
811     object_child_foreach_recursive(OBJECT(chip),
812                          pnv_chip_power9_pic_print_info_child, mon);
813 }
814 
815 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
816                                                 uint32_t core_id)
817 {
818     return PNV_XSCOM_EX_BASE(core_id);
819 }
820 
821 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
822                                                 uint32_t core_id)
823 {
824     return PNV9_XSCOM_EC_BASE(core_id);
825 }
826 
827 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
828                                                  uint32_t core_id)
829 {
830     return PNV10_XSCOM_EC_BASE(core_id);
831 }
832 
833 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
834 {
835     PowerPCCPUClass *ppc_default =
836         POWERPC_CPU_CLASS(object_class_by_name(default_type));
837     PowerPCCPUClass *ppc =
838         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
839 
840     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
841 }
842 
843 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
844 {
845     ISADevice *dev = isa_new("isa-ipmi-bt");
846 
847     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
848     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
849     isa_realize_and_unref(dev, bus, &error_fatal);
850 }
851 
852 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
853 {
854     Pnv10Chip *chip10 = PNV10_CHIP(chip);
855 
856     pnv_xive2_pic_print_info(&chip10->xive, mon);
857     pnv_psi_pic_print_info(&chip10->psi, mon);
858 
859     object_child_foreach_recursive(OBJECT(chip),
860                          pnv_chip_power9_pic_print_info_child, mon);
861 }
862 
863 /* Always give the first 1GB to chip 0 else we won't boot */
864 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
865 {
866     MachineState *machine = MACHINE(pnv);
867     uint64_t ram_per_chip;
868 
869     assert(machine->ram_size >= 1 * GiB);
870 
871     ram_per_chip = machine->ram_size / pnv->num_chips;
872     if (ram_per_chip >= 1 * GiB) {
873         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
874     }
875 
876     assert(pnv->num_chips > 1);
877 
878     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
879     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
880 }
881 
882 static void pnv_init(MachineState *machine)
883 {
884     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
885     PnvMachineState *pnv = PNV_MACHINE(machine);
886     MachineClass *mc = MACHINE_GET_CLASS(machine);
887     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
888     char *fw_filename;
889     long fw_size;
890     uint64_t chip_ram_start = 0;
891     int i;
892     char *chip_typename;
893     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
894     DeviceState *dev;
895 
896     if (kvm_enabled()) {
897         error_report("machine %s does not support the KVM accelerator",
898                      mc->name);
899         exit(EXIT_FAILURE);
900     }
901 
902     /* allocate RAM */
903     if (machine->ram_size < mc->default_ram_size) {
904         char *sz = size_to_str(mc->default_ram_size);
905         error_report("Invalid RAM size, should be bigger than %s", sz);
906         g_free(sz);
907         exit(EXIT_FAILURE);
908     }
909     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
910 
911     /*
912      * Create our simple PNOR device
913      */
914     dev = qdev_new(TYPE_PNV_PNOR);
915     if (pnor) {
916         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
917     }
918     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
919     pnv->pnor = PNV_PNOR(dev);
920 
921     /* load skiboot firmware  */
922     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
923     if (!fw_filename) {
924         error_report("Could not find OPAL firmware '%s'", bios_name);
925         exit(1);
926     }
927 
928     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
929     if (fw_size < 0) {
930         error_report("Could not load OPAL firmware '%s'", fw_filename);
931         exit(1);
932     }
933     g_free(fw_filename);
934 
935     /* load kernel */
936     if (machine->kernel_filename) {
937         long kernel_size;
938 
939         kernel_size = load_image_targphys(machine->kernel_filename,
940                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
941         if (kernel_size < 0) {
942             error_report("Could not load kernel '%s'",
943                          machine->kernel_filename);
944             exit(1);
945         }
946     }
947 
948     /* load initrd */
949     if (machine->initrd_filename) {
950         pnv->initrd_base = INITRD_LOAD_ADDR;
951         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
952                                   pnv->initrd_base, INITRD_MAX_SIZE);
953         if (pnv->initrd_size < 0) {
954             error_report("Could not load initial ram disk '%s'",
955                          machine->initrd_filename);
956             exit(1);
957         }
958     }
959 
960     /* MSIs are supported on this platform */
961     msi_nonbroken = true;
962 
963     /*
964      * Check compatibility of the specified CPU with the machine
965      * default.
966      */
967     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
968         error_report("invalid CPU model '%s' for %s machine",
969                      machine->cpu_type, mc->name);
970         exit(1);
971     }
972 
973     /* Create the processor chips */
974     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
975     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
976                                     i, machine->cpu_type);
977     if (!object_class_by_name(chip_typename)) {
978         error_report("invalid chip model '%.*s' for %s machine",
979                      i, machine->cpu_type, mc->name);
980         exit(1);
981     }
982 
983     pnv->num_chips =
984         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
985 
986     if (machine->smp.threads > 8) {
987         error_report("Cannot support more than 8 threads/core "
988                      "on a powernv machine");
989         exit(1);
990     }
991     if (!is_power_of_2(machine->smp.threads)) {
992         error_report("Cannot support %d threads/core on a powernv"
993                      "machine because it must be a power of 2",
994                      machine->smp.threads);
995         exit(1);
996     }
997     /*
998      * TODO: should we decide on how many chips we can create based
999      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1000      */
1001     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1002         error_report("invalid number of chips: '%d'", pnv->num_chips);
1003         error_printf(
1004             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1005         exit(1);
1006     }
1007 
1008     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1009     for (i = 0; i < pnv->num_chips; i++) {
1010         char chip_name[32];
1011         Object *chip = OBJECT(qdev_new(chip_typename));
1012         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1013 
1014         pnv->chips[i] = PNV_CHIP(chip);
1015 
1016         /* Distribute RAM among the chips  */
1017         object_property_set_int(chip, "ram-start", chip_ram_start,
1018                                 &error_fatal);
1019         object_property_set_int(chip, "ram-size", chip_ram_size,
1020                                 &error_fatal);
1021         chip_ram_start += chip_ram_size;
1022 
1023         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1024         object_property_add_child(OBJECT(pnv), chip_name, chip);
1025         object_property_set_int(chip, "chip-id", i, &error_fatal);
1026         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1027                                 &error_fatal);
1028         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1029                                 &error_fatal);
1030         /*
1031          * The POWER8 machine use the XICS interrupt interface.
1032          * Propagate the XICS fabric to the chip and its controllers.
1033          */
1034         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1035             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1036         }
1037         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1038             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1039                                      &error_abort);
1040         }
1041         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1042     }
1043     g_free(chip_typename);
1044 
1045     /* Instantiate ISA bus on chip 0 */
1046     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1047 
1048     /* Create serial port */
1049     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1050 
1051     /* Create an RTC ISA device too */
1052     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1053 
1054     /*
1055      * Create the machine BMC simulator and the IPMI BT device for
1056      * communication with the BMC
1057      */
1058     if (defaults_enabled()) {
1059         pnv->bmc = pnv_bmc_create(pnv->pnor);
1060         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1061     }
1062 
1063     /*
1064      * The PNOR is mapped on the LPC FW address space by the BMC.
1065      * Since we can not reach the remote BMC machine with LPC memops,
1066      * map it always for now.
1067      */
1068     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1069                                 &pnv->pnor->mmio);
1070 
1071     /*
1072      * OpenPOWER systems use a IPMI SEL Event message to notify the
1073      * host to powerdown
1074      */
1075     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1076     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1077 
1078     /*
1079      * Create/Connect any machine-specific I2C devices
1080      */
1081     if (pmc->i2c_init) {
1082         pmc->i2c_init(pnv);
1083     }
1084 }
1085 
1086 /*
1087  *    0:21  Reserved - Read as zeros
1088  *   22:24  Chip ID
1089  *   25:28  Core number
1090  *   29:31  Thread ID
1091  */
1092 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1093                                 uint32_t thread_id)
1094 {
1095     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1096 }
1097 
1098 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1099                                         Error **errp)
1100 {
1101     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1102     Error *local_err = NULL;
1103     Object *obj;
1104     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1105 
1106     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1107     if (local_err) {
1108         error_propagate(errp, local_err);
1109         return;
1110     }
1111 
1112     pnv_cpu->intc = obj;
1113 }
1114 
1115 
1116 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1117 {
1118     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119 
1120     icp_reset(ICP(pnv_cpu->intc));
1121 }
1122 
1123 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1124 {
1125     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1126 
1127     icp_destroy(ICP(pnv_cpu->intc));
1128     pnv_cpu->intc = NULL;
1129 }
1130 
1131 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1132                                             GString *buf)
1133 {
1134     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1135 }
1136 
1137 /*
1138  *    0:48  Reserved - Read as zeroes
1139  *   49:52  Node ID
1140  *   53:55  Chip ID
1141  *   56     Reserved - Read as zero
1142  *   57:61  Core number
1143  *   62:63  Thread ID
1144  *
1145  * We only care about the lower bits. uint32_t is fine for the moment.
1146  */
1147 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1148                                 uint32_t thread_id)
1149 {
1150     if (chip->nr_threads == 8) {
1151         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1152                (thread_id >> 1);
1153     } else {
1154         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1155     }
1156 }
1157 
1158 /*
1159  *    0:48  Reserved - Read as zeroes
1160  *   49:52  Node ID
1161  *   53:55  Chip ID
1162  *   56     Reserved - Read as zero
1163  *   57:59  Quad ID
1164  *   60     Core Chiplet Pair ID
1165  *   61:63  Thread/Core Chiplet ID t0-t2
1166  *
1167  * We only care about the lower bits. uint32_t is fine for the moment.
1168  */
1169 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1170                                  uint32_t thread_id)
1171 {
1172     if (chip->nr_threads == 8) {
1173         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1174                ((core_id % 2) << 3) | thread_id;
1175     } else {
1176         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1177     }
1178 }
1179 
1180 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1181                                         Error **errp)
1182 {
1183     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1184     Error *local_err = NULL;
1185     Object *obj;
1186     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1187 
1188     /*
1189      * The core creates its interrupt presenter but the XIVE interrupt
1190      * controller object is initialized afterwards. Hopefully, it's
1191      * only used at runtime.
1192      */
1193     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1194                            &local_err);
1195     if (local_err) {
1196         error_propagate(errp, local_err);
1197         return;
1198     }
1199 
1200     pnv_cpu->intc = obj;
1201 }
1202 
1203 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1204 {
1205     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1206 
1207     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1208 }
1209 
1210 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1211 {
1212     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1213 
1214     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1215     pnv_cpu->intc = NULL;
1216 }
1217 
1218 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1219                                             GString *buf)
1220 {
1221     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1222 }
1223 
1224 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1225                                         Error **errp)
1226 {
1227     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1228     Error *local_err = NULL;
1229     Object *obj;
1230     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1231 
1232     /*
1233      * The core creates its interrupt presenter but the XIVE2 interrupt
1234      * controller object is initialized afterwards. Hopefully, it's
1235      * only used at runtime.
1236      */
1237     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1238                            &local_err);
1239     if (local_err) {
1240         error_propagate(errp, local_err);
1241         return;
1242     }
1243 
1244     pnv_cpu->intc = obj;
1245 }
1246 
1247 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1248 {
1249     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1250 
1251     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1252 }
1253 
1254 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1255 {
1256     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1257 
1258     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1259     pnv_cpu->intc = NULL;
1260 }
1261 
1262 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1263                                              GString *buf)
1264 {
1265     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1266 }
1267 
1268 /*
1269  * Allowed core identifiers on a POWER8 Processor Chip :
1270  *
1271  * <EX0 reserved>
1272  *  EX1  - Venice only
1273  *  EX2  - Venice only
1274  *  EX3  - Venice only
1275  *  EX4
1276  *  EX5
1277  *  EX6
1278  * <EX7,8 reserved> <reserved>
1279  *  EX9  - Venice only
1280  *  EX10 - Venice only
1281  *  EX11 - Venice only
1282  *  EX12
1283  *  EX13
1284  *  EX14
1285  * <EX15 reserved>
1286  */
1287 #define POWER8E_CORE_MASK  (0x7070ull)
1288 #define POWER8_CORE_MASK   (0x7e7eull)
1289 
1290 /*
1291  * POWER9 has 24 cores, ids starting at 0x0
1292  */
1293 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1294 
1295 
1296 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1297 
1298 static void pnv_chip_power8_instance_init(Object *obj)
1299 {
1300     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1301     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1302     int i;
1303 
1304     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1305                              (Object **)&chip8->xics,
1306                              object_property_allow_set_link,
1307                              OBJ_PROP_LINK_STRONG);
1308 
1309     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1310 
1311     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1312 
1313     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1314 
1315     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1316 
1317     if (defaults_enabled()) {
1318         chip8->num_phbs = pcc->num_phbs;
1319 
1320         for (i = 0; i < chip8->num_phbs; i++) {
1321             Object *phb = object_new(TYPE_PNV_PHB);
1322 
1323             /*
1324              * We need the chip to parent the PHB to allow the DT
1325              * to build correctly (via pnv_xscom_dt()).
1326              *
1327              * TODO: the PHB should be parented by a PEC device that, at
1328              * this moment, is not modelled powernv8/phb3.
1329              */
1330             object_property_add_child(obj, "phb[*]", phb);
1331             chip8->phbs[i] = PNV_PHB(phb);
1332         }
1333     }
1334 
1335 }
1336 
1337 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1338  {
1339     PnvChip *chip = PNV_CHIP(chip8);
1340     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1341     int i, j;
1342     char *name;
1343 
1344     name = g_strdup_printf("icp-%x", chip->chip_id);
1345     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1346     g_free(name);
1347     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1348                                 &chip8->icp_mmio);
1349 
1350     /* Map the ICP registers for each thread */
1351     for (i = 0; i < chip->nr_cores; i++) {
1352         PnvCore *pnv_core = chip->cores[i];
1353         int core_hwid = CPU_CORE(pnv_core)->core_id;
1354 
1355         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1356             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1357             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1358 
1359             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1360                                         &icp->mmio);
1361         }
1362     }
1363 }
1364 
1365 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1366 {
1367     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1368     PnvChip *chip = PNV_CHIP(dev);
1369     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1370     Pnv8Psi *psi8 = &chip8->psi;
1371     Error *local_err = NULL;
1372     int i;
1373 
1374     assert(chip8->xics);
1375 
1376     /* XSCOM bridge is first */
1377     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1378 
1379     pcc->parent_realize(dev, &local_err);
1380     if (local_err) {
1381         error_propagate(errp, local_err);
1382         return;
1383     }
1384 
1385     /* Processor Service Interface (PSI) Host Bridge */
1386     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1387                             &error_fatal);
1388     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1389                              OBJECT(chip8->xics), &error_abort);
1390     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1391         return;
1392     }
1393     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1394                             &PNV_PSI(psi8)->xscom_regs);
1395 
1396     /* Create LPC controller */
1397     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1398     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1399 
1400     chip->fw_mr = &chip8->lpc.isa_fw;
1401     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1402                                             (uint64_t) PNV_XSCOM_BASE(chip),
1403                                             PNV_XSCOM_LPC_BASE);
1404 
1405     /*
1406      * Interrupt Management Area. This is the memory region holding
1407      * all the Interrupt Control Presenter (ICP) registers
1408      */
1409     pnv_chip_icp_realize(chip8, &local_err);
1410     if (local_err) {
1411         error_propagate(errp, local_err);
1412         return;
1413     }
1414 
1415     /* Create the simplified OCC model */
1416     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1417         return;
1418     }
1419     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1420     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1421                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1422 
1423     /* OCC SRAM model */
1424     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1425                                 &chip8->occ.sram_regs);
1426 
1427     /* HOMER */
1428     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1429                              &error_abort);
1430     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1431         return;
1432     }
1433     /* Homer Xscom region */
1434     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1435 
1436     /* Homer mmio region */
1437     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1438                                 &chip8->homer.regs);
1439 
1440     /* PHB controllers */
1441     for (i = 0; i < chip8->num_phbs; i++) {
1442         PnvPHB *phb = chip8->phbs[i];
1443 
1444         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1445         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1446                                 &error_fatal);
1447         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1448                                  &error_fatal);
1449         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1450             return;
1451         }
1452     }
1453 }
1454 
1455 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1456 {
1457     addr &= (PNV_XSCOM_SIZE - 1);
1458     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1459 }
1460 
1461 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1462 {
1463     DeviceClass *dc = DEVICE_CLASS(klass);
1464     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1465 
1466     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1467     k->cores_mask = POWER8E_CORE_MASK;
1468     k->num_phbs = 3;
1469     k->chip_pir = pnv_chip_pir_p8;
1470     k->intc_create = pnv_chip_power8_intc_create;
1471     k->intc_reset = pnv_chip_power8_intc_reset;
1472     k->intc_destroy = pnv_chip_power8_intc_destroy;
1473     k->intc_print_info = pnv_chip_power8_intc_print_info;
1474     k->isa_create = pnv_chip_power8_isa_create;
1475     k->dt_populate = pnv_chip_power8_dt_populate;
1476     k->pic_print_info = pnv_chip_power8_pic_print_info;
1477     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1478     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1479     dc->desc = "PowerNV Chip POWER8E";
1480 
1481     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1482                                     &k->parent_realize);
1483 }
1484 
1485 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1486 {
1487     DeviceClass *dc = DEVICE_CLASS(klass);
1488     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1489 
1490     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1491     k->cores_mask = POWER8_CORE_MASK;
1492     k->num_phbs = 3;
1493     k->chip_pir = pnv_chip_pir_p8;
1494     k->intc_create = pnv_chip_power8_intc_create;
1495     k->intc_reset = pnv_chip_power8_intc_reset;
1496     k->intc_destroy = pnv_chip_power8_intc_destroy;
1497     k->intc_print_info = pnv_chip_power8_intc_print_info;
1498     k->isa_create = pnv_chip_power8_isa_create;
1499     k->dt_populate = pnv_chip_power8_dt_populate;
1500     k->pic_print_info = pnv_chip_power8_pic_print_info;
1501     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1502     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1503     dc->desc = "PowerNV Chip POWER8";
1504 
1505     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1506                                     &k->parent_realize);
1507 }
1508 
1509 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1510 {
1511     DeviceClass *dc = DEVICE_CLASS(klass);
1512     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1513 
1514     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1515     k->cores_mask = POWER8_CORE_MASK;
1516     k->num_phbs = 4;
1517     k->chip_pir = pnv_chip_pir_p8;
1518     k->intc_create = pnv_chip_power8_intc_create;
1519     k->intc_reset = pnv_chip_power8_intc_reset;
1520     k->intc_destroy = pnv_chip_power8_intc_destroy;
1521     k->intc_print_info = pnv_chip_power8_intc_print_info;
1522     k->isa_create = pnv_chip_power8nvl_isa_create;
1523     k->dt_populate = pnv_chip_power8_dt_populate;
1524     k->pic_print_info = pnv_chip_power8_pic_print_info;
1525     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1526     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1527     dc->desc = "PowerNV Chip POWER8NVL";
1528 
1529     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1530                                     &k->parent_realize);
1531 }
1532 
1533 static void pnv_chip_power9_instance_init(Object *obj)
1534 {
1535     PnvChip *chip = PNV_CHIP(obj);
1536     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1537     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1538     int i;
1539 
1540     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1541     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1542                               "xive-fabric");
1543 
1544     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1545 
1546     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1547 
1548     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1549 
1550     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1551 
1552     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1553 
1554     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1555 
1556     /* Number of PECs is the chip default */
1557     chip->num_pecs = pcc->num_pecs;
1558 
1559     for (i = 0; i < chip->num_pecs; i++) {
1560         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1561                                 TYPE_PNV_PHB4_PEC);
1562     }
1563 
1564     for (i = 0; i < pcc->i2c_num_engines; i++) {
1565         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1566     }
1567 }
1568 
1569 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1570                                       PnvCore *pnv_core,
1571                                       const char *type)
1572 {
1573     char eq_name[32];
1574     int core_id = CPU_CORE(pnv_core)->core_id;
1575 
1576     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1577     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1578                                        sizeof(*eq), type,
1579                                        &error_fatal, NULL);
1580 
1581     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1582     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1583 }
1584 
1585 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1586 {
1587     PnvChip *chip = PNV_CHIP(chip9);
1588     int i;
1589 
1590     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1591     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1592 
1593     for (i = 0; i < chip9->nr_quads; i++) {
1594         PnvQuad *eq = &chip9->quads[i];
1595 
1596         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1597                                   PNV_QUAD_TYPE_NAME("power9"));
1598 
1599         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1600                                 &eq->xscom_regs);
1601     }
1602 }
1603 
1604 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1605 {
1606     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1607     int i;
1608 
1609     for (i = 0; i < chip->num_pecs; i++) {
1610         PnvPhb4PecState *pec = &chip9->pecs[i];
1611         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1612         uint32_t pec_nest_base;
1613         uint32_t pec_pci_base;
1614 
1615         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1616         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1617                                 &error_fatal);
1618         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1619                                  &error_fatal);
1620         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1621             return;
1622         }
1623 
1624         pec_nest_base = pecc->xscom_nest_base(pec);
1625         pec_pci_base = pecc->xscom_pci_base(pec);
1626 
1627         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1628         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1629     }
1630 }
1631 
1632 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1633 {
1634     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1635     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1636     PnvChip *chip = PNV_CHIP(dev);
1637     Pnv9Psi *psi9 = &chip9->psi;
1638     Error *local_err = NULL;
1639     int i;
1640 
1641     /* XSCOM bridge is first */
1642     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1643 
1644     pcc->parent_realize(dev, &local_err);
1645     if (local_err) {
1646         error_propagate(errp, local_err);
1647         return;
1648     }
1649 
1650     pnv_chip_quad_realize(chip9, &local_err);
1651     if (local_err) {
1652         error_propagate(errp, local_err);
1653         return;
1654     }
1655 
1656     /* XIVE interrupt controller (POWER9) */
1657     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1658                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1659     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1660                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1661     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1662                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1663     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1664                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1665     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1666                              &error_abort);
1667     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1668         return;
1669     }
1670     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1671                             &chip9->xive.xscom_regs);
1672 
1673     /* Processor Service Interface (PSI) Host Bridge */
1674     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1675                             &error_fatal);
1676     /* This is the only device with 4k ESB pages */
1677     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1678                             &error_fatal);
1679     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1680         return;
1681     }
1682     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1683                             &PNV_PSI(psi9)->xscom_regs);
1684 
1685     /* LPC */
1686     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1687         return;
1688     }
1689     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1690                                 &chip9->lpc.xscom_regs);
1691 
1692     chip->fw_mr = &chip9->lpc.isa_fw;
1693     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1694                                             (uint64_t) PNV9_LPCM_BASE(chip));
1695 
1696     /* ChipTOD */
1697     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1698                              chip->chip_id == 0, &error_abort);
1699     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1700                              chip->chip_id == 1, &error_abort);
1701     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1702                              &error_abort);
1703     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1704         return;
1705     }
1706     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1707                             &chip9->chiptod.xscom_regs);
1708 
1709     /* Create the simplified OCC model */
1710     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1711         return;
1712     }
1713     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1714     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1715                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1716 
1717     /* OCC SRAM model */
1718     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1719                                 &chip9->occ.sram_regs);
1720 
1721     /* SBE */
1722     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1723         return;
1724     }
1725     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1726                             &chip9->sbe.xscom_ctrl_regs);
1727     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1728                             &chip9->sbe.xscom_mbox_regs);
1729     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1730                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1731 
1732     /* HOMER */
1733     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1734                              &error_abort);
1735     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1736         return;
1737     }
1738     /* Homer Xscom region */
1739     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1740 
1741     /* Homer mmio region */
1742     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1743                                 &chip9->homer.regs);
1744 
1745     /* PEC PHBs */
1746     pnv_chip_power9_pec_realize(chip, &local_err);
1747     if (local_err) {
1748         error_propagate(errp, local_err);
1749         return;
1750     }
1751 
1752     /*
1753      * I2C
1754      */
1755     for (i = 0; i < pcc->i2c_num_engines; i++) {
1756         Object *obj =  OBJECT(&chip9->i2c[i]);
1757 
1758         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1759         object_property_set_int(obj, "num-busses",
1760                                 pcc->i2c_ports_per_engine[i],
1761                                 &error_fatal);
1762         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1763         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1764             return;
1765         }
1766         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1767                                 (chip9->i2c[i].engine - 1) *
1768                                         PNV9_XSCOM_I2CM_SIZE,
1769                                 &chip9->i2c[i].xscom_regs);
1770         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1771                               qdev_get_gpio_in(DEVICE(psi9),
1772                                                PSIHB9_IRQ_SBE_I2C));
1773     }
1774 }
1775 
1776 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1777 {
1778     addr &= (PNV9_XSCOM_SIZE - 1);
1779     return addr >> 3;
1780 }
1781 
1782 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1783 {
1784     DeviceClass *dc = DEVICE_CLASS(klass);
1785     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1786     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1787 
1788     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1789     k->cores_mask = POWER9_CORE_MASK;
1790     k->chip_pir = pnv_chip_pir_p9;
1791     k->intc_create = pnv_chip_power9_intc_create;
1792     k->intc_reset = pnv_chip_power9_intc_reset;
1793     k->intc_destroy = pnv_chip_power9_intc_destroy;
1794     k->intc_print_info = pnv_chip_power9_intc_print_info;
1795     k->isa_create = pnv_chip_power9_isa_create;
1796     k->dt_populate = pnv_chip_power9_dt_populate;
1797     k->pic_print_info = pnv_chip_power9_pic_print_info;
1798     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1799     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1800     dc->desc = "PowerNV Chip POWER9";
1801     k->num_pecs = PNV9_CHIP_MAX_PEC;
1802     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1803     k->i2c_ports_per_engine = i2c_ports_per_engine;
1804 
1805     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1806                                     &k->parent_realize);
1807 }
1808 
1809 static void pnv_chip_power10_instance_init(Object *obj)
1810 {
1811     PnvChip *chip = PNV_CHIP(obj);
1812     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1813     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1814     int i;
1815 
1816     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1817     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1818                               "xive-fabric");
1819     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1820     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1821     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1822                             TYPE_PNV10_CHIPTOD);
1823     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1824     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1825     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1826     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1827                             TYPE_PNV_N1_CHIPLET);
1828 
1829     chip->num_pecs = pcc->num_pecs;
1830 
1831     for (i = 0; i < chip->num_pecs; i++) {
1832         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1833                                 TYPE_PNV_PHB5_PEC);
1834     }
1835 
1836     for (i = 0; i < pcc->i2c_num_engines; i++) {
1837         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1838     }
1839 }
1840 
1841 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1842 {
1843     PnvChip *chip = PNV_CHIP(chip10);
1844     int i;
1845 
1846     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1847     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1848 
1849     for (i = 0; i < chip10->nr_quads; i++) {
1850         PnvQuad *eq = &chip10->quads[i];
1851 
1852         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1853                                   PNV_QUAD_TYPE_NAME("power10"));
1854 
1855         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1856                                 &eq->xscom_regs);
1857 
1858         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1859                                 &eq->xscom_qme_regs);
1860     }
1861 }
1862 
1863 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1864 {
1865     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1866     int i;
1867 
1868     for (i = 0; i < chip->num_pecs; i++) {
1869         PnvPhb4PecState *pec = &chip10->pecs[i];
1870         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1871         uint32_t pec_nest_base;
1872         uint32_t pec_pci_base;
1873 
1874         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1875         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1876                                 &error_fatal);
1877         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1878                                  &error_fatal);
1879         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1880             return;
1881         }
1882 
1883         pec_nest_base = pecc->xscom_nest_base(pec);
1884         pec_pci_base = pecc->xscom_pci_base(pec);
1885 
1886         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1887         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1888     }
1889 }
1890 
1891 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1892 {
1893     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1894     PnvChip *chip = PNV_CHIP(dev);
1895     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1896     Error *local_err = NULL;
1897     int i;
1898 
1899     /* XSCOM bridge is first */
1900     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1901 
1902     pcc->parent_realize(dev, &local_err);
1903     if (local_err) {
1904         error_propagate(errp, local_err);
1905         return;
1906     }
1907 
1908     pnv_chip_power10_quad_realize(chip10, &local_err);
1909     if (local_err) {
1910         error_propagate(errp, local_err);
1911         return;
1912     }
1913 
1914     /* XIVE2 interrupt controller (POWER10) */
1915     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1916                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1917     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1918                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1919     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1920                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1921     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1922                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1923     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1924                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1925     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1926                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1927     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1928                              &error_abort);
1929     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1930         return;
1931     }
1932     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1933                             &chip10->xive.xscom_regs);
1934 
1935     /* Processor Service Interface (PSI) Host Bridge */
1936     object_property_set_int(OBJECT(&chip10->psi), "bar",
1937                             PNV10_PSIHB_BASE(chip), &error_fatal);
1938     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1939     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1940                             &error_fatal);
1941     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1942         return;
1943     }
1944     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1945                             &PNV_PSI(&chip10->psi)->xscom_regs);
1946 
1947     /* LPC */
1948     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1949         return;
1950     }
1951     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1952                                 &chip10->lpc.xscom_regs);
1953 
1954     chip->fw_mr = &chip10->lpc.isa_fw;
1955     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1956                                             (uint64_t) PNV10_LPCM_BASE(chip));
1957 
1958     /* ChipTOD */
1959     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1960                              chip->chip_id == 0, &error_abort);
1961     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1962                              chip->chip_id == 1, &error_abort);
1963     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1964                              &error_abort);
1965     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1966         return;
1967     }
1968     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1969                             &chip10->chiptod.xscom_regs);
1970 
1971     /* Create the simplified OCC model */
1972     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1973         return;
1974     }
1975     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1976                             &chip10->occ.xscom_regs);
1977     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1978                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1979 
1980     /* OCC SRAM model */
1981     memory_region_add_subregion(get_system_memory(),
1982                                 PNV10_OCC_SENSOR_BASE(chip),
1983                                 &chip10->occ.sram_regs);
1984 
1985     /* SBE */
1986     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1987         return;
1988     }
1989     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1990                             &chip10->sbe.xscom_ctrl_regs);
1991     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1992                             &chip10->sbe.xscom_mbox_regs);
1993     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1994                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1995 
1996     /* HOMER */
1997     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1998                              &error_abort);
1999     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2000         return;
2001     }
2002     /* Homer Xscom region */
2003     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2004                             &chip10->homer.pba_regs);
2005 
2006     /* Homer mmio region */
2007     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2008                                 &chip10->homer.regs);
2009 
2010     /* N1 chiplet */
2011     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2012         return;
2013     }
2014     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2015              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2016 
2017     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2018                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2019 
2020     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2021                            &chip10->n1_chiplet.xscom_pb_es_mr);
2022 
2023     /* PHBs */
2024     pnv_chip_power10_phb_realize(chip, &local_err);
2025     if (local_err) {
2026         error_propagate(errp, local_err);
2027         return;
2028     }
2029 
2030 
2031     /*
2032      * I2C
2033      */
2034     for (i = 0; i < pcc->i2c_num_engines; i++) {
2035         Object *obj =  OBJECT(&chip10->i2c[i]);
2036 
2037         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2038         object_property_set_int(obj, "num-busses",
2039                                 pcc->i2c_ports_per_engine[i],
2040                                 &error_fatal);
2041         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2042         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2043             return;
2044         }
2045         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2046                                 (chip10->i2c[i].engine - 1) *
2047                                         PNV10_XSCOM_I2CM_SIZE,
2048                                 &chip10->i2c[i].xscom_regs);
2049         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2050                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2051                                                PSIHB9_IRQ_SBE_I2C));
2052     }
2053 
2054 }
2055 
2056 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2057 {
2058     int i;
2059     for (i = 0; i < pnv->num_chips; i++) {
2060         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2061 
2062         /*
2063          * Add a PCA9552 I2C device for PCIe hotplug control
2064          * to engine 2, bus 1, address 0x63
2065          */
2066         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2067                                                 "pca9552", 0x63);
2068 
2069         /*
2070          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2071          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2072          * after hypervisor code sets a SLOTx_EN pin high.
2073          */
2074         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2075         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2076         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2077         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2078         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2079 
2080         /*
2081          * Add a PCA9554 I2C device for cable card presence detection
2082          * to engine 2, bus 1, address 0x25
2083          */
2084         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2085     }
2086 }
2087 
2088 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2089 {
2090     addr &= (PNV10_XSCOM_SIZE - 1);
2091     return addr >> 3;
2092 }
2093 
2094 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2095 {
2096     DeviceClass *dc = DEVICE_CLASS(klass);
2097     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2098     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2099 
2100     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2101     k->cores_mask = POWER10_CORE_MASK;
2102     k->chip_pir = pnv_chip_pir_p10;
2103     k->intc_create = pnv_chip_power10_intc_create;
2104     k->intc_reset = pnv_chip_power10_intc_reset;
2105     k->intc_destroy = pnv_chip_power10_intc_destroy;
2106     k->intc_print_info = pnv_chip_power10_intc_print_info;
2107     k->isa_create = pnv_chip_power10_isa_create;
2108     k->dt_populate = pnv_chip_power10_dt_populate;
2109     k->pic_print_info = pnv_chip_power10_pic_print_info;
2110     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2111     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2112     dc->desc = "PowerNV Chip POWER10";
2113     k->num_pecs = PNV10_CHIP_MAX_PEC;
2114     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2115     k->i2c_ports_per_engine = i2c_ports_per_engine;
2116 
2117     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2118                                     &k->parent_realize);
2119 }
2120 
2121 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2122 {
2123     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2124     int cores_max;
2125 
2126     /*
2127      * No custom mask for this chip, let's use the default one from *
2128      * the chip class
2129      */
2130     if (!chip->cores_mask) {
2131         chip->cores_mask = pcc->cores_mask;
2132     }
2133 
2134     /* filter alien core ids ! some are reserved */
2135     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2136         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2137                    chip->cores_mask);
2138         return;
2139     }
2140     chip->cores_mask &= pcc->cores_mask;
2141 
2142     /* now that we have a sane layout, let check the number of cores */
2143     cores_max = ctpop64(chip->cores_mask);
2144     if (chip->nr_cores > cores_max) {
2145         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2146                    cores_max);
2147         return;
2148     }
2149 }
2150 
2151 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2152 {
2153     Error *error = NULL;
2154     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2155     const char *typename = pnv_chip_core_typename(chip);
2156     int i, core_hwid;
2157     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2158 
2159     if (!object_class_by_name(typename)) {
2160         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2161         return;
2162     }
2163 
2164     /* Cores */
2165     pnv_chip_core_sanitize(chip, &error);
2166     if (error) {
2167         error_propagate(errp, error);
2168         return;
2169     }
2170 
2171     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2172 
2173     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2174              && (i < chip->nr_cores); core_hwid++) {
2175         char core_name[32];
2176         PnvCore *pnv_core;
2177         uint64_t xscom_core_base;
2178 
2179         if (!(chip->cores_mask & (1ull << core_hwid))) {
2180             continue;
2181         }
2182 
2183         pnv_core = PNV_CORE(object_new(typename));
2184 
2185         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2186         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2187         chip->cores[i] = pnv_core;
2188         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2189                                 chip->nr_threads, &error_fatal);
2190         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2191                                 core_hwid, &error_fatal);
2192         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2193                                 &error_fatal);
2194         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2195                                 &error_fatal);
2196         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2197                                  &error_abort);
2198         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2199 
2200         /* Each core has an XSCOM MMIO region */
2201         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2202 
2203         pnv_xscom_add_subregion(chip, xscom_core_base,
2204                                 &pnv_core->xscom_regs);
2205         i++;
2206     }
2207 }
2208 
2209 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2210 {
2211     PnvChip *chip = PNV_CHIP(dev);
2212     Error *error = NULL;
2213 
2214     /* Cores */
2215     pnv_chip_core_realize(chip, &error);
2216     if (error) {
2217         error_propagate(errp, error);
2218         return;
2219     }
2220 }
2221 
2222 static Property pnv_chip_properties[] = {
2223     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2224     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2225     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2226     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2227     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2228     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2229     DEFINE_PROP_END_OF_LIST(),
2230 };
2231 
2232 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2233 {
2234     DeviceClass *dc = DEVICE_CLASS(klass);
2235 
2236     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2237     dc->realize = pnv_chip_realize;
2238     device_class_set_props(dc, pnv_chip_properties);
2239     dc->desc = "PowerNV Chip";
2240 }
2241 
2242 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2243 {
2244     int i;
2245 
2246     for (i = 0; i < chip->nr_cores; i++) {
2247         PnvCore *pc = chip->cores[i];
2248         CPUCore *cc = CPU_CORE(pc);
2249 
2250         if (cc->core_id == core_id) {
2251             return pc;
2252         }
2253     }
2254     return NULL;
2255 }
2256 
2257 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2258 {
2259     int i, j;
2260 
2261     for (i = 0; i < chip->nr_cores; i++) {
2262         PnvCore *pc = chip->cores[i];
2263         CPUCore *cc = CPU_CORE(pc);
2264 
2265         for (j = 0; j < cc->nr_threads; j++) {
2266             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2267                 return pc->threads[j];
2268             }
2269         }
2270     }
2271     return NULL;
2272 }
2273 
2274 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2275 {
2276     PnvMachineState *pnv = PNV_MACHINE(xi);
2277     int i, j;
2278 
2279     for (i = 0; i < pnv->num_chips; i++) {
2280         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2281 
2282         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2283             return &chip8->psi.ics;
2284         }
2285 
2286         for (j = 0; j < chip8->num_phbs; j++) {
2287             PnvPHB *phb = chip8->phbs[j];
2288             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2289 
2290             if (ics_valid_irq(&phb3->lsis, irq)) {
2291                 return &phb3->lsis;
2292             }
2293 
2294             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2295                 return ICS(&phb3->msis);
2296             }
2297         }
2298     }
2299     return NULL;
2300 }
2301 
2302 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2303 {
2304     int i;
2305 
2306     for (i = 0; i < pnv->num_chips; i++) {
2307         PnvChip *chip = pnv->chips[i];
2308         if (chip->chip_id == chip_id) {
2309             return chip;
2310         }
2311     }
2312     return NULL;
2313 }
2314 
2315 static void pnv_ics_resend(XICSFabric *xi)
2316 {
2317     PnvMachineState *pnv = PNV_MACHINE(xi);
2318     int i, j;
2319 
2320     for (i = 0; i < pnv->num_chips; i++) {
2321         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2322 
2323         ics_resend(&chip8->psi.ics);
2324 
2325         for (j = 0; j < chip8->num_phbs; j++) {
2326             PnvPHB *phb = chip8->phbs[j];
2327             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2328 
2329             ics_resend(&phb3->lsis);
2330             ics_resend(ICS(&phb3->msis));
2331         }
2332     }
2333 }
2334 
2335 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2336 {
2337     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2338 
2339     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2340 }
2341 
2342 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2343                                Monitor *mon)
2344 {
2345     PnvMachineState *pnv = PNV_MACHINE(obj);
2346     int i;
2347     CPUState *cs;
2348     g_autoptr(GString) buf = g_string_new("");
2349     g_autoptr(HumanReadableText) info = NULL;
2350 
2351     CPU_FOREACH(cs) {
2352         PowerPCCPU *cpu = POWERPC_CPU(cs);
2353 
2354         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2355         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2356                                                            buf);
2357     }
2358     info = human_readable_text_from_str(buf);
2359     monitor_puts(mon, info->human_readable_text);
2360 
2361     for (i = 0; i < pnv->num_chips; i++) {
2362         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2363     }
2364 }
2365 
2366 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2367                          uint8_t nvt_blk, uint32_t nvt_idx,
2368                          bool cam_ignore, uint8_t priority,
2369                          uint32_t logic_serv,
2370                          XiveTCTXMatch *match)
2371 {
2372     PnvMachineState *pnv = PNV_MACHINE(xfb);
2373     int total_count = 0;
2374     int i;
2375 
2376     for (i = 0; i < pnv->num_chips; i++) {
2377         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2378         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2379         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2380         int count;
2381 
2382         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2383                                priority, logic_serv, match);
2384 
2385         if (count < 0) {
2386             return count;
2387         }
2388 
2389         total_count += count;
2390     }
2391 
2392     return total_count;
2393 }
2394 
2395 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2396                                 uint8_t nvt_blk, uint32_t nvt_idx,
2397                                 bool cam_ignore, uint8_t priority,
2398                                 uint32_t logic_serv,
2399                                 XiveTCTXMatch *match)
2400 {
2401     PnvMachineState *pnv = PNV_MACHINE(xfb);
2402     int total_count = 0;
2403     int i;
2404 
2405     for (i = 0; i < pnv->num_chips; i++) {
2406         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2407         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2408         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2409         int count;
2410 
2411         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2412                                priority, logic_serv, match);
2413 
2414         if (count < 0) {
2415             return count;
2416         }
2417 
2418         total_count += count;
2419     }
2420 
2421     return total_count;
2422 }
2423 
2424 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2425 {
2426     MachineClass *mc = MACHINE_CLASS(oc);
2427     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2428     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2429     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2430 
2431     static GlobalProperty phb_compat[] = {
2432         { TYPE_PNV_PHB, "version", "3" },
2433         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2434     };
2435 
2436     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2437     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2438     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2439 
2440     xic->icp_get = pnv_icp_get;
2441     xic->ics_get = pnv_ics_get;
2442     xic->ics_resend = pnv_ics_resend;
2443 
2444     pmc->compat = compat;
2445     pmc->compat_size = sizeof(compat);
2446 
2447     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2448 }
2449 
2450 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2451 {
2452     MachineClass *mc = MACHINE_CLASS(oc);
2453     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2454     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2455     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2456 
2457     static GlobalProperty phb_compat[] = {
2458         { TYPE_PNV_PHB, "version", "4" },
2459         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2460     };
2461 
2462     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2463     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2464     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2465 
2466     xfc->match_nvt = pnv_match_nvt;
2467 
2468     pmc->compat = compat;
2469     pmc->compat_size = sizeof(compat);
2470     pmc->dt_power_mgt = pnv_dt_power_mgt;
2471 
2472     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2473 }
2474 
2475 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2476 {
2477     MachineClass *mc = MACHINE_CLASS(oc);
2478     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2479     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2480     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2481 
2482     static GlobalProperty phb_compat[] = {
2483         { TYPE_PNV_PHB, "version", "5" },
2484         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2485     };
2486 
2487     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2488     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2489 
2490     mc->alias = "powernv";
2491 
2492     pmc->compat = compat;
2493     pmc->compat_size = sizeof(compat);
2494     pmc->dt_power_mgt = pnv_dt_power_mgt;
2495 
2496     xfc->match_nvt = pnv10_xive_match_nvt;
2497 
2498     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2499 }
2500 
2501 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2502 {
2503     MachineClass *mc = MACHINE_CLASS(oc);
2504 
2505     pnv_machine_p10_common_class_init(oc, data);
2506     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2507 }
2508 
2509 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2510 {
2511     MachineClass *mc = MACHINE_CLASS(oc);
2512     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2513 
2514     pnv_machine_p10_common_class_init(oc, data);
2515     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2516     pmc->i2c_init = pnv_rainier_i2c_init;
2517 }
2518 
2519 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2520 {
2521     PnvMachineState *pnv = PNV_MACHINE(obj);
2522 
2523     return !!pnv->fw_load_addr;
2524 }
2525 
2526 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2527 {
2528     PnvMachineState *pnv = PNV_MACHINE(obj);
2529 
2530     if (value) {
2531         pnv->fw_load_addr = 0x8000000;
2532     }
2533 }
2534 
2535 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2536 {
2537     CPUPPCState *env = cpu_env(cs);
2538 
2539     cpu_synchronize_state(cs);
2540     ppc_cpu_do_system_reset(cs);
2541     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2542         /*
2543          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2544          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2545          * (PPC_BIT(43)).
2546          */
2547         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2548             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2549             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2550         }
2551     } else {
2552         /*
2553          * For non-powersave system resets, SRR1[42:45] are defined to be
2554          * implementation-dependent. The POWER9 User Manual specifies that
2555          * an external (SCOM driven, which may come from a BMC nmi command or
2556          * another CPU requesting a NMI IPI) system reset exception should be
2557          * 0b0010 (PPC_BIT(44)).
2558          */
2559         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2560     }
2561 }
2562 
2563 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2564 {
2565     CPUState *cs;
2566 
2567     CPU_FOREACH(cs) {
2568         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2569     }
2570 }
2571 
2572 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2573 {
2574     MachineClass *mc = MACHINE_CLASS(oc);
2575     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2576     NMIClass *nc = NMI_CLASS(oc);
2577 
2578     mc->desc = "IBM PowerNV (Non-Virtualized)";
2579     mc->init = pnv_init;
2580     mc->reset = pnv_reset;
2581     mc->max_cpus = MAX_CPUS;
2582     /* Pnv provides a AHCI device for storage */
2583     mc->block_default_type = IF_IDE;
2584     mc->no_parallel = 1;
2585     mc->default_boot_order = NULL;
2586     /*
2587      * RAM defaults to less than 2048 for 32-bit hosts, and large
2588      * enough to fit the maximum initrd size at it's load address
2589      */
2590     mc->default_ram_size = 1 * GiB;
2591     mc->default_ram_id = "pnv.ram";
2592     ispc->print_info = pnv_pic_print_info;
2593     nc->nmi_monitor_handler = pnv_nmi;
2594 
2595     object_class_property_add_bool(oc, "hb-mode",
2596                                    pnv_machine_get_hb, pnv_machine_set_hb);
2597     object_class_property_set_description(oc, "hb-mode",
2598                               "Use a hostboot like boot loader");
2599 }
2600 
2601 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2602     {                                             \
2603         .name          = type,                    \
2604         .class_init    = class_initfn,            \
2605         .parent        = TYPE_PNV8_CHIP,          \
2606     }
2607 
2608 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2609     {                                             \
2610         .name          = type,                    \
2611         .class_init    = class_initfn,            \
2612         .parent        = TYPE_PNV9_CHIP,          \
2613     }
2614 
2615 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2616     {                                              \
2617         .name          = type,                     \
2618         .class_init    = class_initfn,             \
2619         .parent        = TYPE_PNV10_CHIP,          \
2620     }
2621 
2622 static const TypeInfo types[] = {
2623     {
2624         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2625         .parent        = MACHINE_TYPE_NAME("powernv10"),
2626         .class_init    = pnv_machine_p10_rainier_class_init,
2627     },
2628     {
2629         .name          = MACHINE_TYPE_NAME("powernv10"),
2630         .parent        = TYPE_PNV_MACHINE,
2631         .class_init    = pnv_machine_power10_class_init,
2632         .interfaces = (InterfaceInfo[]) {
2633             { TYPE_XIVE_FABRIC },
2634             { },
2635         },
2636     },
2637     {
2638         .name          = MACHINE_TYPE_NAME("powernv9"),
2639         .parent        = TYPE_PNV_MACHINE,
2640         .class_init    = pnv_machine_power9_class_init,
2641         .interfaces = (InterfaceInfo[]) {
2642             { TYPE_XIVE_FABRIC },
2643             { },
2644         },
2645     },
2646     {
2647         .name          = MACHINE_TYPE_NAME("powernv8"),
2648         .parent        = TYPE_PNV_MACHINE,
2649         .class_init    = pnv_machine_power8_class_init,
2650         .interfaces = (InterfaceInfo[]) {
2651             { TYPE_XICS_FABRIC },
2652             { },
2653         },
2654     },
2655     {
2656         .name          = TYPE_PNV_MACHINE,
2657         .parent        = TYPE_MACHINE,
2658         .abstract       = true,
2659         .instance_size = sizeof(PnvMachineState),
2660         .class_init    = pnv_machine_class_init,
2661         .class_size    = sizeof(PnvMachineClass),
2662         .interfaces = (InterfaceInfo[]) {
2663             { TYPE_INTERRUPT_STATS_PROVIDER },
2664             { TYPE_NMI },
2665             { },
2666         },
2667     },
2668     {
2669         .name          = TYPE_PNV_CHIP,
2670         .parent        = TYPE_SYS_BUS_DEVICE,
2671         .class_init    = pnv_chip_class_init,
2672         .instance_size = sizeof(PnvChip),
2673         .class_size    = sizeof(PnvChipClass),
2674         .abstract      = true,
2675     },
2676 
2677     /*
2678      * P10 chip and variants
2679      */
2680     {
2681         .name          = TYPE_PNV10_CHIP,
2682         .parent        = TYPE_PNV_CHIP,
2683         .instance_init = pnv_chip_power10_instance_init,
2684         .instance_size = sizeof(Pnv10Chip),
2685     },
2686     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2687 
2688     /*
2689      * P9 chip and variants
2690      */
2691     {
2692         .name          = TYPE_PNV9_CHIP,
2693         .parent        = TYPE_PNV_CHIP,
2694         .instance_init = pnv_chip_power9_instance_init,
2695         .instance_size = sizeof(Pnv9Chip),
2696     },
2697     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2698 
2699     /*
2700      * P8 chip and variants
2701      */
2702     {
2703         .name          = TYPE_PNV8_CHIP,
2704         .parent        = TYPE_PNV_CHIP,
2705         .instance_init = pnv_chip_power8_instance_init,
2706         .instance_size = sizeof(Pnv8Chip),
2707     },
2708     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2709     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2710     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2711                           pnv_chip_power8nvl_class_init),
2712 };
2713 
2714 DEFINE_TYPES(types)
2715