xref: /openbmc/qemu/hw/ppc/pnv.c (revision a9bc470ec208bd27a82100abc9dccf1b69f41b45)
1  /*
2   * QEMU PowerPC PowerNV machine model
3   *
4   * Copyright (c) 2016, IBM Corporation.
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu/datadir.h"
22  #include "qemu/units.h"
23  #include "qemu/cutils.h"
24  #include "qapi/error.h"
25  #include "sysemu/qtest.h"
26  #include "sysemu/sysemu.h"
27  #include "sysemu/numa.h"
28  #include "sysemu/reset.h"
29  #include "sysemu/runstate.h"
30  #include "sysemu/cpus.h"
31  #include "sysemu/device_tree.h"
32  #include "sysemu/hw_accel.h"
33  #include "target/ppc/cpu.h"
34  #include "hw/ppc/fdt.h"
35  #include "hw/ppc/ppc.h"
36  #include "hw/ppc/pnv.h"
37  #include "hw/ppc/pnv_core.h"
38  #include "hw/loader.h"
39  #include "hw/nmi.h"
40  #include "qapi/visitor.h"
41  #include "monitor/monitor.h"
42  #include "hw/intc/intc.h"
43  #include "hw/ipmi/ipmi.h"
44  #include "target/ppc/mmu-hash64.h"
45  #include "hw/pci/msi.h"
46  #include "hw/pci-host/pnv_phb.h"
47  #include "hw/pci-host/pnv_phb3.h"
48  #include "hw/pci-host/pnv_phb4.h"
49  
50  #include "hw/ppc/xics.h"
51  #include "hw/qdev-properties.h"
52  #include "hw/ppc/pnv_chip.h"
53  #include "hw/ppc/pnv_xscom.h"
54  #include "hw/ppc/pnv_pnor.h"
55  
56  #include "hw/isa/isa.h"
57  #include "hw/char/serial.h"
58  #include "hw/rtc/mc146818rtc.h"
59  
60  #include <libfdt.h>
61  
62  #define FDT_MAX_SIZE            (1 * MiB)
63  
64  #define FW_FILE_NAME            "skiboot.lid"
65  #define FW_LOAD_ADDR            0x0
66  #define FW_MAX_SIZE             (16 * MiB)
67  
68  #define KERNEL_LOAD_ADDR        0x20000000
69  #define KERNEL_MAX_SIZE         (128 * MiB)
70  #define INITRD_LOAD_ADDR        0x28000000
71  #define INITRD_MAX_SIZE         (128 * MiB)
72  
73  static const char *pnv_chip_core_typename(const PnvChip *o)
74  {
75      const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76      int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77      char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78      const char *core_type = object_class_get_name(object_class_by_name(s));
79      g_free(s);
80      return core_type;
81  }
82  
83  /*
84   * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85   *     4 * 4 sockets * 12 cores * 8 threads = 1536
86   * Let's make it 2^11
87   */
88  #define MAX_CPUS                2048
89  
90  /*
91   * Memory nodes are created by hostboot, one for each range of memory
92   * that has a different "affinity". In practice, it means one range
93   * per chip.
94   */
95  static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96  {
97      char *mem_name;
98      uint64_t mem_reg_property[2];
99      int off;
100  
101      mem_reg_property[0] = cpu_to_be64(start);
102      mem_reg_property[1] = cpu_to_be64(size);
103  
104      mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105      off = fdt_add_subnode(fdt, 0, mem_name);
106      g_free(mem_name);
107  
108      _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109      _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                         sizeof(mem_reg_property))));
111      _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112  }
113  
114  static int get_cpus_node(void *fdt)
115  {
116      int cpus_offset = fdt_path_offset(fdt, "/cpus");
117  
118      if (cpus_offset < 0) {
119          cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120          if (cpus_offset) {
121              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123          }
124      }
125      _FDT(cpus_offset);
126      return cpus_offset;
127  }
128  
129  /*
130   * The PowerNV cores (and threads) need to use real HW ids and not an
131   * incremental index like it has been done on other platforms. This HW
132   * id is stored in the CPU PIR, it is used to create cpu nodes in the
133   * device tree, used in XSCOM to address cores and in interrupt
134   * servers.
135   */
136  static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137  {
138      PowerPCCPU *cpu = pc->threads[0];
139      CPUState *cs = CPU(cpu);
140      DeviceClass *dc = DEVICE_GET_CLASS(cs);
141      int smt_threads = CPU_CORE(pc)->nr_threads;
142      CPUPPCState *env = &cpu->env;
143      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144      g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145      int i;
146      uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
147                         0xffffffff, 0xffffffff};
148      uint32_t tbfreq = PNV_TIMEBASE_FREQ;
149      uint32_t cpufreq = 1000000000;
150      uint32_t page_sizes_prop[64];
151      size_t page_sizes_prop_size;
152      const uint8_t pa_features[] = { 24, 0,
153                                      0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
154                                      0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
155                                      0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
156                                      0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
157      int offset;
158      char *nodename;
159      int cpus_offset = get_cpus_node(fdt);
160  
161      nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
162      offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163      _FDT(offset);
164      g_free(nodename);
165  
166      _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167  
168      _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
169      _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
170      _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171  
172      _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                              env->dcache_line_size)));
175      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                              env->dcache_line_size)));
177      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                              env->icache_line_size)));
179      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                              env->icache_line_size)));
181  
182      if (pcc->l1_dcache_size) {
183          _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                 pcc->l1_dcache_size)));
185      } else {
186          warn_report("Unknown L1 dcache size for cpu");
187      }
188      if (pcc->l1_icache_size) {
189          _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                 pcc->l1_icache_size)));
191      } else {
192          warn_report("Unknown L1 icache size for cpu");
193      }
194  
195      _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196      _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197      _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                             cpu->hash64_opts->slb_size)));
199      _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200      _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201  
202      if (ppc_has_spr(cpu, SPR_PURR)) {
203          _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204      }
205  
206      if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207          _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                             segs, sizeof(segs))));
209      }
210  
211      /*
212       * Advertise VMX/VSX (vector extensions) if available
213       *   0 / no property == no vector extensions
214       *   1               == VMX / Altivec available
215       *   2               == VSX available
216       */
217      if (env->insns_flags & PPC_ALTIVEC) {
218          uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219  
220          _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221      }
222  
223      /*
224       * Advertise DFP (Decimal Floating Point) if available
225       *   0 / no property == no DFP
226       *   1               == DFP available
227       */
228      if (env->insns_flags2 & PPC2_DFP) {
229          _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230      }
231  
232      page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                        sizeof(page_sizes_prop));
234      if (page_sizes_prop_size) {
235          _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                             page_sizes_prop, page_sizes_prop_size)));
237      }
238  
239      _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
240                         pa_features, sizeof(pa_features))));
241  
242      /* Build interrupt servers properties */
243      for (i = 0; i < smt_threads; i++) {
244          servers_prop[i] = cpu_to_be32(pc->pir + i);
245      }
246      _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247                         servers_prop, sizeof(*servers_prop) * smt_threads)));
248  }
249  
250  static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
251                         uint32_t nr_threads)
252  {
253      uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254      char *name;
255      const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256      uint32_t irange[2], i, rsize;
257      uint64_t *reg;
258      int offset;
259  
260      irange[0] = cpu_to_be32(pir);
261      irange[1] = cpu_to_be32(nr_threads);
262  
263      rsize = sizeof(uint64_t) * 2 * nr_threads;
264      reg = g_malloc(rsize);
265      for (i = 0; i < nr_threads; i++) {
266          reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267          reg[i * 2 + 1] = cpu_to_be64(0x1000);
268      }
269  
270      name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271      offset = fdt_add_subnode(fdt, 0, name);
272      _FDT(offset);
273      g_free(name);
274  
275      _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276      _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277      _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                                "PowerPC-External-Interrupt-Presentation")));
279      _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280      _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                         irange, sizeof(irange))));
282      _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283      _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284      g_free(reg);
285  }
286  
287  /*
288   * Adds a PnvPHB to the chip on P8.
289   * Implemented here, like for defaults PHBs
290   */
291  PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292  {
293      Pnv8Chip *chip8 = PNV8_CHIP(chip);
294  
295      phb->chip = chip;
296  
297      chip8->phbs[chip8->num_phbs] = phb;
298      chip8->num_phbs++;
299      return chip;
300  }
301  
302  static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
303  {
304      static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
305      int i;
306  
307      pnv_dt_xscom(chip, fdt, 0,
308                   cpu_to_be64(PNV_XSCOM_BASE(chip)),
309                   cpu_to_be64(PNV_XSCOM_SIZE),
310                   compat, sizeof(compat));
311  
312      for (i = 0; i < chip->nr_cores; i++) {
313          PnvCore *pnv_core = chip->cores[i];
314  
315          pnv_dt_core(chip, pnv_core, fdt);
316  
317          /* Interrupt Control Presenters (ICP). One per core. */
318          pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
319      }
320  
321      if (chip->ram_size) {
322          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323      }
324  }
325  
326  static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
327  {
328      static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
329      int i;
330  
331      pnv_dt_xscom(chip, fdt, 0,
332                   cpu_to_be64(PNV9_XSCOM_BASE(chip)),
333                   cpu_to_be64(PNV9_XSCOM_SIZE),
334                   compat, sizeof(compat));
335  
336      for (i = 0; i < chip->nr_cores; i++) {
337          PnvCore *pnv_core = chip->cores[i];
338  
339          pnv_dt_core(chip, pnv_core, fdt);
340      }
341  
342      if (chip->ram_size) {
343          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
344      }
345  
346      pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
347  }
348  
349  static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
350  {
351      static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
352      int i;
353  
354      pnv_dt_xscom(chip, fdt, 0,
355                   cpu_to_be64(PNV10_XSCOM_BASE(chip)),
356                   cpu_to_be64(PNV10_XSCOM_SIZE),
357                   compat, sizeof(compat));
358  
359      for (i = 0; i < chip->nr_cores; i++) {
360          PnvCore *pnv_core = chip->cores[i];
361  
362          pnv_dt_core(chip, pnv_core, fdt);
363      }
364  
365      if (chip->ram_size) {
366          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
367      }
368  
369      pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
370  }
371  
372  static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
373  {
374      uint32_t io_base = d->ioport_id;
375      uint32_t io_regs[] = {
376          cpu_to_be32(1),
377          cpu_to_be32(io_base),
378          cpu_to_be32(2)
379      };
380      char *name;
381      int node;
382  
383      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384      node = fdt_add_subnode(fdt, lpc_off, name);
385      _FDT(node);
386      g_free(name);
387  
388      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389      _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
390  }
391  
392  static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
393  {
394      const char compatible[] = "ns16550\0pnpPNP,501";
395      uint32_t io_base = d->ioport_id;
396      uint32_t io_regs[] = {
397          cpu_to_be32(1),
398          cpu_to_be32(io_base),
399          cpu_to_be32(8)
400      };
401      uint32_t irq;
402      char *name;
403      int node;
404  
405      irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
406  
407      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
408      node = fdt_add_subnode(fdt, lpc_off, name);
409      _FDT(node);
410      g_free(name);
411  
412      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
413      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
414                        sizeof(compatible))));
415  
416      _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
417      _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
418      _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
419      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
420                             fdt_get_phandle(fdt, lpc_off))));
421  
422      /* This is needed by Linux */
423      _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
424  }
425  
426  static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
427  {
428      const char compatible[] = "bt\0ipmi-bt";
429      uint32_t io_base;
430      uint32_t io_regs[] = {
431          cpu_to_be32(1),
432          0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
433          cpu_to_be32(3)
434      };
435      uint32_t irq;
436      char *name;
437      int node;
438  
439      io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
440      io_regs[1] = cpu_to_be32(io_base);
441  
442      irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
443  
444      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
445      node = fdt_add_subnode(fdt, lpc_off, name);
446      _FDT(node);
447      g_free(name);
448  
449      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
450      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
451                        sizeof(compatible))));
452  
453      /* Mark it as reserved to avoid Linux trying to claim it */
454      _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
455      _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
456      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
457                             fdt_get_phandle(fdt, lpc_off))));
458  }
459  
460  typedef struct ForeachPopulateArgs {
461      void *fdt;
462      int offset;
463  } ForeachPopulateArgs;
464  
465  static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
466  {
467      ForeachPopulateArgs *args = opaque;
468      ISADevice *d = ISA_DEVICE(dev);
469  
470      if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
471          pnv_dt_rtc(d, args->fdt, args->offset);
472      } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
473          pnv_dt_serial(d, args->fdt, args->offset);
474      } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
475          pnv_dt_ipmi_bt(d, args->fdt, args->offset);
476      } else {
477          error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
478                       d->ioport_id);
479      }
480  
481      return 0;
482  }
483  
484  /*
485   * The default LPC bus of a multichip system is on chip 0. It's
486   * recognized by the firmware (skiboot) using a "primary" property.
487   */
488  static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
489  {
490      int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
491      ForeachPopulateArgs args = {
492          .fdt = fdt,
493          .offset = isa_offset,
494      };
495      uint32_t phandle;
496  
497      _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
498  
499      phandle = qemu_fdt_alloc_phandle(fdt);
500      assert(phandle > 0);
501      _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
502  
503      /*
504       * ISA devices are not necessarily parented to the ISA bus so we
505       * can not use object_child_foreach()
506       */
507      qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
508                         &args);
509  }
510  
511  static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
512  {
513      int off;
514  
515      off = fdt_add_subnode(fdt, 0, "ibm,opal");
516      off = fdt_add_subnode(fdt, off, "power-mgt");
517  
518      _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
519  }
520  
521  static void *pnv_dt_create(MachineState *machine)
522  {
523      PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
524      PnvMachineState *pnv = PNV_MACHINE(machine);
525      void *fdt;
526      char *buf;
527      int off;
528      int i;
529  
530      fdt = g_malloc0(FDT_MAX_SIZE);
531      _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
532  
533      /* /qemu node */
534      _FDT((fdt_add_subnode(fdt, 0, "qemu")));
535  
536      /* Root node */
537      _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
538      _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
539      _FDT((fdt_setprop_string(fdt, 0, "model",
540                               "IBM PowerNV (emulated by qemu)")));
541      _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
542  
543      buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
544      _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
545      if (qemu_uuid_set) {
546          _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
547      }
548      g_free(buf);
549  
550      off = fdt_add_subnode(fdt, 0, "chosen");
551      if (machine->kernel_cmdline) {
552          _FDT((fdt_setprop_string(fdt, off, "bootargs",
553                                   machine->kernel_cmdline)));
554      }
555  
556      if (pnv->initrd_size) {
557          uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
558          uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
559  
560          _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
561                                 &start_prop, sizeof(start_prop))));
562          _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
563                                 &end_prop, sizeof(end_prop))));
564      }
565  
566      /* Populate device tree for each chip */
567      for (i = 0; i < pnv->num_chips; i++) {
568          PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
569      }
570  
571      /* Populate ISA devices on chip 0 */
572      pnv_dt_isa(pnv, fdt);
573  
574      if (pnv->bmc) {
575          pnv_dt_bmc_sensors(pnv->bmc, fdt);
576      }
577  
578      /* Create an extra node for power management on machines that support it */
579      if (pmc->dt_power_mgt) {
580          pmc->dt_power_mgt(pnv, fdt);
581      }
582  
583      return fdt;
584  }
585  
586  static void pnv_powerdown_notify(Notifier *n, void *opaque)
587  {
588      PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
589  
590      if (pnv->bmc) {
591          pnv_bmc_powerdown(pnv->bmc);
592      }
593  }
594  
595  static void pnv_reset(MachineState *machine, ShutdownCause reason)
596  {
597      PnvMachineState *pnv = PNV_MACHINE(machine);
598      IPMIBmc *bmc;
599      void *fdt;
600  
601      qemu_devices_reset(reason);
602  
603      /*
604       * The machine should provide by default an internal BMC simulator.
605       * If not, try to use the BMC device that was provided on the command
606       * line.
607       */
608      bmc = pnv_bmc_find(&error_fatal);
609      if (!pnv->bmc) {
610          if (!bmc) {
611              if (!qtest_enabled()) {
612                  warn_report("machine has no BMC device. Use '-device "
613                              "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
614                              "to define one");
615              }
616          } else {
617              pnv_bmc_set_pnor(bmc, pnv->pnor);
618              pnv->bmc = bmc;
619          }
620      }
621  
622      fdt = pnv_dt_create(machine);
623  
624      /* Pack resulting tree */
625      _FDT((fdt_pack(fdt)));
626  
627      qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
628      cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
629  
630      /*
631       * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
632       * the existing machine->fdt to avoid leaking it during
633       * a reset.
634       */
635      g_free(machine->fdt);
636      machine->fdt = fdt;
637  }
638  
639  static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
640  {
641      Pnv8Chip *chip8 = PNV8_CHIP(chip);
642      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
643  
644      qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
645      return pnv_lpc_isa_create(&chip8->lpc, true, errp);
646  }
647  
648  static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
649  {
650      Pnv8Chip *chip8 = PNV8_CHIP(chip);
651      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
652  
653      qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
654      return pnv_lpc_isa_create(&chip8->lpc, false, errp);
655  }
656  
657  static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
658  {
659      Pnv9Chip *chip9 = PNV9_CHIP(chip);
660      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
661  
662      qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
663      return pnv_lpc_isa_create(&chip9->lpc, false, errp);
664  }
665  
666  static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
667  {
668      Pnv10Chip *chip10 = PNV10_CHIP(chip);
669      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
670  
671      qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
672      return pnv_lpc_isa_create(&chip10->lpc, false, errp);
673  }
674  
675  static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
676  {
677      return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
678  }
679  
680  static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
681  {
682      Pnv8Chip *chip8 = PNV8_CHIP(chip);
683      int i;
684  
685      ics_pic_print_info(&chip8->psi.ics, mon);
686  
687      for (i = 0; i < chip8->num_phbs; i++) {
688          PnvPHB *phb = chip8->phbs[i];
689          PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
690  
691          pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
692          ics_pic_print_info(&phb3->lsis, mon);
693      }
694  }
695  
696  static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
697  {
698      Monitor *mon = opaque;
699      PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
700  
701      if (!phb) {
702          return 0;
703      }
704  
705      pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
706  
707      return 0;
708  }
709  
710  static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
711  {
712      Pnv9Chip *chip9 = PNV9_CHIP(chip);
713  
714      pnv_xive_pic_print_info(&chip9->xive, mon);
715      pnv_psi_pic_print_info(&chip9->psi, mon);
716  
717      object_child_foreach_recursive(OBJECT(chip),
718                           pnv_chip_power9_pic_print_info_child, mon);
719  }
720  
721  static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
722                                                  uint32_t core_id)
723  {
724      return PNV_XSCOM_EX_BASE(core_id);
725  }
726  
727  static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
728                                                  uint32_t core_id)
729  {
730      return PNV9_XSCOM_EC_BASE(core_id);
731  }
732  
733  static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
734                                                   uint32_t core_id)
735  {
736      return PNV10_XSCOM_EC_BASE(core_id);
737  }
738  
739  static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
740  {
741      PowerPCCPUClass *ppc_default =
742          POWERPC_CPU_CLASS(object_class_by_name(default_type));
743      PowerPCCPUClass *ppc =
744          POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
745  
746      return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
747  }
748  
749  static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
750  {
751      ISADevice *dev = isa_new("isa-ipmi-bt");
752  
753      object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
754      object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
755      isa_realize_and_unref(dev, bus, &error_fatal);
756  }
757  
758  static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
759  {
760      Pnv10Chip *chip10 = PNV10_CHIP(chip);
761  
762      pnv_xive2_pic_print_info(&chip10->xive, mon);
763      pnv_psi_pic_print_info(&chip10->psi, mon);
764  
765      object_child_foreach_recursive(OBJECT(chip),
766                           pnv_chip_power9_pic_print_info_child, mon);
767  }
768  
769  /* Always give the first 1GB to chip 0 else we won't boot */
770  static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
771  {
772      MachineState *machine = MACHINE(pnv);
773      uint64_t ram_per_chip;
774  
775      assert(machine->ram_size >= 1 * GiB);
776  
777      ram_per_chip = machine->ram_size / pnv->num_chips;
778      if (ram_per_chip >= 1 * GiB) {
779          return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
780      }
781  
782      assert(pnv->num_chips > 1);
783  
784      ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
785      return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
786  }
787  
788  static void pnv_init(MachineState *machine)
789  {
790      const char *bios_name = machine->firmware ?: FW_FILE_NAME;
791      PnvMachineState *pnv = PNV_MACHINE(machine);
792      MachineClass *mc = MACHINE_GET_CLASS(machine);
793      char *fw_filename;
794      long fw_size;
795      uint64_t chip_ram_start = 0;
796      int i;
797      char *chip_typename;
798      DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
799      DeviceState *dev;
800  
801      if (kvm_enabled()) {
802          error_report("machine %s does not support the KVM accelerator",
803                       mc->name);
804          exit(EXIT_FAILURE);
805      }
806  
807      /* allocate RAM */
808      if (machine->ram_size < mc->default_ram_size) {
809          char *sz = size_to_str(mc->default_ram_size);
810          error_report("Invalid RAM size, should be bigger than %s", sz);
811          g_free(sz);
812          exit(EXIT_FAILURE);
813      }
814      memory_region_add_subregion(get_system_memory(), 0, machine->ram);
815  
816      /*
817       * Create our simple PNOR device
818       */
819      dev = qdev_new(TYPE_PNV_PNOR);
820      if (pnor) {
821          qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
822      }
823      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
824      pnv->pnor = PNV_PNOR(dev);
825  
826      /* load skiboot firmware  */
827      fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
828      if (!fw_filename) {
829          error_report("Could not find OPAL firmware '%s'", bios_name);
830          exit(1);
831      }
832  
833      fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
834      if (fw_size < 0) {
835          error_report("Could not load OPAL firmware '%s'", fw_filename);
836          exit(1);
837      }
838      g_free(fw_filename);
839  
840      /* load kernel */
841      if (machine->kernel_filename) {
842          long kernel_size;
843  
844          kernel_size = load_image_targphys(machine->kernel_filename,
845                                            KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
846          if (kernel_size < 0) {
847              error_report("Could not load kernel '%s'",
848                           machine->kernel_filename);
849              exit(1);
850          }
851      }
852  
853      /* load initrd */
854      if (machine->initrd_filename) {
855          pnv->initrd_base = INITRD_LOAD_ADDR;
856          pnv->initrd_size = load_image_targphys(machine->initrd_filename,
857                                    pnv->initrd_base, INITRD_MAX_SIZE);
858          if (pnv->initrd_size < 0) {
859              error_report("Could not load initial ram disk '%s'",
860                           machine->initrd_filename);
861              exit(1);
862          }
863      }
864  
865      /* MSIs are supported on this platform */
866      msi_nonbroken = true;
867  
868      /*
869       * Check compatibility of the specified CPU with the machine
870       * default.
871       */
872      if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
873          error_report("invalid CPU model '%s' for %s machine",
874                       machine->cpu_type, mc->name);
875          exit(1);
876      }
877  
878      /* Create the processor chips */
879      i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
880      chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
881                                      i, machine->cpu_type);
882      if (!object_class_by_name(chip_typename)) {
883          error_report("invalid chip model '%.*s' for %s machine",
884                       i, machine->cpu_type, mc->name);
885          exit(1);
886      }
887  
888      pnv->num_chips =
889          machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
890  
891      if (machine->smp.threads > 8) {
892          error_report("Cannot support more than 8 threads/core "
893                       "on a powernv machine");
894          exit(1);
895      }
896      if (!is_power_of_2(machine->smp.threads)) {
897          error_report("Cannot support %d threads/core on a powernv"
898                       "machine because it must be a power of 2",
899                       machine->smp.threads);
900          exit(1);
901      }
902      /*
903       * TODO: should we decide on how many chips we can create based
904       * on #cores and Venice vs. Murano vs. Naples chip type etc...,
905       */
906      if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
907          error_report("invalid number of chips: '%d'", pnv->num_chips);
908          error_printf(
909              "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
910          exit(1);
911      }
912  
913      pnv->chips = g_new0(PnvChip *, pnv->num_chips);
914      for (i = 0; i < pnv->num_chips; i++) {
915          char chip_name[32];
916          Object *chip = OBJECT(qdev_new(chip_typename));
917          uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
918  
919          pnv->chips[i] = PNV_CHIP(chip);
920  
921          /* Distribute RAM among the chips  */
922          object_property_set_int(chip, "ram-start", chip_ram_start,
923                                  &error_fatal);
924          object_property_set_int(chip, "ram-size", chip_ram_size,
925                                  &error_fatal);
926          chip_ram_start += chip_ram_size;
927  
928          snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
929          object_property_add_child(OBJECT(pnv), chip_name, chip);
930          object_property_set_int(chip, "chip-id", i, &error_fatal);
931          object_property_set_int(chip, "nr-cores", machine->smp.cores,
932                                  &error_fatal);
933          object_property_set_int(chip, "nr-threads", machine->smp.threads,
934                                  &error_fatal);
935          /*
936           * The POWER8 machine use the XICS interrupt interface.
937           * Propagate the XICS fabric to the chip and its controllers.
938           */
939          if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
940              object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
941          }
942          if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
943              object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
944                                       &error_abort);
945          }
946          sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
947      }
948      g_free(chip_typename);
949  
950      /* Instantiate ISA bus on chip 0 */
951      pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
952  
953      /* Create serial port */
954      serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
955  
956      /* Create an RTC ISA device too */
957      mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
958  
959      /*
960       * Create the machine BMC simulator and the IPMI BT device for
961       * communication with the BMC
962       */
963      if (defaults_enabled()) {
964          pnv->bmc = pnv_bmc_create(pnv->pnor);
965          pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
966      }
967  
968      /*
969       * The PNOR is mapped on the LPC FW address space by the BMC.
970       * Since we can not reach the remote BMC machine with LPC memops,
971       * map it always for now.
972       */
973      memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
974                                  &pnv->pnor->mmio);
975  
976      /*
977       * OpenPOWER systems use a IPMI SEL Event message to notify the
978       * host to powerdown
979       */
980      pnv->powerdown_notifier.notify = pnv_powerdown_notify;
981      qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
982  }
983  
984  /*
985   *    0:21  Reserved - Read as zeros
986   *   22:24  Chip ID
987   *   25:28  Core number
988   *   29:31  Thread ID
989   */
990  static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
991  {
992      return (chip->chip_id << 7) | (core_id << 3);
993  }
994  
995  static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
996                                          Error **errp)
997  {
998      Pnv8Chip *chip8 = PNV8_CHIP(chip);
999      Error *local_err = NULL;
1000      Object *obj;
1001      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1002  
1003      obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1004      if (local_err) {
1005          error_propagate(errp, local_err);
1006          return;
1007      }
1008  
1009      pnv_cpu->intc = obj;
1010  }
1011  
1012  
1013  static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1014  {
1015      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1016  
1017      icp_reset(ICP(pnv_cpu->intc));
1018  }
1019  
1020  static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1021  {
1022      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1023  
1024      icp_destroy(ICP(pnv_cpu->intc));
1025      pnv_cpu->intc = NULL;
1026  }
1027  
1028  static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1029                                              Monitor *mon)
1030  {
1031      icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1032  }
1033  
1034  /*
1035   *    0:48  Reserved - Read as zeroes
1036   *   49:52  Node ID
1037   *   53:55  Chip ID
1038   *   56     Reserved - Read as zero
1039   *   57:61  Core number
1040   *   62:63  Thread ID
1041   *
1042   * We only care about the lower bits. uint32_t is fine for the moment.
1043   */
1044  static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1045  {
1046      return (chip->chip_id << 8) | (core_id << 2);
1047  }
1048  
1049  static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1050  {
1051      return (chip->chip_id << 8) | (core_id << 2);
1052  }
1053  
1054  static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1055                                          Error **errp)
1056  {
1057      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1058      Error *local_err = NULL;
1059      Object *obj;
1060      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1061  
1062      /*
1063       * The core creates its interrupt presenter but the XIVE interrupt
1064       * controller object is initialized afterwards. Hopefully, it's
1065       * only used at runtime.
1066       */
1067      obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1068                             &local_err);
1069      if (local_err) {
1070          error_propagate(errp, local_err);
1071          return;
1072      }
1073  
1074      pnv_cpu->intc = obj;
1075  }
1076  
1077  static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1078  {
1079      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1080  
1081      xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1082  }
1083  
1084  static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1085  {
1086      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1087  
1088      xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1089      pnv_cpu->intc = NULL;
1090  }
1091  
1092  static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1093                                              Monitor *mon)
1094  {
1095      xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1096  }
1097  
1098  static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1099                                          Error **errp)
1100  {
1101      Pnv10Chip *chip10 = PNV10_CHIP(chip);
1102      Error *local_err = NULL;
1103      Object *obj;
1104      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1105  
1106      /*
1107       * The core creates its interrupt presenter but the XIVE2 interrupt
1108       * controller object is initialized afterwards. Hopefully, it's
1109       * only used at runtime.
1110       */
1111      obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1112                             &local_err);
1113      if (local_err) {
1114          error_propagate(errp, local_err);
1115          return;
1116      }
1117  
1118      pnv_cpu->intc = obj;
1119  }
1120  
1121  static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1122  {
1123      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1124  
1125      xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1126  }
1127  
1128  static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1129  {
1130      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1131  
1132      xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1133      pnv_cpu->intc = NULL;
1134  }
1135  
1136  static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1137                                               Monitor *mon)
1138  {
1139      xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1140  }
1141  
1142  /*
1143   * Allowed core identifiers on a POWER8 Processor Chip :
1144   *
1145   * <EX0 reserved>
1146   *  EX1  - Venice only
1147   *  EX2  - Venice only
1148   *  EX3  - Venice only
1149   *  EX4
1150   *  EX5
1151   *  EX6
1152   * <EX7,8 reserved> <reserved>
1153   *  EX9  - Venice only
1154   *  EX10 - Venice only
1155   *  EX11 - Venice only
1156   *  EX12
1157   *  EX13
1158   *  EX14
1159   * <EX15 reserved>
1160   */
1161  #define POWER8E_CORE_MASK  (0x7070ull)
1162  #define POWER8_CORE_MASK   (0x7e7eull)
1163  
1164  /*
1165   * POWER9 has 24 cores, ids starting at 0x0
1166   */
1167  #define POWER9_CORE_MASK   (0xffffffffffffffull)
1168  
1169  
1170  #define POWER10_CORE_MASK  (0xffffffffffffffull)
1171  
1172  static void pnv_chip_power8_instance_init(Object *obj)
1173  {
1174      Pnv8Chip *chip8 = PNV8_CHIP(obj);
1175      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1176      int i;
1177  
1178      object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1179                               (Object **)&chip8->xics,
1180                               object_property_allow_set_link,
1181                               OBJ_PROP_LINK_STRONG);
1182  
1183      object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1184  
1185      object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1186  
1187      object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1188  
1189      object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1190  
1191      if (defaults_enabled()) {
1192          chip8->num_phbs = pcc->num_phbs;
1193  
1194          for (i = 0; i < chip8->num_phbs; i++) {
1195              Object *phb = object_new(TYPE_PNV_PHB);
1196  
1197              /*
1198               * We need the chip to parent the PHB to allow the DT
1199               * to build correctly (via pnv_xscom_dt()).
1200               *
1201               * TODO: the PHB should be parented by a PEC device that, at
1202               * this moment, is not modelled powernv8/phb3.
1203               */
1204              object_property_add_child(obj, "phb[*]", phb);
1205              chip8->phbs[i] = PNV_PHB(phb);
1206          }
1207      }
1208  
1209  }
1210  
1211  static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1212   {
1213      PnvChip *chip = PNV_CHIP(chip8);
1214      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1215      int i, j;
1216      char *name;
1217  
1218      name = g_strdup_printf("icp-%x", chip->chip_id);
1219      memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1220      g_free(name);
1221      memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1222                                  &chip8->icp_mmio);
1223  
1224      /* Map the ICP registers for each thread */
1225      for (i = 0; i < chip->nr_cores; i++) {
1226          PnvCore *pnv_core = chip->cores[i];
1227          int core_hwid = CPU_CORE(pnv_core)->core_id;
1228  
1229          for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1230              uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1231              PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1232  
1233              memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1234                                          &icp->mmio);
1235          }
1236      }
1237  }
1238  
1239  static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1240  {
1241      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1242      PnvChip *chip = PNV_CHIP(dev);
1243      Pnv8Chip *chip8 = PNV8_CHIP(dev);
1244      Pnv8Psi *psi8 = &chip8->psi;
1245      Error *local_err = NULL;
1246      int i;
1247  
1248      assert(chip8->xics);
1249  
1250      /* XSCOM bridge is first */
1251      pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1252  
1253      pcc->parent_realize(dev, &local_err);
1254      if (local_err) {
1255          error_propagate(errp, local_err);
1256          return;
1257      }
1258  
1259      /* Processor Service Interface (PSI) Host Bridge */
1260      object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1261                              &error_fatal);
1262      object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1263                               OBJECT(chip8->xics), &error_abort);
1264      if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1265          return;
1266      }
1267      pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1268                              &PNV_PSI(psi8)->xscom_regs);
1269  
1270      /* Create LPC controller */
1271      qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1272      pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1273  
1274      chip->fw_mr = &chip8->lpc.isa_fw;
1275      chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1276                                              (uint64_t) PNV_XSCOM_BASE(chip),
1277                                              PNV_XSCOM_LPC_BASE);
1278  
1279      /*
1280       * Interrupt Management Area. This is the memory region holding
1281       * all the Interrupt Control Presenter (ICP) registers
1282       */
1283      pnv_chip_icp_realize(chip8, &local_err);
1284      if (local_err) {
1285          error_propagate(errp, local_err);
1286          return;
1287      }
1288  
1289      /* Create the simplified OCC model */
1290      if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1291          return;
1292      }
1293      pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1294      qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1295                            qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1296  
1297      /* OCC SRAM model */
1298      memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1299                                  &chip8->occ.sram_regs);
1300  
1301      /* HOMER */
1302      object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1303                               &error_abort);
1304      if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1305          return;
1306      }
1307      /* Homer Xscom region */
1308      pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1309  
1310      /* Homer mmio region */
1311      memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1312                                  &chip8->homer.regs);
1313  
1314      /* PHB controllers */
1315      for (i = 0; i < chip8->num_phbs; i++) {
1316          PnvPHB *phb = chip8->phbs[i];
1317  
1318          object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1319          object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1320                                  &error_fatal);
1321          object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1322                                   &error_fatal);
1323          if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1324              return;
1325          }
1326      }
1327  }
1328  
1329  static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1330  {
1331      addr &= (PNV_XSCOM_SIZE - 1);
1332      return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1333  }
1334  
1335  static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1336  {
1337      DeviceClass *dc = DEVICE_CLASS(klass);
1338      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1339  
1340      k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1341      k->cores_mask = POWER8E_CORE_MASK;
1342      k->num_phbs = 3;
1343      k->core_pir = pnv_chip_core_pir_p8;
1344      k->intc_create = pnv_chip_power8_intc_create;
1345      k->intc_reset = pnv_chip_power8_intc_reset;
1346      k->intc_destroy = pnv_chip_power8_intc_destroy;
1347      k->intc_print_info = pnv_chip_power8_intc_print_info;
1348      k->isa_create = pnv_chip_power8_isa_create;
1349      k->dt_populate = pnv_chip_power8_dt_populate;
1350      k->pic_print_info = pnv_chip_power8_pic_print_info;
1351      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1352      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1353      dc->desc = "PowerNV Chip POWER8E";
1354  
1355      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1356                                      &k->parent_realize);
1357  }
1358  
1359  static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1360  {
1361      DeviceClass *dc = DEVICE_CLASS(klass);
1362      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1363  
1364      k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1365      k->cores_mask = POWER8_CORE_MASK;
1366      k->num_phbs = 3;
1367      k->core_pir = pnv_chip_core_pir_p8;
1368      k->intc_create = pnv_chip_power8_intc_create;
1369      k->intc_reset = pnv_chip_power8_intc_reset;
1370      k->intc_destroy = pnv_chip_power8_intc_destroy;
1371      k->intc_print_info = pnv_chip_power8_intc_print_info;
1372      k->isa_create = pnv_chip_power8_isa_create;
1373      k->dt_populate = pnv_chip_power8_dt_populate;
1374      k->pic_print_info = pnv_chip_power8_pic_print_info;
1375      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1376      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1377      dc->desc = "PowerNV Chip POWER8";
1378  
1379      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1380                                      &k->parent_realize);
1381  }
1382  
1383  static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1384  {
1385      DeviceClass *dc = DEVICE_CLASS(klass);
1386      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1387  
1388      k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1389      k->cores_mask = POWER8_CORE_MASK;
1390      k->num_phbs = 4;
1391      k->core_pir = pnv_chip_core_pir_p8;
1392      k->intc_create = pnv_chip_power8_intc_create;
1393      k->intc_reset = pnv_chip_power8_intc_reset;
1394      k->intc_destroy = pnv_chip_power8_intc_destroy;
1395      k->intc_print_info = pnv_chip_power8_intc_print_info;
1396      k->isa_create = pnv_chip_power8nvl_isa_create;
1397      k->dt_populate = pnv_chip_power8_dt_populate;
1398      k->pic_print_info = pnv_chip_power8_pic_print_info;
1399      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1400      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1401      dc->desc = "PowerNV Chip POWER8NVL";
1402  
1403      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1404                                      &k->parent_realize);
1405  }
1406  
1407  static void pnv_chip_power9_instance_init(Object *obj)
1408  {
1409      PnvChip *chip = PNV_CHIP(obj);
1410      Pnv9Chip *chip9 = PNV9_CHIP(obj);
1411      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1412      int i;
1413  
1414      object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1415      object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1416                                "xive-fabric");
1417  
1418      object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1419  
1420      object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1421  
1422      object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1423  
1424      object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1425  
1426      object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1427  
1428      /* Number of PECs is the chip default */
1429      chip->num_pecs = pcc->num_pecs;
1430  
1431      for (i = 0; i < chip->num_pecs; i++) {
1432          object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1433                                  TYPE_PNV_PHB4_PEC);
1434      }
1435  
1436      for (i = 0; i < pcc->i2c_num_engines; i++) {
1437          object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1438      }
1439  }
1440  
1441  static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1442                                        PnvCore *pnv_core,
1443                                        const char *type)
1444  {
1445      char eq_name[32];
1446      int core_id = CPU_CORE(pnv_core)->core_id;
1447  
1448      snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1449      object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1450                                         sizeof(*eq), type,
1451                                         &error_fatal, NULL);
1452  
1453      object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1454      qdev_realize(DEVICE(eq), NULL, &error_fatal);
1455  }
1456  
1457  static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1458  {
1459      PnvChip *chip = PNV_CHIP(chip9);
1460      int i;
1461  
1462      chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1463      chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1464  
1465      for (i = 0; i < chip9->nr_quads; i++) {
1466          PnvQuad *eq = &chip9->quads[i];
1467  
1468          pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1469                                    PNV_QUAD_TYPE_NAME("power9"));
1470  
1471          pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1472                                  &eq->xscom_regs);
1473      }
1474  }
1475  
1476  static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1477  {
1478      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1479      int i;
1480  
1481      for (i = 0; i < chip->num_pecs; i++) {
1482          PnvPhb4PecState *pec = &chip9->pecs[i];
1483          PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1484          uint32_t pec_nest_base;
1485          uint32_t pec_pci_base;
1486  
1487          object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1488          object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1489                                  &error_fatal);
1490          object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1491                                   &error_fatal);
1492          if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1493              return;
1494          }
1495  
1496          pec_nest_base = pecc->xscom_nest_base(pec);
1497          pec_pci_base = pecc->xscom_pci_base(pec);
1498  
1499          pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1500          pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1501      }
1502  }
1503  
1504  static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1505  {
1506      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1507      Pnv9Chip *chip9 = PNV9_CHIP(dev);
1508      PnvChip *chip = PNV_CHIP(dev);
1509      Pnv9Psi *psi9 = &chip9->psi;
1510      Error *local_err = NULL;
1511      int i;
1512  
1513      /* XSCOM bridge is first */
1514      pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1515  
1516      pcc->parent_realize(dev, &local_err);
1517      if (local_err) {
1518          error_propagate(errp, local_err);
1519          return;
1520      }
1521  
1522      pnv_chip_quad_realize(chip9, &local_err);
1523      if (local_err) {
1524          error_propagate(errp, local_err);
1525          return;
1526      }
1527  
1528      /* XIVE interrupt controller (POWER9) */
1529      object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1530                              PNV9_XIVE_IC_BASE(chip), &error_fatal);
1531      object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1532                              PNV9_XIVE_VC_BASE(chip), &error_fatal);
1533      object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1534                              PNV9_XIVE_PC_BASE(chip), &error_fatal);
1535      object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1536                              PNV9_XIVE_TM_BASE(chip), &error_fatal);
1537      object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1538                               &error_abort);
1539      if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1540          return;
1541      }
1542      pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1543                              &chip9->xive.xscom_regs);
1544  
1545      /* Processor Service Interface (PSI) Host Bridge */
1546      object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1547                              &error_fatal);
1548      /* This is the only device with 4k ESB pages */
1549      object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1550                              &error_fatal);
1551      if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1552          return;
1553      }
1554      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1555                              &PNV_PSI(psi9)->xscom_regs);
1556  
1557      /* LPC */
1558      if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1559          return;
1560      }
1561      memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1562                                  &chip9->lpc.xscom_regs);
1563  
1564      chip->fw_mr = &chip9->lpc.isa_fw;
1565      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1566                                              (uint64_t) PNV9_LPCM_BASE(chip));
1567  
1568      /* Create the simplified OCC model */
1569      if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1570          return;
1571      }
1572      pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1573      qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1574                                DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1575  
1576      /* OCC SRAM model */
1577      memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1578                                  &chip9->occ.sram_regs);
1579  
1580      /* SBE */
1581      if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1582          return;
1583      }
1584      pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1585                              &chip9->sbe.xscom_ctrl_regs);
1586      pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1587                              &chip9->sbe.xscom_mbox_regs);
1588      qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1589                                DEVICE(&chip9->psi), PSIHB9_IRQ_PSU));
1590  
1591      /* HOMER */
1592      object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1593                               &error_abort);
1594      if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1595          return;
1596      }
1597      /* Homer Xscom region */
1598      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1599  
1600      /* Homer mmio region */
1601      memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1602                                  &chip9->homer.regs);
1603  
1604      /* PEC PHBs */
1605      pnv_chip_power9_pec_realize(chip, &local_err);
1606      if (local_err) {
1607          error_propagate(errp, local_err);
1608          return;
1609      }
1610  
1611      /*
1612       * I2C
1613       */
1614      for (i = 0; i < pcc->i2c_num_engines; i++) {
1615          Object *obj =  OBJECT(&chip9->i2c[i]);
1616  
1617          object_property_set_int(obj, "engine", i + 1, &error_fatal);
1618          object_property_set_int(obj, "num-busses",
1619                                  pcc->i2c_ports_per_engine[i],
1620                                  &error_fatal);
1621          object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1622          if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1623              return;
1624          }
1625          pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1626                                  (chip9->i2c[i].engine - 1) *
1627                                          PNV9_XSCOM_I2CM_SIZE,
1628                                  &chip9->i2c[i].xscom_regs);
1629          qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1630                                qdev_get_gpio_in(DEVICE(&chip9->psi),
1631                                                 PSIHB9_IRQ_SBE_I2C));
1632      }
1633  }
1634  
1635  static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1636  {
1637      addr &= (PNV9_XSCOM_SIZE - 1);
1638      return addr >> 3;
1639  }
1640  
1641  static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1642  {
1643      DeviceClass *dc = DEVICE_CLASS(klass);
1644      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1645      static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1646  
1647      k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1648      k->cores_mask = POWER9_CORE_MASK;
1649      k->core_pir = pnv_chip_core_pir_p9;
1650      k->intc_create = pnv_chip_power9_intc_create;
1651      k->intc_reset = pnv_chip_power9_intc_reset;
1652      k->intc_destroy = pnv_chip_power9_intc_destroy;
1653      k->intc_print_info = pnv_chip_power9_intc_print_info;
1654      k->isa_create = pnv_chip_power9_isa_create;
1655      k->dt_populate = pnv_chip_power9_dt_populate;
1656      k->pic_print_info = pnv_chip_power9_pic_print_info;
1657      k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1658      k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1659      dc->desc = "PowerNV Chip POWER9";
1660      k->num_pecs = PNV9_CHIP_MAX_PEC;
1661      k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1662      k->i2c_ports_per_engine = i2c_ports_per_engine;
1663  
1664      device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1665                                      &k->parent_realize);
1666  }
1667  
1668  static void pnv_chip_power10_instance_init(Object *obj)
1669  {
1670      PnvChip *chip = PNV_CHIP(obj);
1671      Pnv10Chip *chip10 = PNV10_CHIP(obj);
1672      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1673      int i;
1674  
1675      object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1676      object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1677                                "xive-fabric");
1678      object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1679      object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1680      object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1681      object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1682      object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1683  
1684      chip->num_pecs = pcc->num_pecs;
1685  
1686      for (i = 0; i < chip->num_pecs; i++) {
1687          object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1688                                  TYPE_PNV_PHB5_PEC);
1689      }
1690  
1691      for (i = 0; i < pcc->i2c_num_engines; i++) {
1692          object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1693      }
1694  }
1695  
1696  static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1697  {
1698      PnvChip *chip = PNV_CHIP(chip10);
1699      int i;
1700  
1701      chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1702      chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1703  
1704      for (i = 0; i < chip10->nr_quads; i++) {
1705          PnvQuad *eq = &chip10->quads[i];
1706  
1707          pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1708                                    PNV_QUAD_TYPE_NAME("power10"));
1709  
1710          pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1711                                  &eq->xscom_regs);
1712  
1713          pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1714                                  &eq->xscom_qme_regs);
1715      }
1716  }
1717  
1718  static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1719  {
1720      Pnv10Chip *chip10 = PNV10_CHIP(chip);
1721      int i;
1722  
1723      for (i = 0; i < chip->num_pecs; i++) {
1724          PnvPhb4PecState *pec = &chip10->pecs[i];
1725          PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1726          uint32_t pec_nest_base;
1727          uint32_t pec_pci_base;
1728  
1729          object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1730          object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1731                                  &error_fatal);
1732          object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1733                                   &error_fatal);
1734          if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1735              return;
1736          }
1737  
1738          pec_nest_base = pecc->xscom_nest_base(pec);
1739          pec_pci_base = pecc->xscom_pci_base(pec);
1740  
1741          pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1742          pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1743      }
1744  }
1745  
1746  static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1747  {
1748      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1749      PnvChip *chip = PNV_CHIP(dev);
1750      Pnv10Chip *chip10 = PNV10_CHIP(dev);
1751      Error *local_err = NULL;
1752      int i;
1753  
1754      /* XSCOM bridge is first */
1755      pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1756  
1757      pcc->parent_realize(dev, &local_err);
1758      if (local_err) {
1759          error_propagate(errp, local_err);
1760          return;
1761      }
1762  
1763      pnv_chip_power10_quad_realize(chip10, &local_err);
1764      if (local_err) {
1765          error_propagate(errp, local_err);
1766          return;
1767      }
1768  
1769      /* XIVE2 interrupt controller (POWER10) */
1770      object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1771                              PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1772      object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1773                              PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1774      object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1775                              PNV10_XIVE2_END_BASE(chip), &error_fatal);
1776      object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1777                              PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1778      object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1779                              PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1780      object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1781                              PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1782      object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1783                               &error_abort);
1784      if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1785          return;
1786      }
1787      pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1788                              &chip10->xive.xscom_regs);
1789  
1790      /* Processor Service Interface (PSI) Host Bridge */
1791      object_property_set_int(OBJECT(&chip10->psi), "bar",
1792                              PNV10_PSIHB_BASE(chip), &error_fatal);
1793      /* PSI can now be configured to use 64k ESB pages on POWER10 */
1794      object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1795                              &error_fatal);
1796      if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1797          return;
1798      }
1799      pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1800                              &PNV_PSI(&chip10->psi)->xscom_regs);
1801  
1802      /* LPC */
1803      if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1804          return;
1805      }
1806      memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1807                                  &chip10->lpc.xscom_regs);
1808  
1809      chip->fw_mr = &chip10->lpc.isa_fw;
1810      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1811                                              (uint64_t) PNV10_LPCM_BASE(chip));
1812  
1813      /* Create the simplified OCC model */
1814      if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1815          return;
1816      }
1817      pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1818                              &chip10->occ.xscom_regs);
1819      qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1820                                DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1821  
1822      /* OCC SRAM model */
1823      memory_region_add_subregion(get_system_memory(),
1824                                  PNV10_OCC_SENSOR_BASE(chip),
1825                                  &chip10->occ.sram_regs);
1826  
1827      /* SBE */
1828      if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1829          return;
1830      }
1831      pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1832                              &chip10->sbe.xscom_ctrl_regs);
1833      pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1834                              &chip10->sbe.xscom_mbox_regs);
1835      qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1836                                DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1837  
1838      /* HOMER */
1839      object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1840                               &error_abort);
1841      if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1842          return;
1843      }
1844      /* Homer Xscom region */
1845      pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1846                              &chip10->homer.pba_regs);
1847  
1848      /* Homer mmio region */
1849      memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1850                                  &chip10->homer.regs);
1851  
1852      /* PHBs */
1853      pnv_chip_power10_phb_realize(chip, &local_err);
1854      if (local_err) {
1855          error_propagate(errp, local_err);
1856          return;
1857      }
1858  
1859  
1860      /*
1861       * I2C
1862       */
1863      for (i = 0; i < pcc->i2c_num_engines; i++) {
1864          Object *obj =  OBJECT(&chip10->i2c[i]);
1865  
1866          object_property_set_int(obj, "engine", i + 1, &error_fatal);
1867          object_property_set_int(obj, "num-busses",
1868                                  pcc->i2c_ports_per_engine[i],
1869                                  &error_fatal);
1870          object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1871          if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1872              return;
1873          }
1874          pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
1875                                  (chip10->i2c[i].engine - 1) *
1876                                          PNV10_XSCOM_I2CM_SIZE,
1877                                  &chip10->i2c[i].xscom_regs);
1878          qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
1879                                qdev_get_gpio_in(DEVICE(&chip10->psi),
1880                                                 PSIHB9_IRQ_SBE_I2C));
1881      }
1882  }
1883  
1884  static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1885  {
1886      addr &= (PNV10_XSCOM_SIZE - 1);
1887      return addr >> 3;
1888  }
1889  
1890  static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1891  {
1892      DeviceClass *dc = DEVICE_CLASS(klass);
1893      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1894      static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
1895  
1896      k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1897      k->cores_mask = POWER10_CORE_MASK;
1898      k->core_pir = pnv_chip_core_pir_p10;
1899      k->intc_create = pnv_chip_power10_intc_create;
1900      k->intc_reset = pnv_chip_power10_intc_reset;
1901      k->intc_destroy = pnv_chip_power10_intc_destroy;
1902      k->intc_print_info = pnv_chip_power10_intc_print_info;
1903      k->isa_create = pnv_chip_power10_isa_create;
1904      k->dt_populate = pnv_chip_power10_dt_populate;
1905      k->pic_print_info = pnv_chip_power10_pic_print_info;
1906      k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1907      k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1908      dc->desc = "PowerNV Chip POWER10";
1909      k->num_pecs = PNV10_CHIP_MAX_PEC;
1910      k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
1911      k->i2c_ports_per_engine = i2c_ports_per_engine;
1912  
1913      device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1914                                      &k->parent_realize);
1915  }
1916  
1917  static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1918  {
1919      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1920      int cores_max;
1921  
1922      /*
1923       * No custom mask for this chip, let's use the default one from *
1924       * the chip class
1925       */
1926      if (!chip->cores_mask) {
1927          chip->cores_mask = pcc->cores_mask;
1928      }
1929  
1930      /* filter alien core ids ! some are reserved */
1931      if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1932          error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1933                     chip->cores_mask);
1934          return;
1935      }
1936      chip->cores_mask &= pcc->cores_mask;
1937  
1938      /* now that we have a sane layout, let check the number of cores */
1939      cores_max = ctpop64(chip->cores_mask);
1940      if (chip->nr_cores > cores_max) {
1941          error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1942                     cores_max);
1943          return;
1944      }
1945  }
1946  
1947  static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1948  {
1949      Error *error = NULL;
1950      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1951      const char *typename = pnv_chip_core_typename(chip);
1952      int i, core_hwid;
1953      PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1954  
1955      if (!object_class_by_name(typename)) {
1956          error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1957          return;
1958      }
1959  
1960      /* Cores */
1961      pnv_chip_core_sanitize(chip, &error);
1962      if (error) {
1963          error_propagate(errp, error);
1964          return;
1965      }
1966  
1967      chip->cores = g_new0(PnvCore *, chip->nr_cores);
1968  
1969      for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1970               && (i < chip->nr_cores); core_hwid++) {
1971          char core_name[32];
1972          PnvCore *pnv_core;
1973          uint64_t xscom_core_base;
1974  
1975          if (!(chip->cores_mask & (1ull << core_hwid))) {
1976              continue;
1977          }
1978  
1979          pnv_core = PNV_CORE(object_new(typename));
1980  
1981          snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1982          object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1983          chip->cores[i] = pnv_core;
1984          object_property_set_int(OBJECT(pnv_core), "nr-threads",
1985                                  chip->nr_threads, &error_fatal);
1986          object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1987                                  core_hwid, &error_fatal);
1988          object_property_set_int(OBJECT(pnv_core), "pir",
1989                                  pcc->core_pir(chip, core_hwid), &error_fatal);
1990          object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1991                                  &error_fatal);
1992          object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1993                                   &error_abort);
1994          qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1995  
1996          /* Each core has an XSCOM MMIO region */
1997          xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1998  
1999          pnv_xscom_add_subregion(chip, xscom_core_base,
2000                                  &pnv_core->xscom_regs);
2001          i++;
2002      }
2003  }
2004  
2005  static void pnv_chip_realize(DeviceState *dev, Error **errp)
2006  {
2007      PnvChip *chip = PNV_CHIP(dev);
2008      Error *error = NULL;
2009  
2010      /* Cores */
2011      pnv_chip_core_realize(chip, &error);
2012      if (error) {
2013          error_propagate(errp, error);
2014          return;
2015      }
2016  }
2017  
2018  static Property pnv_chip_properties[] = {
2019      DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2020      DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2021      DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2022      DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2023      DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2024      DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2025      DEFINE_PROP_END_OF_LIST(),
2026  };
2027  
2028  static void pnv_chip_class_init(ObjectClass *klass, void *data)
2029  {
2030      DeviceClass *dc = DEVICE_CLASS(klass);
2031  
2032      set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2033      dc->realize = pnv_chip_realize;
2034      device_class_set_props(dc, pnv_chip_properties);
2035      dc->desc = "PowerNV Chip";
2036  }
2037  
2038  PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2039  {
2040      int i, j;
2041  
2042      for (i = 0; i < chip->nr_cores; i++) {
2043          PnvCore *pc = chip->cores[i];
2044          CPUCore *cc = CPU_CORE(pc);
2045  
2046          for (j = 0; j < cc->nr_threads; j++) {
2047              if (ppc_cpu_pir(pc->threads[j]) == pir) {
2048                  return pc->threads[j];
2049              }
2050          }
2051      }
2052      return NULL;
2053  }
2054  
2055  static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2056  {
2057      PnvMachineState *pnv = PNV_MACHINE(xi);
2058      int i, j;
2059  
2060      for (i = 0; i < pnv->num_chips; i++) {
2061          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2062  
2063          if (ics_valid_irq(&chip8->psi.ics, irq)) {
2064              return &chip8->psi.ics;
2065          }
2066  
2067          for (j = 0; j < chip8->num_phbs; j++) {
2068              PnvPHB *phb = chip8->phbs[j];
2069              PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2070  
2071              if (ics_valid_irq(&phb3->lsis, irq)) {
2072                  return &phb3->lsis;
2073              }
2074  
2075              if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2076                  return ICS(&phb3->msis);
2077              }
2078          }
2079      }
2080      return NULL;
2081  }
2082  
2083  PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2084  {
2085      int i;
2086  
2087      for (i = 0; i < pnv->num_chips; i++) {
2088          PnvChip *chip = pnv->chips[i];
2089          if (chip->chip_id == chip_id) {
2090              return chip;
2091          }
2092      }
2093      return NULL;
2094  }
2095  
2096  static void pnv_ics_resend(XICSFabric *xi)
2097  {
2098      PnvMachineState *pnv = PNV_MACHINE(xi);
2099      int i, j;
2100  
2101      for (i = 0; i < pnv->num_chips; i++) {
2102          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2103  
2104          ics_resend(&chip8->psi.ics);
2105  
2106          for (j = 0; j < chip8->num_phbs; j++) {
2107              PnvPHB *phb = chip8->phbs[j];
2108              PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2109  
2110              ics_resend(&phb3->lsis);
2111              ics_resend(ICS(&phb3->msis));
2112          }
2113      }
2114  }
2115  
2116  static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2117  {
2118      PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2119  
2120      return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2121  }
2122  
2123  static void pnv_pic_print_info(InterruptStatsProvider *obj,
2124                                 Monitor *mon)
2125  {
2126      PnvMachineState *pnv = PNV_MACHINE(obj);
2127      int i;
2128      CPUState *cs;
2129  
2130      CPU_FOREACH(cs) {
2131          PowerPCCPU *cpu = POWERPC_CPU(cs);
2132  
2133          /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2134          PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2135                                                             mon);
2136      }
2137  
2138      for (i = 0; i < pnv->num_chips; i++) {
2139          PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2140      }
2141  }
2142  
2143  static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2144                           uint8_t nvt_blk, uint32_t nvt_idx,
2145                           bool cam_ignore, uint8_t priority,
2146                           uint32_t logic_serv,
2147                           XiveTCTXMatch *match)
2148  {
2149      PnvMachineState *pnv = PNV_MACHINE(xfb);
2150      int total_count = 0;
2151      int i;
2152  
2153      for (i = 0; i < pnv->num_chips; i++) {
2154          Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2155          XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2156          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2157          int count;
2158  
2159          count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2160                                 priority, logic_serv, match);
2161  
2162          if (count < 0) {
2163              return count;
2164          }
2165  
2166          total_count += count;
2167      }
2168  
2169      return total_count;
2170  }
2171  
2172  static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2173                                  uint8_t nvt_blk, uint32_t nvt_idx,
2174                                  bool cam_ignore, uint8_t priority,
2175                                  uint32_t logic_serv,
2176                                  XiveTCTXMatch *match)
2177  {
2178      PnvMachineState *pnv = PNV_MACHINE(xfb);
2179      int total_count = 0;
2180      int i;
2181  
2182      for (i = 0; i < pnv->num_chips; i++) {
2183          Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2184          XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2185          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2186          int count;
2187  
2188          count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2189                                 priority, logic_serv, match);
2190  
2191          if (count < 0) {
2192              return count;
2193          }
2194  
2195          total_count += count;
2196      }
2197  
2198      return total_count;
2199  }
2200  
2201  static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2202  {
2203      MachineClass *mc = MACHINE_CLASS(oc);
2204      XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2205      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2206      static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2207  
2208      static GlobalProperty phb_compat[] = {
2209          { TYPE_PNV_PHB, "version", "3" },
2210          { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2211      };
2212  
2213      mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2214      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2215      compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2216  
2217      xic->icp_get = pnv_icp_get;
2218      xic->ics_get = pnv_ics_get;
2219      xic->ics_resend = pnv_ics_resend;
2220  
2221      pmc->compat = compat;
2222      pmc->compat_size = sizeof(compat);
2223  
2224      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2225  }
2226  
2227  static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2228  {
2229      MachineClass *mc = MACHINE_CLASS(oc);
2230      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2231      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2232      static const char compat[] = "qemu,powernv9\0ibm,powernv";
2233  
2234      static GlobalProperty phb_compat[] = {
2235          { TYPE_PNV_PHB, "version", "4" },
2236          { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2237      };
2238  
2239      mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2240      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2241      compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2242  
2243      xfc->match_nvt = pnv_match_nvt;
2244  
2245      mc->alias = "powernv";
2246  
2247      pmc->compat = compat;
2248      pmc->compat_size = sizeof(compat);
2249      pmc->dt_power_mgt = pnv_dt_power_mgt;
2250  
2251      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2252  }
2253  
2254  static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2255  {
2256      MachineClass *mc = MACHINE_CLASS(oc);
2257      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2258      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2259      static const char compat[] = "qemu,powernv10\0ibm,powernv";
2260  
2261      static GlobalProperty phb_compat[] = {
2262          { TYPE_PNV_PHB, "version", "5" },
2263          { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2264      };
2265  
2266      mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2267      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2268      compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2269  
2270      pmc->compat = compat;
2271      pmc->compat_size = sizeof(compat);
2272      pmc->dt_power_mgt = pnv_dt_power_mgt;
2273  
2274      xfc->match_nvt = pnv10_xive_match_nvt;
2275  
2276      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2277  }
2278  
2279  static bool pnv_machine_get_hb(Object *obj, Error **errp)
2280  {
2281      PnvMachineState *pnv = PNV_MACHINE(obj);
2282  
2283      return !!pnv->fw_load_addr;
2284  }
2285  
2286  static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2287  {
2288      PnvMachineState *pnv = PNV_MACHINE(obj);
2289  
2290      if (value) {
2291          pnv->fw_load_addr = 0x8000000;
2292      }
2293  }
2294  
2295  static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2296  {
2297      PowerPCCPU *cpu = POWERPC_CPU(cs);
2298      CPUPPCState *env = &cpu->env;
2299  
2300      cpu_synchronize_state(cs);
2301      ppc_cpu_do_system_reset(cs);
2302      if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2303          /*
2304           * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2305           * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2306           * (PPC_BIT(43)).
2307           */
2308          if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2309              warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2310              env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2311          }
2312      } else {
2313          /*
2314           * For non-powersave system resets, SRR1[42:45] are defined to be
2315           * implementation-dependent. The POWER9 User Manual specifies that
2316           * an external (SCOM driven, which may come from a BMC nmi command or
2317           * another CPU requesting a NMI IPI) system reset exception should be
2318           * 0b0010 (PPC_BIT(44)).
2319           */
2320          env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2321      }
2322  }
2323  
2324  static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2325  {
2326      CPUState *cs;
2327  
2328      CPU_FOREACH(cs) {
2329          async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2330      }
2331  }
2332  
2333  static void pnv_machine_class_init(ObjectClass *oc, void *data)
2334  {
2335      MachineClass *mc = MACHINE_CLASS(oc);
2336      InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2337      NMIClass *nc = NMI_CLASS(oc);
2338  
2339      mc->desc = "IBM PowerNV (Non-Virtualized)";
2340      mc->init = pnv_init;
2341      mc->reset = pnv_reset;
2342      mc->max_cpus = MAX_CPUS;
2343      /* Pnv provides a AHCI device for storage */
2344      mc->block_default_type = IF_IDE;
2345      mc->no_parallel = 1;
2346      mc->default_boot_order = NULL;
2347      /*
2348       * RAM defaults to less than 2048 for 32-bit hosts, and large
2349       * enough to fit the maximum initrd size at it's load address
2350       */
2351      mc->default_ram_size = 1 * GiB;
2352      mc->default_ram_id = "pnv.ram";
2353      ispc->print_info = pnv_pic_print_info;
2354      nc->nmi_monitor_handler = pnv_nmi;
2355  
2356      object_class_property_add_bool(oc, "hb-mode",
2357                                     pnv_machine_get_hb, pnv_machine_set_hb);
2358      object_class_property_set_description(oc, "hb-mode",
2359                                "Use a hostboot like boot loader");
2360  }
2361  
2362  #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2363      {                                             \
2364          .name          = type,                    \
2365          .class_init    = class_initfn,            \
2366          .parent        = TYPE_PNV8_CHIP,          \
2367      }
2368  
2369  #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2370      {                                             \
2371          .name          = type,                    \
2372          .class_init    = class_initfn,            \
2373          .parent        = TYPE_PNV9_CHIP,          \
2374      }
2375  
2376  #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2377      {                                              \
2378          .name          = type,                     \
2379          .class_init    = class_initfn,             \
2380          .parent        = TYPE_PNV10_CHIP,          \
2381      }
2382  
2383  static const TypeInfo types[] = {
2384      {
2385          .name          = MACHINE_TYPE_NAME("powernv10"),
2386          .parent        = TYPE_PNV_MACHINE,
2387          .class_init    = pnv_machine_power10_class_init,
2388          .interfaces = (InterfaceInfo[]) {
2389              { TYPE_XIVE_FABRIC },
2390              { },
2391          },
2392      },
2393      {
2394          .name          = MACHINE_TYPE_NAME("powernv9"),
2395          .parent        = TYPE_PNV_MACHINE,
2396          .class_init    = pnv_machine_power9_class_init,
2397          .interfaces = (InterfaceInfo[]) {
2398              { TYPE_XIVE_FABRIC },
2399              { },
2400          },
2401      },
2402      {
2403          .name          = MACHINE_TYPE_NAME("powernv8"),
2404          .parent        = TYPE_PNV_MACHINE,
2405          .class_init    = pnv_machine_power8_class_init,
2406          .interfaces = (InterfaceInfo[]) {
2407              { TYPE_XICS_FABRIC },
2408              { },
2409          },
2410      },
2411      {
2412          .name          = TYPE_PNV_MACHINE,
2413          .parent        = TYPE_MACHINE,
2414          .abstract       = true,
2415          .instance_size = sizeof(PnvMachineState),
2416          .class_init    = pnv_machine_class_init,
2417          .class_size    = sizeof(PnvMachineClass),
2418          .interfaces = (InterfaceInfo[]) {
2419              { TYPE_INTERRUPT_STATS_PROVIDER },
2420              { TYPE_NMI },
2421              { },
2422          },
2423      },
2424      {
2425          .name          = TYPE_PNV_CHIP,
2426          .parent        = TYPE_SYS_BUS_DEVICE,
2427          .class_init    = pnv_chip_class_init,
2428          .instance_size = sizeof(PnvChip),
2429          .class_size    = sizeof(PnvChipClass),
2430          .abstract      = true,
2431      },
2432  
2433      /*
2434       * P10 chip and variants
2435       */
2436      {
2437          .name          = TYPE_PNV10_CHIP,
2438          .parent        = TYPE_PNV_CHIP,
2439          .instance_init = pnv_chip_power10_instance_init,
2440          .instance_size = sizeof(Pnv10Chip),
2441      },
2442      DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2443  
2444      /*
2445       * P9 chip and variants
2446       */
2447      {
2448          .name          = TYPE_PNV9_CHIP,
2449          .parent        = TYPE_PNV_CHIP,
2450          .instance_init = pnv_chip_power9_instance_init,
2451          .instance_size = sizeof(Pnv9Chip),
2452      },
2453      DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2454  
2455      /*
2456       * P8 chip and variants
2457       */
2458      {
2459          .name          = TYPE_PNV8_CHIP,
2460          .parent        = TYPE_PNV_CHIP,
2461          .instance_init = pnv_chip_power8_instance_init,
2462          .instance_size = sizeof(Pnv8Chip),
2463      },
2464      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2465      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2466      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2467                            pnv_chip_power8nvl_class_init),
2468  };
2469  
2470  DEFINE_TYPES(types)
2471