xref: /openbmc/qemu/hw/ppc/pnv.c (revision a976ed3f)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44 
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49 
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54 
55 #include <libfdt.h>
56 
57 #define FDT_MAX_SIZE            (1 * MiB)
58 
59 #define FW_FILE_NAME            "skiboot.lid"
60 #define FW_LOAD_ADDR            0x0
61 #define FW_MAX_SIZE             (4 * MiB)
62 
63 #define KERNEL_LOAD_ADDR        0x20000000
64 #define KERNEL_MAX_SIZE         (256 * MiB)
65 #define INITRD_LOAD_ADDR        0x60000000
66 #define INITRD_MAX_SIZE         (256 * MiB)
67 
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73     const char *core_type = object_class_get_name(object_class_by_name(s));
74     g_free(s);
75     return core_type;
76 }
77 
78 /*
79  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80  *     4 * 4 sockets * 12 cores * 8 threads = 1536
81  * Let's make it 2^11
82  */
83 #define MAX_CPUS                2048
84 
85 /*
86  * Memory nodes are created by hostboot, one for each range of memory
87  * that has a different "affinity". In practice, it means one range
88  * per chip.
89  */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92     char *mem_name;
93     uint64_t mem_reg_property[2];
94     int off;
95 
96     mem_reg_property[0] = cpu_to_be64(start);
97     mem_reg_property[1] = cpu_to_be64(size);
98 
99     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100     off = fdt_add_subnode(fdt, 0, mem_name);
101     g_free(mem_name);
102 
103     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105                        sizeof(mem_reg_property))));
106     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108 
109 static int get_cpus_node(void *fdt)
110 {
111     int cpus_offset = fdt_path_offset(fdt, "/cpus");
112 
113     if (cpus_offset < 0) {
114         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115         if (cpus_offset) {
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118         }
119     }
120     _FDT(cpus_offset);
121     return cpus_offset;
122 }
123 
124 /*
125  * The PowerNV cores (and threads) need to use real HW ids and not an
126  * incremental index like it has been done on other platforms. This HW
127  * id is stored in the CPU PIR, it is used to create cpu nodes in the
128  * device tree, used in XSCOM to address cores and in interrupt
129  * servers.
130  */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133     PowerPCCPU *cpu = pc->threads[0];
134     CPUState *cs = CPU(cpu);
135     DeviceClass *dc = DEVICE_GET_CLASS(cs);
136     int smt_threads = CPU_CORE(pc)->nr_threads;
137     CPUPPCState *env = &cpu->env;
138     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139     uint32_t servers_prop[smt_threads];
140     int i;
141     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                        0xffffffff, 0xffffffff};
143     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144     uint32_t cpufreq = 1000000000;
145     uint32_t page_sizes_prop[64];
146     size_t page_sizes_prop_size;
147     const uint8_t pa_features[] = { 24, 0,
148                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152     int offset;
153     char *nodename;
154     int cpus_offset = get_cpus_node(fdt);
155 
156     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158     _FDT(offset);
159     g_free(nodename);
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173                             env->icache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175                             env->icache_line_size)));
176 
177     if (pcc->l1_dcache_size) {
178         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179                                pcc->l1_dcache_size)));
180     } else {
181         warn_report("Unknown L1 dcache size for cpu");
182     }
183     if (pcc->l1_icache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185                                pcc->l1_icache_size)));
186     } else {
187         warn_report("Unknown L1 icache size for cpu");
188     }
189 
190     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193                            cpu->hash64_opts->slb_size)));
194     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196 
197     if (env->spr_cb[SPR_PURR].oea_read) {
198         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199     }
200 
201     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203                            segs, sizeof(segs))));
204     }
205 
206     /*
207      * Advertise VMX/VSX (vector extensions) if available
208      *   0 / no property == no vector extensions
209      *   1               == VMX / Altivec available
210      *   2               == VSX available
211      */
212     if (env->insns_flags & PPC_ALTIVEC) {
213         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214 
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216     }
217 
218     /*
219      * Advertise DFP (Decimal Floating Point) if available
220      *   0 / no property == no DFP
221      *   1               == DFP available
222      */
223     if (env->insns_flags2 & PPC2_DFP) {
224         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225     }
226 
227     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228                                                       sizeof(page_sizes_prop));
229     if (page_sizes_prop_size) {
230         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231                            page_sizes_prop, page_sizes_prop_size)));
232     }
233 
234     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235                        pa_features, sizeof(pa_features))));
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pc->pir + i);
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(servers_prop))));
243 }
244 
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246                        uint32_t nr_threads)
247 {
248     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249     char *name;
250     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251     uint32_t irange[2], i, rsize;
252     uint64_t *reg;
253     int offset;
254 
255     irange[0] = cpu_to_be32(pir);
256     irange[1] = cpu_to_be32(nr_threads);
257 
258     rsize = sizeof(uint64_t) * 2 * nr_threads;
259     reg = g_malloc(rsize);
260     for (i = 0; i < nr_threads; i++) {
261         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262         reg[i * 2 + 1] = cpu_to_be64(0x1000);
263     }
264 
265     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266     offset = fdt_add_subnode(fdt, 0, name);
267     _FDT(offset);
268     g_free(name);
269 
270     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272     _FDT((fdt_setprop_string(fdt, offset, "device_type",
273                               "PowerPC-External-Interrupt-Presentation")));
274     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276                        irange, sizeof(irange))));
277     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279     g_free(reg);
280 }
281 
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0,
288                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
289                  cpu_to_be64(PNV_XSCOM_SIZE),
290                  compat, sizeof(compat));
291 
292     for (i = 0; i < chip->nr_cores; i++) {
293         PnvCore *pnv_core = chip->cores[i];
294 
295         pnv_dt_core(chip, pnv_core, fdt);
296 
297         /* Interrupt Control Presenters (ICP). One per core. */
298         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299     }
300 
301     if (chip->ram_size) {
302         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303     }
304 }
305 
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309     int i;
310 
311     pnv_dt_xscom(chip, fdt, 0,
312                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313                  cpu_to_be64(PNV9_XSCOM_SIZE),
314                  compat, sizeof(compat));
315 
316     for (i = 0; i < chip->nr_cores; i++) {
317         PnvCore *pnv_core = chip->cores[i];
318 
319         pnv_dt_core(chip, pnv_core, fdt);
320     }
321 
322     if (chip->ram_size) {
323         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324     }
325 
326     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328 
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332     int i;
333 
334     pnv_dt_xscom(chip, fdt, 0,
335                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336                  cpu_to_be64(PNV10_XSCOM_SIZE),
337                  compat, sizeof(compat));
338 
339     for (i = 0; i < chip->nr_cores; i++) {
340         PnvCore *pnv_core = chip->cores[i];
341 
342         pnv_dt_core(chip, pnv_core, fdt);
343     }
344 
345     if (chip->ram_size) {
346         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347     }
348 
349     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351 
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354     uint32_t io_base = d->ioport_id;
355     uint32_t io_regs[] = {
356         cpu_to_be32(1),
357         cpu_to_be32(io_base),
358         cpu_to_be32(2)
359     };
360     char *name;
361     int node;
362 
363     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364     node = fdt_add_subnode(fdt, lpc_off, name);
365     _FDT(node);
366     g_free(name);
367 
368     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371 
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374     const char compatible[] = "ns16550\0pnpPNP,501";
375     uint32_t io_base = d->ioport_id;
376     uint32_t io_regs[] = {
377         cpu_to_be32(1),
378         cpu_to_be32(io_base),
379         cpu_to_be32(8)
380     };
381     char *name;
382     int node;
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 
399     /* This is needed by Linux */
400     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402 
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405     const char compatible[] = "bt\0ipmi-bt";
406     uint32_t io_base;
407     uint32_t io_regs[] = {
408         cpu_to_be32(1),
409         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410         cpu_to_be32(3)
411     };
412     uint32_t irq;
413     char *name;
414     int node;
415 
416     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417     io_regs[1] = cpu_to_be32(io_base);
418 
419     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420 
421     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422     node = fdt_add_subnode(fdt, lpc_off, name);
423     _FDT(node);
424     g_free(name);
425 
426     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428                       sizeof(compatible))));
429 
430     /* Mark it as reserved to avoid Linux trying to claim it */
431     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434                            fdt_get_phandle(fdt, lpc_off))));
435 }
436 
437 typedef struct ForeachPopulateArgs {
438     void *fdt;
439     int offset;
440 } ForeachPopulateArgs;
441 
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444     ForeachPopulateArgs *args = opaque;
445     ISADevice *d = ISA_DEVICE(dev);
446 
447     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448         pnv_dt_rtc(d, args->fdt, args->offset);
449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450         pnv_dt_serial(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453     } else {
454         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455                      d->ioport_id);
456     }
457 
458     return 0;
459 }
460 
461 /*
462  * The default LPC bus of a multichip system is on chip 0. It's
463  * recognized by the firmware (skiboot) using a "primary" property.
464  */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468     ForeachPopulateArgs args = {
469         .fdt = fdt,
470         .offset = isa_offset,
471     };
472     uint32_t phandle;
473 
474     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475 
476     phandle = qemu_fdt_alloc_phandle(fdt);
477     assert(phandle > 0);
478     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479 
480     /*
481      * ISA devices are not necessarily parented to the ISA bus so we
482      * can not use object_child_foreach()
483      */
484     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485                        &args);
486 }
487 
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490     int off;
491 
492     off = fdt_add_subnode(fdt, 0, "ibm,opal");
493     off = fdt_add_subnode(fdt, off, "power-mgt");
494 
495     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497 
498 static void *pnv_dt_create(MachineState *machine)
499 {
500     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501     PnvMachineState *pnv = PNV_MACHINE(machine);
502     void *fdt;
503     char *buf;
504     int off;
505     int i;
506 
507     fdt = g_malloc0(FDT_MAX_SIZE);
508     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509 
510     /* /qemu node */
511     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512 
513     /* Root node */
514     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516     _FDT((fdt_setprop_string(fdt, 0, "model",
517                              "IBM PowerNV (emulated by qemu)")));
518     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519 
520     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
521     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522     if (qemu_uuid_set) {
523         _FDT((fdt_property_string(fdt, "system-id", buf)));
524     }
525     g_free(buf);
526 
527     off = fdt_add_subnode(fdt, 0, "chosen");
528     if (machine->kernel_cmdline) {
529         _FDT((fdt_setprop_string(fdt, off, "bootargs",
530                                  machine->kernel_cmdline)));
531     }
532 
533     if (pnv->initrd_size) {
534         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536 
537         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538                                &start_prop, sizeof(start_prop))));
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540                                &end_prop, sizeof(end_prop))));
541     }
542 
543     /* Populate device tree for each chip */
544     for (i = 0; i < pnv->num_chips; i++) {
545         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546     }
547 
548     /* Populate ISA devices on chip 0 */
549     pnv_dt_isa(pnv, fdt);
550 
551     if (pnv->bmc) {
552         pnv_dt_bmc_sensors(pnv->bmc, fdt);
553     }
554 
555     /* Create an extra node for power management on machines that support it */
556     if (pmc->dt_power_mgt) {
557         pmc->dt_power_mgt(pnv, fdt);
558     }
559 
560     return fdt;
561 }
562 
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566 
567     if (pnv->bmc) {
568         pnv_bmc_powerdown(pnv->bmc);
569     }
570 }
571 
572 static void pnv_reset(MachineState *machine)
573 {
574     PnvMachineState *pnv = PNV_MACHINE(machine);
575     IPMIBmc *bmc;
576     void *fdt;
577 
578     qemu_devices_reset();
579 
580     /*
581      * The machine should provide by default an internal BMC simulator.
582      * If not, try to use the BMC device that was provided on the command
583      * line.
584      */
585     bmc = pnv_bmc_find(&error_fatal);
586     if (!pnv->bmc) {
587         if (!bmc) {
588             warn_report("machine has no BMC device. Use '-device "
589                         "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
590                         "to define one");
591         } else {
592             pnv_bmc_set_pnor(bmc, pnv->pnor);
593             pnv->bmc = bmc;
594         }
595     }
596 
597     fdt = pnv_dt_create(machine);
598 
599     /* Pack resulting tree */
600     _FDT((fdt_pack(fdt)));
601 
602     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
603     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
604 
605     g_free(fdt);
606 }
607 
608 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
609 {
610     Pnv8Chip *chip8 = PNV8_CHIP(chip);
611     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
612 }
613 
614 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
615 {
616     Pnv8Chip *chip8 = PNV8_CHIP(chip);
617     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
618 }
619 
620 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
621 {
622     Pnv9Chip *chip9 = PNV9_CHIP(chip);
623     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
624 }
625 
626 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
627 {
628     Pnv10Chip *chip10 = PNV10_CHIP(chip);
629     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
630 }
631 
632 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
633 {
634     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
635 }
636 
637 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
638 {
639     Pnv8Chip *chip8 = PNV8_CHIP(chip);
640     int i;
641 
642     ics_pic_print_info(&chip8->psi.ics, mon);
643     for (i = 0; i < chip->num_phbs; i++) {
644         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
645         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
646     }
647 }
648 
649 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
650 {
651     Pnv9Chip *chip9 = PNV9_CHIP(chip);
652     int i, j;
653 
654     pnv_xive_pic_print_info(&chip9->xive, mon);
655     pnv_psi_pic_print_info(&chip9->psi, mon);
656 
657     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
658         PnvPhb4PecState *pec = &chip9->pecs[i];
659         for (j = 0; j < pec->num_stacks; j++) {
660             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
661         }
662     }
663 }
664 
665 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
666                                                 uint32_t core_id)
667 {
668     return PNV_XSCOM_EX_BASE(core_id);
669 }
670 
671 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
672                                                 uint32_t core_id)
673 {
674     return PNV9_XSCOM_EC_BASE(core_id);
675 }
676 
677 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
678                                                  uint32_t core_id)
679 {
680     return PNV10_XSCOM_EC_BASE(core_id);
681 }
682 
683 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
684 {
685     PowerPCCPUClass *ppc_default =
686         POWERPC_CPU_CLASS(object_class_by_name(default_type));
687     PowerPCCPUClass *ppc =
688         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
689 
690     return ppc_default->pvr_match(ppc_default, ppc->pvr);
691 }
692 
693 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
694 {
695     Object *obj;
696 
697     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
698     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
699     object_property_set_int(obj, irq, "irq", &error_fatal);
700     object_property_set_bool(obj, true, "realized", &error_fatal);
701 }
702 
703 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
704 {
705     Pnv10Chip *chip10 = PNV10_CHIP(chip);
706 
707     pnv_psi_pic_print_info(&chip10->psi, mon);
708 }
709 
710 static void pnv_init(MachineState *machine)
711 {
712     PnvMachineState *pnv = PNV_MACHINE(machine);
713     MachineClass *mc = MACHINE_GET_CLASS(machine);
714     char *fw_filename;
715     long fw_size;
716     int i;
717     char *chip_typename;
718     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
719     DeviceState *dev;
720 
721     /* allocate RAM */
722     if (machine->ram_size < (1 * GiB)) {
723         warn_report("skiboot may not work with < 1GB of RAM");
724     }
725     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
726 
727     /*
728      * Create our simple PNOR device
729      */
730     dev = qdev_create(NULL, TYPE_PNV_PNOR);
731     if (pnor) {
732         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
733                             &error_abort);
734     }
735     qdev_init_nofail(dev);
736     pnv->pnor = PNV_PNOR(dev);
737 
738     /* load skiboot firmware  */
739     if (bios_name == NULL) {
740         bios_name = FW_FILE_NAME;
741     }
742 
743     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
744     if (!fw_filename) {
745         error_report("Could not find OPAL firmware '%s'", bios_name);
746         exit(1);
747     }
748 
749     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
750     if (fw_size < 0) {
751         error_report("Could not load OPAL firmware '%s'", fw_filename);
752         exit(1);
753     }
754     g_free(fw_filename);
755 
756     /* load kernel */
757     if (machine->kernel_filename) {
758         long kernel_size;
759 
760         kernel_size = load_image_targphys(machine->kernel_filename,
761                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
762         if (kernel_size < 0) {
763             error_report("Could not load kernel '%s'",
764                          machine->kernel_filename);
765             exit(1);
766         }
767     }
768 
769     /* load initrd */
770     if (machine->initrd_filename) {
771         pnv->initrd_base = INITRD_LOAD_ADDR;
772         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
773                                   pnv->initrd_base, INITRD_MAX_SIZE);
774         if (pnv->initrd_size < 0) {
775             error_report("Could not load initial ram disk '%s'",
776                          machine->initrd_filename);
777             exit(1);
778         }
779     }
780 
781     /* MSIs are supported on this platform */
782     msi_nonbroken = true;
783 
784     /*
785      * Check compatibility of the specified CPU with the machine
786      * default.
787      */
788     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
789         error_report("invalid CPU model '%s' for %s machine",
790                      machine->cpu_type, mc->name);
791         exit(1);
792     }
793 
794     /* Create the processor chips */
795     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
796     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
797                                     i, machine->cpu_type);
798     if (!object_class_by_name(chip_typename)) {
799         error_report("invalid chip model '%.*s' for %s machine",
800                      i, machine->cpu_type, mc->name);
801         exit(1);
802     }
803 
804     pnv->num_chips =
805         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
806     /*
807      * TODO: should we decide on how many chips we can create based
808      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
809      */
810     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
811         error_report("invalid number of chips: '%d'", pnv->num_chips);
812         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
813         exit(1);
814     }
815 
816     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
817     for (i = 0; i < pnv->num_chips; i++) {
818         char chip_name[32];
819         Object *chip = object_new(chip_typename);
820 
821         pnv->chips[i] = PNV_CHIP(chip);
822 
823         /*
824          * TODO: put all the memory in one node on chip 0 until we find a
825          * way to specify different ranges for each chip
826          */
827         if (i == 0) {
828             object_property_set_int(chip, machine->ram_size, "ram-size",
829                                     &error_fatal);
830         }
831 
832         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
833         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
834         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
835                                 &error_fatal);
836         object_property_set_int(chip, machine->smp.cores,
837                                 "nr-cores", &error_fatal);
838         object_property_set_int(chip, machine->smp.threads,
839                                 "nr-threads", &error_fatal);
840         /*
841          * The POWER8 machine use the XICS interrupt interface.
842          * Propagate the XICS fabric to the chip and its controllers.
843          */
844         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
845             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
846         }
847         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
848             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
849                                      &error_abort);
850         }
851         object_property_set_bool(chip, true, "realized", &error_fatal);
852     }
853     g_free(chip_typename);
854 
855     /* Instantiate ISA bus on chip 0 */
856     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
857 
858     /* Create serial port */
859     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
860 
861     /* Create an RTC ISA device too */
862     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
863 
864     /*
865      * Create the machine BMC simulator and the IPMI BT device for
866      * communication with the BMC
867      */
868     if (defaults_enabled()) {
869         pnv->bmc = pnv_bmc_create(pnv->pnor);
870         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
871     }
872 
873     /*
874      * OpenPOWER systems use a IPMI SEL Event message to notify the
875      * host to powerdown
876      */
877     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
878     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
879 }
880 
881 /*
882  *    0:21  Reserved - Read as zeros
883  *   22:24  Chip ID
884  *   25:28  Core number
885  *   29:31  Thread ID
886  */
887 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
888 {
889     return (chip->chip_id << 7) | (core_id << 3);
890 }
891 
892 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
893                                         Error **errp)
894 {
895     Pnv8Chip *chip8 = PNV8_CHIP(chip);
896     Error *local_err = NULL;
897     Object *obj;
898     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
899 
900     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
901     if (local_err) {
902         error_propagate(errp, local_err);
903         return;
904     }
905 
906     pnv_cpu->intc = obj;
907 }
908 
909 
910 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
911 {
912     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
913 
914     icp_reset(ICP(pnv_cpu->intc));
915 }
916 
917 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
918 {
919     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
920 
921     icp_destroy(ICP(pnv_cpu->intc));
922     pnv_cpu->intc = NULL;
923 }
924 
925 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
926                                             Monitor *mon)
927 {
928     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
929 }
930 
931 /*
932  *    0:48  Reserved - Read as zeroes
933  *   49:52  Node ID
934  *   53:55  Chip ID
935  *   56     Reserved - Read as zero
936  *   57:61  Core number
937  *   62:63  Thread ID
938  *
939  * We only care about the lower bits. uint32_t is fine for the moment.
940  */
941 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
942 {
943     return (chip->chip_id << 8) | (core_id << 2);
944 }
945 
946 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
947 {
948     return (chip->chip_id << 8) | (core_id << 2);
949 }
950 
951 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
952                                         Error **errp)
953 {
954     Pnv9Chip *chip9 = PNV9_CHIP(chip);
955     Error *local_err = NULL;
956     Object *obj;
957     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
958 
959     /*
960      * The core creates its interrupt presenter but the XIVE interrupt
961      * controller object is initialized afterwards. Hopefully, it's
962      * only used at runtime.
963      */
964     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
965                            &local_err);
966     if (local_err) {
967         error_propagate(errp, local_err);
968         return;
969     }
970 
971     pnv_cpu->intc = obj;
972 }
973 
974 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
975 {
976     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
977 
978     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
979 }
980 
981 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
982 {
983     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
984 
985     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
986     pnv_cpu->intc = NULL;
987 }
988 
989 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
990                                             Monitor *mon)
991 {
992     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
993 }
994 
995 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
996                                         Error **errp)
997 {
998     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
999 
1000     /* Will be defined when the interrupt controller is */
1001     pnv_cpu->intc = NULL;
1002 }
1003 
1004 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1005 {
1006     ;
1007 }
1008 
1009 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1010 {
1011     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1012 
1013     pnv_cpu->intc = NULL;
1014 }
1015 
1016 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1017                                              Monitor *mon)
1018 {
1019 }
1020 
1021 /*
1022  * Allowed core identifiers on a POWER8 Processor Chip :
1023  *
1024  * <EX0 reserved>
1025  *  EX1  - Venice only
1026  *  EX2  - Venice only
1027  *  EX3  - Venice only
1028  *  EX4
1029  *  EX5
1030  *  EX6
1031  * <EX7,8 reserved> <reserved>
1032  *  EX9  - Venice only
1033  *  EX10 - Venice only
1034  *  EX11 - Venice only
1035  *  EX12
1036  *  EX13
1037  *  EX14
1038  * <EX15 reserved>
1039  */
1040 #define POWER8E_CORE_MASK  (0x7070ull)
1041 #define POWER8_CORE_MASK   (0x7e7eull)
1042 
1043 /*
1044  * POWER9 has 24 cores, ids starting at 0x0
1045  */
1046 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1047 
1048 
1049 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1050 
1051 static void pnv_chip_power8_instance_init(Object *obj)
1052 {
1053     PnvChip *chip = PNV_CHIP(obj);
1054     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1055     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1056     int i;
1057 
1058     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1059                              (Object **)&chip8->xics,
1060                              object_property_allow_set_link,
1061                              OBJ_PROP_LINK_STRONG,
1062                              &error_abort);
1063 
1064     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1065                             TYPE_PNV8_PSI, &error_abort, NULL);
1066 
1067     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1068                             TYPE_PNV8_LPC, &error_abort, NULL);
1069 
1070     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1071                             TYPE_PNV8_OCC, &error_abort, NULL);
1072 
1073     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1074                             TYPE_PNV8_HOMER, &error_abort, NULL);
1075 
1076     for (i = 0; i < pcc->num_phbs; i++) {
1077         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1078                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1079                                 &error_abort, NULL);
1080     }
1081 
1082     /*
1083      * Number of PHBs is the chip default
1084      */
1085     chip->num_phbs = pcc->num_phbs;
1086 }
1087 
1088 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1089  {
1090     PnvChip *chip = PNV_CHIP(chip8);
1091     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1092     int i, j;
1093     char *name;
1094 
1095     name = g_strdup_printf("icp-%x", chip->chip_id);
1096     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1097     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1098     g_free(name);
1099 
1100     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1101 
1102     /* Map the ICP registers for each thread */
1103     for (i = 0; i < chip->nr_cores; i++) {
1104         PnvCore *pnv_core = chip->cores[i];
1105         int core_hwid = CPU_CORE(pnv_core)->core_id;
1106 
1107         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1108             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1109             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1110 
1111             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1112                                         &icp->mmio);
1113         }
1114     }
1115 }
1116 
1117 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1118 {
1119     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1120     PnvChip *chip = PNV_CHIP(dev);
1121     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1122     Pnv8Psi *psi8 = &chip8->psi;
1123     Error *local_err = NULL;
1124     int i;
1125 
1126     assert(chip8->xics);
1127 
1128     /* XSCOM bridge is first */
1129     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1130     if (local_err) {
1131         error_propagate(errp, local_err);
1132         return;
1133     }
1134     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1135 
1136     pcc->parent_realize(dev, &local_err);
1137     if (local_err) {
1138         error_propagate(errp, local_err);
1139         return;
1140     }
1141 
1142     /* Processor Service Interface (PSI) Host Bridge */
1143     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1144                             "bar", &error_fatal);
1145     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1146                              ICS_PROP_XICS, &error_abort);
1147     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1148     if (local_err) {
1149         error_propagate(errp, local_err);
1150         return;
1151     }
1152     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1153                             &PNV_PSI(psi8)->xscom_regs);
1154 
1155     /* Create LPC controller */
1156     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1157                              &error_abort);
1158     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1159                              &error_fatal);
1160     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1161 
1162     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1163                                             (uint64_t) PNV_XSCOM_BASE(chip),
1164                                             PNV_XSCOM_LPC_BASE);
1165 
1166     /*
1167      * Interrupt Management Area. This is the memory region holding
1168      * all the Interrupt Control Presenter (ICP) registers
1169      */
1170     pnv_chip_icp_realize(chip8, &local_err);
1171     if (local_err) {
1172         error_propagate(errp, local_err);
1173         return;
1174     }
1175 
1176     /* Create the simplified OCC model */
1177     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1178                              &error_abort);
1179     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1180     if (local_err) {
1181         error_propagate(errp, local_err);
1182         return;
1183     }
1184     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1185 
1186     /* OCC SRAM model */
1187     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1188                                 &chip8->occ.sram_regs);
1189 
1190     /* HOMER */
1191     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1192                              &error_abort);
1193     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1194                              &local_err);
1195     if (local_err) {
1196         error_propagate(errp, local_err);
1197         return;
1198     }
1199     /* Homer Xscom region */
1200     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1201 
1202     /* Homer mmio region */
1203     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1204                                 &chip8->homer.regs);
1205 
1206     /* PHB3 controllers */
1207     for (i = 0; i < chip->num_phbs; i++) {
1208         PnvPHB3 *phb = &chip8->phbs[i];
1209         PnvPBCQState *pbcq = &phb->pbcq;
1210 
1211         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1212         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1213                                 &error_fatal);
1214         object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1215         if (local_err) {
1216             error_propagate(errp, local_err);
1217             return;
1218         }
1219         qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1220 
1221         /* Populate the XSCOM address space. */
1222         pnv_xscom_add_subregion(chip,
1223                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1224                                 &pbcq->xscom_nest_regs);
1225         pnv_xscom_add_subregion(chip,
1226                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1227                                 &pbcq->xscom_pci_regs);
1228         pnv_xscom_add_subregion(chip,
1229                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1230                                 &pbcq->xscom_spci_regs);
1231     }
1232 }
1233 
1234 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1235 {
1236     addr &= (PNV_XSCOM_SIZE - 1);
1237     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1238 }
1239 
1240 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1241 {
1242     DeviceClass *dc = DEVICE_CLASS(klass);
1243     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1244 
1245     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1246     k->cores_mask = POWER8E_CORE_MASK;
1247     k->num_phbs = 3;
1248     k->core_pir = pnv_chip_core_pir_p8;
1249     k->intc_create = pnv_chip_power8_intc_create;
1250     k->intc_reset = pnv_chip_power8_intc_reset;
1251     k->intc_destroy = pnv_chip_power8_intc_destroy;
1252     k->intc_print_info = pnv_chip_power8_intc_print_info;
1253     k->isa_create = pnv_chip_power8_isa_create;
1254     k->dt_populate = pnv_chip_power8_dt_populate;
1255     k->pic_print_info = pnv_chip_power8_pic_print_info;
1256     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1257     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1258     dc->desc = "PowerNV Chip POWER8E";
1259 
1260     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1261                                     &k->parent_realize);
1262 }
1263 
1264 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1265 {
1266     DeviceClass *dc = DEVICE_CLASS(klass);
1267     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1268 
1269     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1270     k->cores_mask = POWER8_CORE_MASK;
1271     k->num_phbs = 3;
1272     k->core_pir = pnv_chip_core_pir_p8;
1273     k->intc_create = pnv_chip_power8_intc_create;
1274     k->intc_reset = pnv_chip_power8_intc_reset;
1275     k->intc_destroy = pnv_chip_power8_intc_destroy;
1276     k->intc_print_info = pnv_chip_power8_intc_print_info;
1277     k->isa_create = pnv_chip_power8_isa_create;
1278     k->dt_populate = pnv_chip_power8_dt_populate;
1279     k->pic_print_info = pnv_chip_power8_pic_print_info;
1280     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1281     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1282     dc->desc = "PowerNV Chip POWER8";
1283 
1284     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1285                                     &k->parent_realize);
1286 }
1287 
1288 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1289 {
1290     DeviceClass *dc = DEVICE_CLASS(klass);
1291     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1292 
1293     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1294     k->cores_mask = POWER8_CORE_MASK;
1295     k->num_phbs = 3;
1296     k->core_pir = pnv_chip_core_pir_p8;
1297     k->intc_create = pnv_chip_power8_intc_create;
1298     k->intc_reset = pnv_chip_power8_intc_reset;
1299     k->intc_destroy = pnv_chip_power8_intc_destroy;
1300     k->intc_print_info = pnv_chip_power8_intc_print_info;
1301     k->isa_create = pnv_chip_power8nvl_isa_create;
1302     k->dt_populate = pnv_chip_power8_dt_populate;
1303     k->pic_print_info = pnv_chip_power8_pic_print_info;
1304     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1305     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1306     dc->desc = "PowerNV Chip POWER8NVL";
1307 
1308     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1309                                     &k->parent_realize);
1310 }
1311 
1312 static void pnv_chip_power9_instance_init(Object *obj)
1313 {
1314     PnvChip *chip = PNV_CHIP(obj);
1315     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1316     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1317     int i;
1318 
1319     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1320                             TYPE_PNV_XIVE, &error_abort, NULL);
1321     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1322                               "xive-fabric", &error_abort);
1323 
1324     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1325                             TYPE_PNV9_PSI, &error_abort, NULL);
1326 
1327     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1328                             TYPE_PNV9_LPC, &error_abort, NULL);
1329 
1330     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1331                             TYPE_PNV9_OCC, &error_abort, NULL);
1332 
1333     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1334                             TYPE_PNV9_HOMER, &error_abort, NULL);
1335 
1336     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1337         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1338                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1339                                 &error_abort, NULL);
1340     }
1341 
1342     /*
1343      * Number of PHBs is the chip default
1344      */
1345     chip->num_phbs = pcc->num_phbs;
1346 }
1347 
1348 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1349 {
1350     PnvChip *chip = PNV_CHIP(chip9);
1351     int i;
1352 
1353     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1354     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1355 
1356     for (i = 0; i < chip9->nr_quads; i++) {
1357         char eq_name[32];
1358         PnvQuad *eq = &chip9->quads[i];
1359         PnvCore *pnv_core = chip->cores[i * 4];
1360         int core_id = CPU_CORE(pnv_core)->core_id;
1361 
1362         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1363         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1364                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1365 
1366         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1367         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1368 
1369         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1370                                 &eq->xscom_regs);
1371     }
1372 }
1373 
1374 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1375 {
1376     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1377     Error *local_err = NULL;
1378     int i, j;
1379     int phb_id = 0;
1380 
1381     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1382         PnvPhb4PecState *pec = &chip9->pecs[i];
1383         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1384         uint32_t pec_nest_base;
1385         uint32_t pec_pci_base;
1386 
1387         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1388         /*
1389          * PEC0 -> 1 stack
1390          * PEC1 -> 2 stacks
1391          * PEC2 -> 3 stacks
1392          */
1393         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1394                                 &error_fatal);
1395         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1396                                  &error_fatal);
1397         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1398                                  "system-memory", &error_abort);
1399         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1400         if (local_err) {
1401             error_propagate(errp, local_err);
1402             return;
1403         }
1404 
1405         pec_nest_base = pecc->xscom_nest_base(pec);
1406         pec_pci_base = pecc->xscom_pci_base(pec);
1407 
1408         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1409         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1410 
1411         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1412              j++, phb_id++) {
1413             PnvPhb4PecStack *stack = &pec->stacks[j];
1414             Object *obj = OBJECT(&stack->phb);
1415 
1416             object_property_set_int(obj, phb_id, "index", &error_fatal);
1417             object_property_set_int(obj, chip->chip_id, "chip-id",
1418                                     &error_fatal);
1419             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1420                                     &error_fatal);
1421             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1422                                     &error_fatal);
1423             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1424             object_property_set_bool(obj, true, "realized", &local_err);
1425             if (local_err) {
1426                 error_propagate(errp, local_err);
1427                 return;
1428             }
1429             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1430 
1431             /* Populate the XSCOM address space. */
1432             pnv_xscom_add_subregion(chip,
1433                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1434                                    &stack->nest_regs_mr);
1435             pnv_xscom_add_subregion(chip,
1436                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1437                                     &stack->pci_regs_mr);
1438             pnv_xscom_add_subregion(chip,
1439                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1440                                     0x40 * stack->stack_no,
1441                                     &stack->phb_regs_mr);
1442         }
1443     }
1444 }
1445 
1446 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1447 {
1448     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1449     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1450     PnvChip *chip = PNV_CHIP(dev);
1451     Pnv9Psi *psi9 = &chip9->psi;
1452     Error *local_err = NULL;
1453 
1454     /* XSCOM bridge is first */
1455     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1456     if (local_err) {
1457         error_propagate(errp, local_err);
1458         return;
1459     }
1460     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1461 
1462     pcc->parent_realize(dev, &local_err);
1463     if (local_err) {
1464         error_propagate(errp, local_err);
1465         return;
1466     }
1467 
1468     pnv_chip_quad_realize(chip9, &local_err);
1469     if (local_err) {
1470         error_propagate(errp, local_err);
1471         return;
1472     }
1473 
1474     /* XIVE interrupt controller (POWER9) */
1475     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1476                             "ic-bar", &error_fatal);
1477     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1478                             "vc-bar", &error_fatal);
1479     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1480                             "pc-bar", &error_fatal);
1481     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1482                             "tm-bar", &error_fatal);
1483     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1484                              &error_abort);
1485     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1486                              &local_err);
1487     if (local_err) {
1488         error_propagate(errp, local_err);
1489         return;
1490     }
1491     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1492                             &chip9->xive.xscom_regs);
1493 
1494     /* Processor Service Interface (PSI) Host Bridge */
1495     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1496                             "bar", &error_fatal);
1497     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1498     if (local_err) {
1499         error_propagate(errp, local_err);
1500         return;
1501     }
1502     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1503                             &PNV_PSI(psi9)->xscom_regs);
1504 
1505     /* LPC */
1506     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1507                              &error_abort);
1508     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1509     if (local_err) {
1510         error_propagate(errp, local_err);
1511         return;
1512     }
1513     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1514                                 &chip9->lpc.xscom_regs);
1515 
1516     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1517                                             (uint64_t) PNV9_LPCM_BASE(chip));
1518 
1519     /* Create the simplified OCC model */
1520     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1521                              &error_abort);
1522     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1523     if (local_err) {
1524         error_propagate(errp, local_err);
1525         return;
1526     }
1527     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1528 
1529     /* OCC SRAM model */
1530     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1531                                 &chip9->occ.sram_regs);
1532 
1533     /* HOMER */
1534     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1535                              &error_abort);
1536     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1537                              &local_err);
1538     if (local_err) {
1539         error_propagate(errp, local_err);
1540         return;
1541     }
1542     /* Homer Xscom region */
1543     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1544 
1545     /* Homer mmio region */
1546     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1547                                 &chip9->homer.regs);
1548 
1549     /* PHBs */
1550     pnv_chip_power9_phb_realize(chip, &local_err);
1551     if (local_err) {
1552         error_propagate(errp, local_err);
1553         return;
1554     }
1555 }
1556 
1557 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1558 {
1559     addr &= (PNV9_XSCOM_SIZE - 1);
1560     return addr >> 3;
1561 }
1562 
1563 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1564 {
1565     DeviceClass *dc = DEVICE_CLASS(klass);
1566     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1567 
1568     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1569     k->cores_mask = POWER9_CORE_MASK;
1570     k->core_pir = pnv_chip_core_pir_p9;
1571     k->intc_create = pnv_chip_power9_intc_create;
1572     k->intc_reset = pnv_chip_power9_intc_reset;
1573     k->intc_destroy = pnv_chip_power9_intc_destroy;
1574     k->intc_print_info = pnv_chip_power9_intc_print_info;
1575     k->isa_create = pnv_chip_power9_isa_create;
1576     k->dt_populate = pnv_chip_power9_dt_populate;
1577     k->pic_print_info = pnv_chip_power9_pic_print_info;
1578     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1579     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1580     dc->desc = "PowerNV Chip POWER9";
1581     k->num_phbs = 6;
1582 
1583     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1584                                     &k->parent_realize);
1585 }
1586 
1587 static void pnv_chip_power10_instance_init(Object *obj)
1588 {
1589     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1590 
1591     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1592                             TYPE_PNV10_PSI, &error_abort, NULL);
1593     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1594                             TYPE_PNV10_LPC, &error_abort, NULL);
1595 }
1596 
1597 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1598 {
1599     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1600     PnvChip *chip = PNV_CHIP(dev);
1601     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1602     Error *local_err = NULL;
1603 
1604     /* XSCOM bridge is first */
1605     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1606     if (local_err) {
1607         error_propagate(errp, local_err);
1608         return;
1609     }
1610     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1611 
1612     pcc->parent_realize(dev, &local_err);
1613     if (local_err) {
1614         error_propagate(errp, local_err);
1615         return;
1616     }
1617 
1618     /* Processor Service Interface (PSI) Host Bridge */
1619     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1620                             "bar", &error_fatal);
1621     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1622                              &local_err);
1623     if (local_err) {
1624         error_propagate(errp, local_err);
1625         return;
1626     }
1627     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1628                             &PNV_PSI(&chip10->psi)->xscom_regs);
1629 
1630     /* LPC */
1631     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1632                              &error_abort);
1633     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1634                              &local_err);
1635     if (local_err) {
1636         error_propagate(errp, local_err);
1637         return;
1638     }
1639     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1640                                 &chip10->lpc.xscom_regs);
1641 
1642     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1643                                             (uint64_t) PNV10_LPCM_BASE(chip));
1644 }
1645 
1646 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1647 {
1648     addr &= (PNV10_XSCOM_SIZE - 1);
1649     return addr >> 3;
1650 }
1651 
1652 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1653 {
1654     DeviceClass *dc = DEVICE_CLASS(klass);
1655     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1656 
1657     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1658     k->cores_mask = POWER10_CORE_MASK;
1659     k->core_pir = pnv_chip_core_pir_p10;
1660     k->intc_create = pnv_chip_power10_intc_create;
1661     k->intc_reset = pnv_chip_power10_intc_reset;
1662     k->intc_destroy = pnv_chip_power10_intc_destroy;
1663     k->intc_print_info = pnv_chip_power10_intc_print_info;
1664     k->isa_create = pnv_chip_power10_isa_create;
1665     k->dt_populate = pnv_chip_power10_dt_populate;
1666     k->pic_print_info = pnv_chip_power10_pic_print_info;
1667     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1668     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1669     dc->desc = "PowerNV Chip POWER10";
1670 
1671     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1672                                     &k->parent_realize);
1673 }
1674 
1675 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1676 {
1677     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1678     int cores_max;
1679 
1680     /*
1681      * No custom mask for this chip, let's use the default one from *
1682      * the chip class
1683      */
1684     if (!chip->cores_mask) {
1685         chip->cores_mask = pcc->cores_mask;
1686     }
1687 
1688     /* filter alien core ids ! some are reserved */
1689     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1690         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1691                    chip->cores_mask);
1692         return;
1693     }
1694     chip->cores_mask &= pcc->cores_mask;
1695 
1696     /* now that we have a sane layout, let check the number of cores */
1697     cores_max = ctpop64(chip->cores_mask);
1698     if (chip->nr_cores > cores_max) {
1699         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1700                    cores_max);
1701         return;
1702     }
1703 }
1704 
1705 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1706 {
1707     Error *error = NULL;
1708     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1709     const char *typename = pnv_chip_core_typename(chip);
1710     int i, core_hwid;
1711     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1712 
1713     if (!object_class_by_name(typename)) {
1714         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1715         return;
1716     }
1717 
1718     /* Cores */
1719     pnv_chip_core_sanitize(chip, &error);
1720     if (error) {
1721         error_propagate(errp, error);
1722         return;
1723     }
1724 
1725     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1726 
1727     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1728              && (i < chip->nr_cores); core_hwid++) {
1729         char core_name[32];
1730         PnvCore *pnv_core;
1731         uint64_t xscom_core_base;
1732 
1733         if (!(chip->cores_mask & (1ull << core_hwid))) {
1734             continue;
1735         }
1736 
1737         pnv_core = PNV_CORE(object_new(typename));
1738 
1739         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1740         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1741                                   &error_abort);
1742         chip->cores[i] = pnv_core;
1743         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1744                                 "nr-threads", &error_fatal);
1745         object_property_set_int(OBJECT(pnv_core), core_hwid,
1746                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1747         object_property_set_int(OBJECT(pnv_core),
1748                                 pcc->core_pir(chip, core_hwid),
1749                                 "pir", &error_fatal);
1750         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1751                                 "hrmor", &error_fatal);
1752         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1753                                  &error_abort);
1754         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1755                                  &error_fatal);
1756 
1757         /* Each core has an XSCOM MMIO region */
1758         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1759 
1760         pnv_xscom_add_subregion(chip, xscom_core_base,
1761                                 &pnv_core->xscom_regs);
1762         i++;
1763     }
1764 }
1765 
1766 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1767 {
1768     PnvChip *chip = PNV_CHIP(dev);
1769     Error *error = NULL;
1770 
1771     /* Cores */
1772     pnv_chip_core_realize(chip, &error);
1773     if (error) {
1774         error_propagate(errp, error);
1775         return;
1776     }
1777 }
1778 
1779 static Property pnv_chip_properties[] = {
1780     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1781     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1782     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1783     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1784     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1785     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1786     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1787     DEFINE_PROP_END_OF_LIST(),
1788 };
1789 
1790 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1791 {
1792     DeviceClass *dc = DEVICE_CLASS(klass);
1793 
1794     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1795     dc->realize = pnv_chip_realize;
1796     device_class_set_props(dc, pnv_chip_properties);
1797     dc->desc = "PowerNV Chip";
1798 }
1799 
1800 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1801 {
1802     int i, j;
1803 
1804     for (i = 0; i < chip->nr_cores; i++) {
1805         PnvCore *pc = chip->cores[i];
1806         CPUCore *cc = CPU_CORE(pc);
1807 
1808         for (j = 0; j < cc->nr_threads; j++) {
1809             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1810                 return pc->threads[j];
1811             }
1812         }
1813     }
1814     return NULL;
1815 }
1816 
1817 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1818 {
1819     PnvMachineState *pnv = PNV_MACHINE(xi);
1820     int i, j;
1821 
1822     for (i = 0; i < pnv->num_chips; i++) {
1823         PnvChip *chip = pnv->chips[i];
1824         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1825 
1826         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1827             return &chip8->psi.ics;
1828         }
1829         for (j = 0; j < chip->num_phbs; j++) {
1830             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1831                 return &chip8->phbs[j].lsis;
1832             }
1833             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1834                 return ICS(&chip8->phbs[j].msis);
1835             }
1836         }
1837     }
1838     return NULL;
1839 }
1840 
1841 static void pnv_ics_resend(XICSFabric *xi)
1842 {
1843     PnvMachineState *pnv = PNV_MACHINE(xi);
1844     int i, j;
1845 
1846     for (i = 0; i < pnv->num_chips; i++) {
1847         PnvChip *chip = pnv->chips[i];
1848         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1849 
1850         ics_resend(&chip8->psi.ics);
1851         for (j = 0; j < chip->num_phbs; j++) {
1852             ics_resend(&chip8->phbs[j].lsis);
1853             ics_resend(ICS(&chip8->phbs[j].msis));
1854         }
1855     }
1856 }
1857 
1858 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1859 {
1860     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1861 
1862     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1863 }
1864 
1865 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1866                                Monitor *mon)
1867 {
1868     PnvMachineState *pnv = PNV_MACHINE(obj);
1869     int i;
1870     CPUState *cs;
1871 
1872     CPU_FOREACH(cs) {
1873         PowerPCCPU *cpu = POWERPC_CPU(cs);
1874 
1875         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1876         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1877                                                            mon);
1878     }
1879 
1880     for (i = 0; i < pnv->num_chips; i++) {
1881         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1882     }
1883 }
1884 
1885 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1886                          uint8_t nvt_blk, uint32_t nvt_idx,
1887                          bool cam_ignore, uint8_t priority,
1888                          uint32_t logic_serv,
1889                          XiveTCTXMatch *match)
1890 {
1891     PnvMachineState *pnv = PNV_MACHINE(xfb);
1892     int total_count = 0;
1893     int i;
1894 
1895     for (i = 0; i < pnv->num_chips; i++) {
1896         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1897         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1898         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1899         int count;
1900 
1901         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1902                                priority, logic_serv, match);
1903 
1904         if (count < 0) {
1905             return count;
1906         }
1907 
1908         total_count += count;
1909     }
1910 
1911     return total_count;
1912 }
1913 
1914 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1915 {
1916     MachineClass *mc = MACHINE_CLASS(oc);
1917     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1918     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1919     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1920 
1921     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1922     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1923 
1924     xic->icp_get = pnv_icp_get;
1925     xic->ics_get = pnv_ics_get;
1926     xic->ics_resend = pnv_ics_resend;
1927 
1928     pmc->compat = compat;
1929     pmc->compat_size = sizeof(compat);
1930 }
1931 
1932 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1933 {
1934     MachineClass *mc = MACHINE_CLASS(oc);
1935     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1936     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1937     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1938 
1939     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1940     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1941     xfc->match_nvt = pnv_match_nvt;
1942 
1943     mc->alias = "powernv";
1944 
1945     pmc->compat = compat;
1946     pmc->compat_size = sizeof(compat);
1947     pmc->dt_power_mgt = pnv_dt_power_mgt;
1948 }
1949 
1950 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1951 {
1952     MachineClass *mc = MACHINE_CLASS(oc);
1953     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1954     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1955 
1956     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1957     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1958 
1959     pmc->compat = compat;
1960     pmc->compat_size = sizeof(compat);
1961     pmc->dt_power_mgt = pnv_dt_power_mgt;
1962 }
1963 
1964 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1965 {
1966     PnvMachineState *pnv = PNV_MACHINE(obj);
1967 
1968     return !!pnv->fw_load_addr;
1969 }
1970 
1971 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1972 {
1973     PnvMachineState *pnv = PNV_MACHINE(obj);
1974 
1975     if (value) {
1976         pnv->fw_load_addr = 0x8000000;
1977     }
1978 }
1979 
1980 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1981 {
1982     MachineClass *mc = MACHINE_CLASS(oc);
1983     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1984 
1985     mc->desc = "IBM PowerNV (Non-Virtualized)";
1986     mc->init = pnv_init;
1987     mc->reset = pnv_reset;
1988     mc->max_cpus = MAX_CPUS;
1989     /* Pnv provides a AHCI device for storage */
1990     mc->block_default_type = IF_IDE;
1991     mc->no_parallel = 1;
1992     mc->default_boot_order = NULL;
1993     /*
1994      * RAM defaults to less than 2048 for 32-bit hosts, and large
1995      * enough to fit the maximum initrd size at it's load address
1996      */
1997     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1998     mc->default_ram_id = "pnv.ram";
1999     ispc->print_info = pnv_pic_print_info;
2000 
2001     object_class_property_add_bool(oc, "hb-mode",
2002                                    pnv_machine_get_hb, pnv_machine_set_hb,
2003                                    &error_abort);
2004     object_class_property_set_description(oc, "hb-mode",
2005                               "Use a hostboot like boot loader",
2006                               NULL);
2007 }
2008 
2009 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2010     {                                             \
2011         .name          = type,                    \
2012         .class_init    = class_initfn,            \
2013         .parent        = TYPE_PNV8_CHIP,          \
2014     }
2015 
2016 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2017     {                                             \
2018         .name          = type,                    \
2019         .class_init    = class_initfn,            \
2020         .parent        = TYPE_PNV9_CHIP,          \
2021     }
2022 
2023 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2024     {                                              \
2025         .name          = type,                     \
2026         .class_init    = class_initfn,             \
2027         .parent        = TYPE_PNV10_CHIP,          \
2028     }
2029 
2030 static const TypeInfo types[] = {
2031     {
2032         .name          = MACHINE_TYPE_NAME("powernv10"),
2033         .parent        = TYPE_PNV_MACHINE,
2034         .class_init    = pnv_machine_power10_class_init,
2035     },
2036     {
2037         .name          = MACHINE_TYPE_NAME("powernv9"),
2038         .parent        = TYPE_PNV_MACHINE,
2039         .class_init    = pnv_machine_power9_class_init,
2040         .interfaces = (InterfaceInfo[]) {
2041             { TYPE_XIVE_FABRIC },
2042             { },
2043         },
2044     },
2045     {
2046         .name          = MACHINE_TYPE_NAME("powernv8"),
2047         .parent        = TYPE_PNV_MACHINE,
2048         .class_init    = pnv_machine_power8_class_init,
2049         .interfaces = (InterfaceInfo[]) {
2050             { TYPE_XICS_FABRIC },
2051             { },
2052         },
2053     },
2054     {
2055         .name          = TYPE_PNV_MACHINE,
2056         .parent        = TYPE_MACHINE,
2057         .abstract       = true,
2058         .instance_size = sizeof(PnvMachineState),
2059         .class_init    = pnv_machine_class_init,
2060         .class_size    = sizeof(PnvMachineClass),
2061         .interfaces = (InterfaceInfo[]) {
2062             { TYPE_INTERRUPT_STATS_PROVIDER },
2063             { },
2064         },
2065     },
2066     {
2067         .name          = TYPE_PNV_CHIP,
2068         .parent        = TYPE_SYS_BUS_DEVICE,
2069         .class_init    = pnv_chip_class_init,
2070         .instance_size = sizeof(PnvChip),
2071         .class_size    = sizeof(PnvChipClass),
2072         .abstract      = true,
2073     },
2074 
2075     /*
2076      * P10 chip and variants
2077      */
2078     {
2079         .name          = TYPE_PNV10_CHIP,
2080         .parent        = TYPE_PNV_CHIP,
2081         .instance_init = pnv_chip_power10_instance_init,
2082         .instance_size = sizeof(Pnv10Chip),
2083     },
2084     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2085 
2086     /*
2087      * P9 chip and variants
2088      */
2089     {
2090         .name          = TYPE_PNV9_CHIP,
2091         .parent        = TYPE_PNV_CHIP,
2092         .instance_init = pnv_chip_power9_instance_init,
2093         .instance_size = sizeof(Pnv9Chip),
2094     },
2095     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2096 
2097     /*
2098      * P8 chip and variants
2099      */
2100     {
2101         .name          = TYPE_PNV8_CHIP,
2102         .parent        = TYPE_PNV_CHIP,
2103         .instance_init = pnv_chip_power8_instance_init,
2104         .instance_size = sizeof(Pnv8Chip),
2105     },
2106     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2107     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2108     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2109                           pnv_chip_power8nvl_class_init),
2110 };
2111 
2112 DEFINE_TYPES(types)
2113