xref: /openbmc/qemu/hw/ppc/pnv.c (revision a0258e4afa10a8e9dba4901b7a8202dac24c72e2)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44 
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49 
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54 
55 #include <libfdt.h>
56 
57 #define FDT_MAX_SIZE            (1 * MiB)
58 
59 #define FW_FILE_NAME            "skiboot.lid"
60 #define FW_LOAD_ADDR            0x0
61 #define FW_MAX_SIZE             (4 * MiB)
62 
63 #define KERNEL_LOAD_ADDR        0x20000000
64 #define KERNEL_MAX_SIZE         (256 * MiB)
65 #define INITRD_LOAD_ADDR        0x60000000
66 #define INITRD_MAX_SIZE         (256 * MiB)
67 
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73     const char *core_type = object_class_get_name(object_class_by_name(s));
74     g_free(s);
75     return core_type;
76 }
77 
78 /*
79  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80  *     4 * 4 sockets * 12 cores * 8 threads = 1536
81  * Let's make it 2^11
82  */
83 #define MAX_CPUS                2048
84 
85 /*
86  * Memory nodes are created by hostboot, one for each range of memory
87  * that has a different "affinity". In practice, it means one range
88  * per chip.
89  */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92     char *mem_name;
93     uint64_t mem_reg_property[2];
94     int off;
95 
96     mem_reg_property[0] = cpu_to_be64(start);
97     mem_reg_property[1] = cpu_to_be64(size);
98 
99     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100     off = fdt_add_subnode(fdt, 0, mem_name);
101     g_free(mem_name);
102 
103     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105                        sizeof(mem_reg_property))));
106     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108 
109 static int get_cpus_node(void *fdt)
110 {
111     int cpus_offset = fdt_path_offset(fdt, "/cpus");
112 
113     if (cpus_offset < 0) {
114         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115         if (cpus_offset) {
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118         }
119     }
120     _FDT(cpus_offset);
121     return cpus_offset;
122 }
123 
124 /*
125  * The PowerNV cores (and threads) need to use real HW ids and not an
126  * incremental index like it has been done on other platforms. This HW
127  * id is stored in the CPU PIR, it is used to create cpu nodes in the
128  * device tree, used in XSCOM to address cores and in interrupt
129  * servers.
130  */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133     PowerPCCPU *cpu = pc->threads[0];
134     CPUState *cs = CPU(cpu);
135     DeviceClass *dc = DEVICE_GET_CLASS(cs);
136     int smt_threads = CPU_CORE(pc)->nr_threads;
137     CPUPPCState *env = &cpu->env;
138     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139     uint32_t servers_prop[smt_threads];
140     int i;
141     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                        0xffffffff, 0xffffffff};
143     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144     uint32_t cpufreq = 1000000000;
145     uint32_t page_sizes_prop[64];
146     size_t page_sizes_prop_size;
147     const uint8_t pa_features[] = { 24, 0,
148                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152     int offset;
153     char *nodename;
154     int cpus_offset = get_cpus_node(fdt);
155 
156     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158     _FDT(offset);
159     g_free(nodename);
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173                             env->icache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175                             env->icache_line_size)));
176 
177     if (pcc->l1_dcache_size) {
178         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179                                pcc->l1_dcache_size)));
180     } else {
181         warn_report("Unknown L1 dcache size for cpu");
182     }
183     if (pcc->l1_icache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185                                pcc->l1_icache_size)));
186     } else {
187         warn_report("Unknown L1 icache size for cpu");
188     }
189 
190     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193                            cpu->hash64_opts->slb_size)));
194     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196 
197     if (env->spr_cb[SPR_PURR].oea_read) {
198         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199     }
200 
201     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203                            segs, sizeof(segs))));
204     }
205 
206     /*
207      * Advertise VMX/VSX (vector extensions) if available
208      *   0 / no property == no vector extensions
209      *   1               == VMX / Altivec available
210      *   2               == VSX available
211      */
212     if (env->insns_flags & PPC_ALTIVEC) {
213         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214 
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216     }
217 
218     /*
219      * Advertise DFP (Decimal Floating Point) if available
220      *   0 / no property == no DFP
221      *   1               == DFP available
222      */
223     if (env->insns_flags2 & PPC2_DFP) {
224         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225     }
226 
227     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228                                                       sizeof(page_sizes_prop));
229     if (page_sizes_prop_size) {
230         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231                            page_sizes_prop, page_sizes_prop_size)));
232     }
233 
234     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235                        pa_features, sizeof(pa_features))));
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pc->pir + i);
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(servers_prop))));
243 }
244 
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246                        uint32_t nr_threads)
247 {
248     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249     char *name;
250     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251     uint32_t irange[2], i, rsize;
252     uint64_t *reg;
253     int offset;
254 
255     irange[0] = cpu_to_be32(pir);
256     irange[1] = cpu_to_be32(nr_threads);
257 
258     rsize = sizeof(uint64_t) * 2 * nr_threads;
259     reg = g_malloc(rsize);
260     for (i = 0; i < nr_threads; i++) {
261         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262         reg[i * 2 + 1] = cpu_to_be64(0x1000);
263     }
264 
265     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266     offset = fdt_add_subnode(fdt, 0, name);
267     _FDT(offset);
268     g_free(name);
269 
270     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272     _FDT((fdt_setprop_string(fdt, offset, "device_type",
273                               "PowerPC-External-Interrupt-Presentation")));
274     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276                        irange, sizeof(irange))));
277     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279     g_free(reg);
280 }
281 
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0,
288                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
289                  cpu_to_be64(PNV_XSCOM_SIZE),
290                  compat, sizeof(compat));
291 
292     for (i = 0; i < chip->nr_cores; i++) {
293         PnvCore *pnv_core = chip->cores[i];
294 
295         pnv_dt_core(chip, pnv_core, fdt);
296 
297         /* Interrupt Control Presenters (ICP). One per core. */
298         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299     }
300 
301     if (chip->ram_size) {
302         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303     }
304 }
305 
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309     int i;
310 
311     pnv_dt_xscom(chip, fdt, 0,
312                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313                  cpu_to_be64(PNV9_XSCOM_SIZE),
314                  compat, sizeof(compat));
315 
316     for (i = 0; i < chip->nr_cores; i++) {
317         PnvCore *pnv_core = chip->cores[i];
318 
319         pnv_dt_core(chip, pnv_core, fdt);
320     }
321 
322     if (chip->ram_size) {
323         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324     }
325 
326     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328 
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332     int i;
333 
334     pnv_dt_xscom(chip, fdt, 0,
335                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336                  cpu_to_be64(PNV10_XSCOM_SIZE),
337                  compat, sizeof(compat));
338 
339     for (i = 0; i < chip->nr_cores; i++) {
340         PnvCore *pnv_core = chip->cores[i];
341 
342         pnv_dt_core(chip, pnv_core, fdt);
343     }
344 
345     if (chip->ram_size) {
346         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347     }
348 
349     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351 
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354     uint32_t io_base = d->ioport_id;
355     uint32_t io_regs[] = {
356         cpu_to_be32(1),
357         cpu_to_be32(io_base),
358         cpu_to_be32(2)
359     };
360     char *name;
361     int node;
362 
363     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364     node = fdt_add_subnode(fdt, lpc_off, name);
365     _FDT(node);
366     g_free(name);
367 
368     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371 
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374     const char compatible[] = "ns16550\0pnpPNP,501";
375     uint32_t io_base = d->ioport_id;
376     uint32_t io_regs[] = {
377         cpu_to_be32(1),
378         cpu_to_be32(io_base),
379         cpu_to_be32(8)
380     };
381     char *name;
382     int node;
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 
399     /* This is needed by Linux */
400     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402 
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405     const char compatible[] = "bt\0ipmi-bt";
406     uint32_t io_base;
407     uint32_t io_regs[] = {
408         cpu_to_be32(1),
409         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410         cpu_to_be32(3)
411     };
412     uint32_t irq;
413     char *name;
414     int node;
415 
416     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417     io_regs[1] = cpu_to_be32(io_base);
418 
419     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420 
421     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422     node = fdt_add_subnode(fdt, lpc_off, name);
423     _FDT(node);
424     g_free(name);
425 
426     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428                       sizeof(compatible))));
429 
430     /* Mark it as reserved to avoid Linux trying to claim it */
431     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434                            fdt_get_phandle(fdt, lpc_off))));
435 }
436 
437 typedef struct ForeachPopulateArgs {
438     void *fdt;
439     int offset;
440 } ForeachPopulateArgs;
441 
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444     ForeachPopulateArgs *args = opaque;
445     ISADevice *d = ISA_DEVICE(dev);
446 
447     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448         pnv_dt_rtc(d, args->fdt, args->offset);
449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450         pnv_dt_serial(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453     } else {
454         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455                      d->ioport_id);
456     }
457 
458     return 0;
459 }
460 
461 /*
462  * The default LPC bus of a multichip system is on chip 0. It's
463  * recognized by the firmware (skiboot) using a "primary" property.
464  */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468     ForeachPopulateArgs args = {
469         .fdt = fdt,
470         .offset = isa_offset,
471     };
472     uint32_t phandle;
473 
474     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475 
476     phandle = qemu_fdt_alloc_phandle(fdt);
477     assert(phandle > 0);
478     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479 
480     /*
481      * ISA devices are not necessarily parented to the ISA bus so we
482      * can not use object_child_foreach()
483      */
484     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485                        &args);
486 }
487 
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490     int off;
491 
492     off = fdt_add_subnode(fdt, 0, "ibm,opal");
493     off = fdt_add_subnode(fdt, off, "power-mgt");
494 
495     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497 
498 static void *pnv_dt_create(MachineState *machine)
499 {
500     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501     PnvMachineState *pnv = PNV_MACHINE(machine);
502     void *fdt;
503     char *buf;
504     int off;
505     int i;
506 
507     fdt = g_malloc0(FDT_MAX_SIZE);
508     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509 
510     /* /qemu node */
511     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512 
513     /* Root node */
514     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516     _FDT((fdt_setprop_string(fdt, 0, "model",
517                              "IBM PowerNV (emulated by qemu)")));
518     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519 
520     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
521     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522     if (qemu_uuid_set) {
523         _FDT((fdt_property_string(fdt, "system-id", buf)));
524     }
525     g_free(buf);
526 
527     off = fdt_add_subnode(fdt, 0, "chosen");
528     if (machine->kernel_cmdline) {
529         _FDT((fdt_setprop_string(fdt, off, "bootargs",
530                                  machine->kernel_cmdline)));
531     }
532 
533     if (pnv->initrd_size) {
534         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536 
537         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538                                &start_prop, sizeof(start_prop))));
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540                                &end_prop, sizeof(end_prop))));
541     }
542 
543     /* Populate device tree for each chip */
544     for (i = 0; i < pnv->num_chips; i++) {
545         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546     }
547 
548     /* Populate ISA devices on chip 0 */
549     pnv_dt_isa(pnv, fdt);
550 
551     if (pnv->bmc) {
552         pnv_dt_bmc_sensors(pnv->bmc, fdt);
553     }
554 
555     /* Create an extra node for power management on machines that support it */
556     if (pmc->dt_power_mgt) {
557         pmc->dt_power_mgt(pnv, fdt);
558     }
559 
560     return fdt;
561 }
562 
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566 
567     if (pnv->bmc) {
568         pnv_bmc_powerdown(pnv->bmc);
569     }
570 }
571 
572 static void pnv_reset(MachineState *machine)
573 {
574     void *fdt;
575 
576     qemu_devices_reset();
577 
578     fdt = pnv_dt_create(machine);
579 
580     /* Pack resulting tree */
581     _FDT((fdt_pack(fdt)));
582 
583     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
584     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
585 }
586 
587 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
588 {
589     Pnv8Chip *chip8 = PNV8_CHIP(chip);
590     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
591 }
592 
593 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
594 {
595     Pnv8Chip *chip8 = PNV8_CHIP(chip);
596     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
597 }
598 
599 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
600 {
601     Pnv9Chip *chip9 = PNV9_CHIP(chip);
602     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
603 }
604 
605 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
606 {
607     Pnv10Chip *chip10 = PNV10_CHIP(chip);
608     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
609 }
610 
611 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
612 {
613     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
614 }
615 
616 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
617 {
618     Pnv8Chip *chip8 = PNV8_CHIP(chip);
619     int i;
620 
621     ics_pic_print_info(&chip8->psi.ics, mon);
622     for (i = 0; i < chip->num_phbs; i++) {
623         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
624         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
625     }
626 }
627 
628 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
629 {
630     Pnv9Chip *chip9 = PNV9_CHIP(chip);
631     int i, j;
632 
633     pnv_xive_pic_print_info(&chip9->xive, mon);
634     pnv_psi_pic_print_info(&chip9->psi, mon);
635 
636     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
637         PnvPhb4PecState *pec = &chip9->pecs[i];
638         for (j = 0; j < pec->num_stacks; j++) {
639             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
640         }
641     }
642 }
643 
644 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
645                                                 uint32_t core_id)
646 {
647     return PNV_XSCOM_EX_BASE(core_id);
648 }
649 
650 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
651                                                 uint32_t core_id)
652 {
653     return PNV9_XSCOM_EC_BASE(core_id);
654 }
655 
656 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
657                                                  uint32_t core_id)
658 {
659     return PNV10_XSCOM_EC_BASE(core_id);
660 }
661 
662 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
663 {
664     PowerPCCPUClass *ppc_default =
665         POWERPC_CPU_CLASS(object_class_by_name(default_type));
666     PowerPCCPUClass *ppc =
667         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
668 
669     return ppc_default->pvr_match(ppc_default, ppc->pvr);
670 }
671 
672 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
673 {
674     Object *obj;
675 
676     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
677     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
678     object_property_set_int(obj, irq, "irq", &error_fatal);
679     object_property_set_bool(obj, true, "realized", &error_fatal);
680 }
681 
682 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
683 {
684     Pnv10Chip *chip10 = PNV10_CHIP(chip);
685 
686     pnv_psi_pic_print_info(&chip10->psi, mon);
687 }
688 
689 static void pnv_init(MachineState *machine)
690 {
691     PnvMachineState *pnv = PNV_MACHINE(machine);
692     MachineClass *mc = MACHINE_GET_CLASS(machine);
693     char *fw_filename;
694     long fw_size;
695     int i;
696     char *chip_typename;
697     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
698     DeviceState *dev;
699 
700     /* allocate RAM */
701     if (machine->ram_size < (1 * GiB)) {
702         warn_report("skiboot may not work with < 1GB of RAM");
703     }
704     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
705 
706     /*
707      * Create our simple PNOR device
708      */
709     dev = qdev_create(NULL, TYPE_PNV_PNOR);
710     if (pnor) {
711         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
712                             &error_abort);
713     }
714     qdev_init_nofail(dev);
715     pnv->pnor = PNV_PNOR(dev);
716 
717     /* load skiboot firmware  */
718     if (bios_name == NULL) {
719         bios_name = FW_FILE_NAME;
720     }
721 
722     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
723     if (!fw_filename) {
724         error_report("Could not find OPAL firmware '%s'", bios_name);
725         exit(1);
726     }
727 
728     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
729     if (fw_size < 0) {
730         error_report("Could not load OPAL firmware '%s'", fw_filename);
731         exit(1);
732     }
733     g_free(fw_filename);
734 
735     /* load kernel */
736     if (machine->kernel_filename) {
737         long kernel_size;
738 
739         kernel_size = load_image_targphys(machine->kernel_filename,
740                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
741         if (kernel_size < 0) {
742             error_report("Could not load kernel '%s'",
743                          machine->kernel_filename);
744             exit(1);
745         }
746     }
747 
748     /* load initrd */
749     if (machine->initrd_filename) {
750         pnv->initrd_base = INITRD_LOAD_ADDR;
751         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
752                                   pnv->initrd_base, INITRD_MAX_SIZE);
753         if (pnv->initrd_size < 0) {
754             error_report("Could not load initial ram disk '%s'",
755                          machine->initrd_filename);
756             exit(1);
757         }
758     }
759 
760     /* MSIs are supported on this platform */
761     msi_nonbroken = true;
762 
763     /*
764      * Check compatibility of the specified CPU with the machine
765      * default.
766      */
767     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
768         error_report("invalid CPU model '%s' for %s machine",
769                      machine->cpu_type, mc->name);
770         exit(1);
771     }
772 
773     /* Create the processor chips */
774     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
775     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
776                                     i, machine->cpu_type);
777     if (!object_class_by_name(chip_typename)) {
778         error_report("invalid chip model '%.*s' for %s machine",
779                      i, machine->cpu_type, mc->name);
780         exit(1);
781     }
782 
783     pnv->num_chips =
784         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
785     /*
786      * TODO: should we decide on how many chips we can create based
787      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
788      */
789     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
790         error_report("invalid number of chips: '%d'", pnv->num_chips);
791         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
792         exit(1);
793     }
794 
795     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
796     for (i = 0; i < pnv->num_chips; i++) {
797         char chip_name[32];
798         Object *chip = object_new(chip_typename);
799 
800         pnv->chips[i] = PNV_CHIP(chip);
801 
802         /*
803          * TODO: put all the memory in one node on chip 0 until we find a
804          * way to specify different ranges for each chip
805          */
806         if (i == 0) {
807             object_property_set_int(chip, machine->ram_size, "ram-size",
808                                     &error_fatal);
809         }
810 
811         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
812         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
813         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
814                                 &error_fatal);
815         object_property_set_int(chip, machine->smp.cores,
816                                 "nr-cores", &error_fatal);
817         object_property_set_int(chip, machine->smp.threads,
818                                 "nr-threads", &error_fatal);
819         /*
820          * The POWER8 machine use the XICS interrupt interface.
821          * Propagate the XICS fabric to the chip and its controllers.
822          */
823         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
824             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
825         }
826         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
827             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
828                                      &error_abort);
829         }
830         object_property_set_bool(chip, true, "realized", &error_fatal);
831     }
832     g_free(chip_typename);
833 
834     /* Create the machine BMC simulator */
835     pnv->bmc = pnv_bmc_create(pnv->pnor);
836 
837     /* Instantiate ISA bus on chip 0 */
838     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
839 
840     /* Create serial port */
841     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
842 
843     /* Create an RTC ISA device too */
844     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
845 
846     /* Create the IPMI BT device for communication with the BMC */
847     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
848 
849     /*
850      * OpenPOWER systems use a IPMI SEL Event message to notify the
851      * host to powerdown
852      */
853     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
854     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
855 }
856 
857 /*
858  *    0:21  Reserved - Read as zeros
859  *   22:24  Chip ID
860  *   25:28  Core number
861  *   29:31  Thread ID
862  */
863 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
864 {
865     return (chip->chip_id << 7) | (core_id << 3);
866 }
867 
868 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
869                                         Error **errp)
870 {
871     Pnv8Chip *chip8 = PNV8_CHIP(chip);
872     Error *local_err = NULL;
873     Object *obj;
874     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
875 
876     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
877     if (local_err) {
878         error_propagate(errp, local_err);
879         return;
880     }
881 
882     pnv_cpu->intc = obj;
883 }
884 
885 
886 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
887 {
888     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
889 
890     icp_reset(ICP(pnv_cpu->intc));
891 }
892 
893 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
894 {
895     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
896 
897     icp_destroy(ICP(pnv_cpu->intc));
898     pnv_cpu->intc = NULL;
899 }
900 
901 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
902                                             Monitor *mon)
903 {
904     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
905 }
906 
907 /*
908  *    0:48  Reserved - Read as zeroes
909  *   49:52  Node ID
910  *   53:55  Chip ID
911  *   56     Reserved - Read as zero
912  *   57:61  Core number
913  *   62:63  Thread ID
914  *
915  * We only care about the lower bits. uint32_t is fine for the moment.
916  */
917 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
918 {
919     return (chip->chip_id << 8) | (core_id << 2);
920 }
921 
922 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
923 {
924     return (chip->chip_id << 8) | (core_id << 2);
925 }
926 
927 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
928                                         Error **errp)
929 {
930     Pnv9Chip *chip9 = PNV9_CHIP(chip);
931     Error *local_err = NULL;
932     Object *obj;
933     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
934 
935     /*
936      * The core creates its interrupt presenter but the XIVE interrupt
937      * controller object is initialized afterwards. Hopefully, it's
938      * only used at runtime.
939      */
940     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
941                            &local_err);
942     if (local_err) {
943         error_propagate(errp, local_err);
944         return;
945     }
946 
947     pnv_cpu->intc = obj;
948 }
949 
950 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
951 {
952     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
953 
954     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
955 }
956 
957 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
958 {
959     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960 
961     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
962     pnv_cpu->intc = NULL;
963 }
964 
965 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
966                                             Monitor *mon)
967 {
968     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
969 }
970 
971 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
972                                         Error **errp)
973 {
974     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
975 
976     /* Will be defined when the interrupt controller is */
977     pnv_cpu->intc = NULL;
978 }
979 
980 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
981 {
982     ;
983 }
984 
985 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
986 {
987     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
988 
989     pnv_cpu->intc = NULL;
990 }
991 
992 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993                                              Monitor *mon)
994 {
995 }
996 
997 /*
998  * Allowed core identifiers on a POWER8 Processor Chip :
999  *
1000  * <EX0 reserved>
1001  *  EX1  - Venice only
1002  *  EX2  - Venice only
1003  *  EX3  - Venice only
1004  *  EX4
1005  *  EX5
1006  *  EX6
1007  * <EX7,8 reserved> <reserved>
1008  *  EX9  - Venice only
1009  *  EX10 - Venice only
1010  *  EX11 - Venice only
1011  *  EX12
1012  *  EX13
1013  *  EX14
1014  * <EX15 reserved>
1015  */
1016 #define POWER8E_CORE_MASK  (0x7070ull)
1017 #define POWER8_CORE_MASK   (0x7e7eull)
1018 
1019 /*
1020  * POWER9 has 24 cores, ids starting at 0x0
1021  */
1022 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1023 
1024 
1025 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1026 
1027 static void pnv_chip_power8_instance_init(Object *obj)
1028 {
1029     PnvChip *chip = PNV_CHIP(obj);
1030     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1031     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1032     int i;
1033 
1034     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1035                              (Object **)&chip8->xics,
1036                              object_property_allow_set_link,
1037                              OBJ_PROP_LINK_STRONG,
1038                              &error_abort);
1039 
1040     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1041                             TYPE_PNV8_PSI, &error_abort, NULL);
1042 
1043     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1044                             TYPE_PNV8_LPC, &error_abort, NULL);
1045 
1046     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1047                             TYPE_PNV8_OCC, &error_abort, NULL);
1048 
1049     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1050                             TYPE_PNV8_HOMER, &error_abort, NULL);
1051 
1052     for (i = 0; i < pcc->num_phbs; i++) {
1053         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1054                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1055                                 &error_abort, NULL);
1056     }
1057 
1058     /*
1059      * Number of PHBs is the chip default
1060      */
1061     chip->num_phbs = pcc->num_phbs;
1062 }
1063 
1064 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1065  {
1066     PnvChip *chip = PNV_CHIP(chip8);
1067     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1068     int i, j;
1069     char *name;
1070 
1071     name = g_strdup_printf("icp-%x", chip->chip_id);
1072     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1073     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1074     g_free(name);
1075 
1076     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1077 
1078     /* Map the ICP registers for each thread */
1079     for (i = 0; i < chip->nr_cores; i++) {
1080         PnvCore *pnv_core = chip->cores[i];
1081         int core_hwid = CPU_CORE(pnv_core)->core_id;
1082 
1083         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1084             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1085             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1086 
1087             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1088                                         &icp->mmio);
1089         }
1090     }
1091 }
1092 
1093 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1094 {
1095     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1096     PnvChip *chip = PNV_CHIP(dev);
1097     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1098     Pnv8Psi *psi8 = &chip8->psi;
1099     Error *local_err = NULL;
1100     int i;
1101 
1102     assert(chip8->xics);
1103 
1104     /* XSCOM bridge is first */
1105     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1106     if (local_err) {
1107         error_propagate(errp, local_err);
1108         return;
1109     }
1110     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1111 
1112     pcc->parent_realize(dev, &local_err);
1113     if (local_err) {
1114         error_propagate(errp, local_err);
1115         return;
1116     }
1117 
1118     /* Processor Service Interface (PSI) Host Bridge */
1119     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1120                             "bar", &error_fatal);
1121     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1122                              ICS_PROP_XICS, &error_abort);
1123     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1124     if (local_err) {
1125         error_propagate(errp, local_err);
1126         return;
1127     }
1128     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1129                             &PNV_PSI(psi8)->xscom_regs);
1130 
1131     /* Create LPC controller */
1132     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1133                              &error_abort);
1134     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1135                              &error_fatal);
1136     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1137 
1138     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1139                                             (uint64_t) PNV_XSCOM_BASE(chip),
1140                                             PNV_XSCOM_LPC_BASE);
1141 
1142     /*
1143      * Interrupt Management Area. This is the memory region holding
1144      * all the Interrupt Control Presenter (ICP) registers
1145      */
1146     pnv_chip_icp_realize(chip8, &local_err);
1147     if (local_err) {
1148         error_propagate(errp, local_err);
1149         return;
1150     }
1151 
1152     /* Create the simplified OCC model */
1153     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1154                              &error_abort);
1155     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1156     if (local_err) {
1157         error_propagate(errp, local_err);
1158         return;
1159     }
1160     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1161 
1162     /* OCC SRAM model */
1163     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1164                                 &chip8->occ.sram_regs);
1165 
1166     /* HOMER */
1167     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1168                              &error_abort);
1169     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1170                              &local_err);
1171     if (local_err) {
1172         error_propagate(errp, local_err);
1173         return;
1174     }
1175     /* Homer Xscom region */
1176     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1177 
1178     /* Homer mmio region */
1179     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1180                                 &chip8->homer.regs);
1181 
1182     /* PHB3 controllers */
1183     for (i = 0; i < chip->num_phbs; i++) {
1184         PnvPHB3 *phb = &chip8->phbs[i];
1185         PnvPBCQState *pbcq = &phb->pbcq;
1186 
1187         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1188         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1189                                 &error_fatal);
1190         object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1191         if (local_err) {
1192             error_propagate(errp, local_err);
1193             return;
1194         }
1195         qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1196 
1197         /* Populate the XSCOM address space. */
1198         pnv_xscom_add_subregion(chip,
1199                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1200                                 &pbcq->xscom_nest_regs);
1201         pnv_xscom_add_subregion(chip,
1202                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1203                                 &pbcq->xscom_pci_regs);
1204         pnv_xscom_add_subregion(chip,
1205                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1206                                 &pbcq->xscom_spci_regs);
1207     }
1208 }
1209 
1210 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1211 {
1212     addr &= (PNV_XSCOM_SIZE - 1);
1213     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1214 }
1215 
1216 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1217 {
1218     DeviceClass *dc = DEVICE_CLASS(klass);
1219     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1220 
1221     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1222     k->cores_mask = POWER8E_CORE_MASK;
1223     k->num_phbs = 3;
1224     k->core_pir = pnv_chip_core_pir_p8;
1225     k->intc_create = pnv_chip_power8_intc_create;
1226     k->intc_reset = pnv_chip_power8_intc_reset;
1227     k->intc_destroy = pnv_chip_power8_intc_destroy;
1228     k->intc_print_info = pnv_chip_power8_intc_print_info;
1229     k->isa_create = pnv_chip_power8_isa_create;
1230     k->dt_populate = pnv_chip_power8_dt_populate;
1231     k->pic_print_info = pnv_chip_power8_pic_print_info;
1232     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1233     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1234     dc->desc = "PowerNV Chip POWER8E";
1235 
1236     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1237                                     &k->parent_realize);
1238 }
1239 
1240 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1241 {
1242     DeviceClass *dc = DEVICE_CLASS(klass);
1243     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1244 
1245     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1246     k->cores_mask = POWER8_CORE_MASK;
1247     k->num_phbs = 3;
1248     k->core_pir = pnv_chip_core_pir_p8;
1249     k->intc_create = pnv_chip_power8_intc_create;
1250     k->intc_reset = pnv_chip_power8_intc_reset;
1251     k->intc_destroy = pnv_chip_power8_intc_destroy;
1252     k->intc_print_info = pnv_chip_power8_intc_print_info;
1253     k->isa_create = pnv_chip_power8_isa_create;
1254     k->dt_populate = pnv_chip_power8_dt_populate;
1255     k->pic_print_info = pnv_chip_power8_pic_print_info;
1256     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1257     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1258     dc->desc = "PowerNV Chip POWER8";
1259 
1260     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1261                                     &k->parent_realize);
1262 }
1263 
1264 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1265 {
1266     DeviceClass *dc = DEVICE_CLASS(klass);
1267     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1268 
1269     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1270     k->cores_mask = POWER8_CORE_MASK;
1271     k->num_phbs = 3;
1272     k->core_pir = pnv_chip_core_pir_p8;
1273     k->intc_create = pnv_chip_power8_intc_create;
1274     k->intc_reset = pnv_chip_power8_intc_reset;
1275     k->intc_destroy = pnv_chip_power8_intc_destroy;
1276     k->intc_print_info = pnv_chip_power8_intc_print_info;
1277     k->isa_create = pnv_chip_power8nvl_isa_create;
1278     k->dt_populate = pnv_chip_power8_dt_populate;
1279     k->pic_print_info = pnv_chip_power8_pic_print_info;
1280     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1281     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1282     dc->desc = "PowerNV Chip POWER8NVL";
1283 
1284     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1285                                     &k->parent_realize);
1286 }
1287 
1288 static void pnv_chip_power9_instance_init(Object *obj)
1289 {
1290     PnvChip *chip = PNV_CHIP(obj);
1291     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1292     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1293     int i;
1294 
1295     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1296                             TYPE_PNV_XIVE, &error_abort, NULL);
1297     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1298                               "xive-fabric", &error_abort);
1299 
1300     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1301                             TYPE_PNV9_PSI, &error_abort, NULL);
1302 
1303     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1304                             TYPE_PNV9_LPC, &error_abort, NULL);
1305 
1306     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1307                             TYPE_PNV9_OCC, &error_abort, NULL);
1308 
1309     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1310                             TYPE_PNV9_HOMER, &error_abort, NULL);
1311 
1312     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1313         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1314                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1315                                 &error_abort, NULL);
1316     }
1317 
1318     /*
1319      * Number of PHBs is the chip default
1320      */
1321     chip->num_phbs = pcc->num_phbs;
1322 }
1323 
1324 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1325 {
1326     PnvChip *chip = PNV_CHIP(chip9);
1327     int i;
1328 
1329     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1330     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1331 
1332     for (i = 0; i < chip9->nr_quads; i++) {
1333         char eq_name[32];
1334         PnvQuad *eq = &chip9->quads[i];
1335         PnvCore *pnv_core = chip->cores[i * 4];
1336         int core_id = CPU_CORE(pnv_core)->core_id;
1337 
1338         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1339         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1340                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1341 
1342         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1343         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1344 
1345         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1346                                 &eq->xscom_regs);
1347     }
1348 }
1349 
1350 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1351 {
1352     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1353     Error *local_err = NULL;
1354     int i, j;
1355     int phb_id = 0;
1356 
1357     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1358         PnvPhb4PecState *pec = &chip9->pecs[i];
1359         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1360         uint32_t pec_nest_base;
1361         uint32_t pec_pci_base;
1362 
1363         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1364         /*
1365          * PEC0 -> 1 stack
1366          * PEC1 -> 2 stacks
1367          * PEC2 -> 3 stacks
1368          */
1369         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1370                                 &error_fatal);
1371         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1372                                  &error_fatal);
1373         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1374                                  "system-memory", &error_abort);
1375         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1376         if (local_err) {
1377             error_propagate(errp, local_err);
1378             return;
1379         }
1380 
1381         pec_nest_base = pecc->xscom_nest_base(pec);
1382         pec_pci_base = pecc->xscom_pci_base(pec);
1383 
1384         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1385         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1386 
1387         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1388              j++, phb_id++) {
1389             PnvPhb4PecStack *stack = &pec->stacks[j];
1390             Object *obj = OBJECT(&stack->phb);
1391 
1392             object_property_set_int(obj, phb_id, "index", &error_fatal);
1393             object_property_set_int(obj, chip->chip_id, "chip-id",
1394                                     &error_fatal);
1395             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1396                                     &error_fatal);
1397             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1398                                     &error_fatal);
1399             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1400             object_property_set_bool(obj, true, "realized", &local_err);
1401             if (local_err) {
1402                 error_propagate(errp, local_err);
1403                 return;
1404             }
1405             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1406 
1407             /* Populate the XSCOM address space. */
1408             pnv_xscom_add_subregion(chip,
1409                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1410                                    &stack->nest_regs_mr);
1411             pnv_xscom_add_subregion(chip,
1412                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1413                                     &stack->pci_regs_mr);
1414             pnv_xscom_add_subregion(chip,
1415                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1416                                     0x40 * stack->stack_no,
1417                                     &stack->phb_regs_mr);
1418         }
1419     }
1420 }
1421 
1422 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1423 {
1424     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1425     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1426     PnvChip *chip = PNV_CHIP(dev);
1427     Pnv9Psi *psi9 = &chip9->psi;
1428     Error *local_err = NULL;
1429 
1430     /* XSCOM bridge is first */
1431     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1432     if (local_err) {
1433         error_propagate(errp, local_err);
1434         return;
1435     }
1436     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1437 
1438     pcc->parent_realize(dev, &local_err);
1439     if (local_err) {
1440         error_propagate(errp, local_err);
1441         return;
1442     }
1443 
1444     pnv_chip_quad_realize(chip9, &local_err);
1445     if (local_err) {
1446         error_propagate(errp, local_err);
1447         return;
1448     }
1449 
1450     /* XIVE interrupt controller (POWER9) */
1451     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1452                             "ic-bar", &error_fatal);
1453     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1454                             "vc-bar", &error_fatal);
1455     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1456                             "pc-bar", &error_fatal);
1457     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1458                             "tm-bar", &error_fatal);
1459     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1460                              &error_abort);
1461     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1462                              &local_err);
1463     if (local_err) {
1464         error_propagate(errp, local_err);
1465         return;
1466     }
1467     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1468                             &chip9->xive.xscom_regs);
1469 
1470     /* Processor Service Interface (PSI) Host Bridge */
1471     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1472                             "bar", &error_fatal);
1473     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1474     if (local_err) {
1475         error_propagate(errp, local_err);
1476         return;
1477     }
1478     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1479                             &PNV_PSI(psi9)->xscom_regs);
1480 
1481     /* LPC */
1482     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1483                              &error_abort);
1484     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1485     if (local_err) {
1486         error_propagate(errp, local_err);
1487         return;
1488     }
1489     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1490                                 &chip9->lpc.xscom_regs);
1491 
1492     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1493                                             (uint64_t) PNV9_LPCM_BASE(chip));
1494 
1495     /* Create the simplified OCC model */
1496     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1497                              &error_abort);
1498     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1499     if (local_err) {
1500         error_propagate(errp, local_err);
1501         return;
1502     }
1503     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1504 
1505     /* OCC SRAM model */
1506     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1507                                 &chip9->occ.sram_regs);
1508 
1509     /* HOMER */
1510     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1511                              &error_abort);
1512     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1513                              &local_err);
1514     if (local_err) {
1515         error_propagate(errp, local_err);
1516         return;
1517     }
1518     /* Homer Xscom region */
1519     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1520 
1521     /* Homer mmio region */
1522     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1523                                 &chip9->homer.regs);
1524 
1525     /* PHBs */
1526     pnv_chip_power9_phb_realize(chip, &local_err);
1527     if (local_err) {
1528         error_propagate(errp, local_err);
1529         return;
1530     }
1531 }
1532 
1533 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1534 {
1535     addr &= (PNV9_XSCOM_SIZE - 1);
1536     return addr >> 3;
1537 }
1538 
1539 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1540 {
1541     DeviceClass *dc = DEVICE_CLASS(klass);
1542     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1543 
1544     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1545     k->cores_mask = POWER9_CORE_MASK;
1546     k->core_pir = pnv_chip_core_pir_p9;
1547     k->intc_create = pnv_chip_power9_intc_create;
1548     k->intc_reset = pnv_chip_power9_intc_reset;
1549     k->intc_destroy = pnv_chip_power9_intc_destroy;
1550     k->intc_print_info = pnv_chip_power9_intc_print_info;
1551     k->isa_create = pnv_chip_power9_isa_create;
1552     k->dt_populate = pnv_chip_power9_dt_populate;
1553     k->pic_print_info = pnv_chip_power9_pic_print_info;
1554     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1555     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1556     dc->desc = "PowerNV Chip POWER9";
1557     k->num_phbs = 6;
1558 
1559     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1560                                     &k->parent_realize);
1561 }
1562 
1563 static void pnv_chip_power10_instance_init(Object *obj)
1564 {
1565     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1566 
1567     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1568                             TYPE_PNV10_PSI, &error_abort, NULL);
1569     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1570                             TYPE_PNV10_LPC, &error_abort, NULL);
1571 }
1572 
1573 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1574 {
1575     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1576     PnvChip *chip = PNV_CHIP(dev);
1577     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1578     Error *local_err = NULL;
1579 
1580     /* XSCOM bridge is first */
1581     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1582     if (local_err) {
1583         error_propagate(errp, local_err);
1584         return;
1585     }
1586     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1587 
1588     pcc->parent_realize(dev, &local_err);
1589     if (local_err) {
1590         error_propagate(errp, local_err);
1591         return;
1592     }
1593 
1594     /* Processor Service Interface (PSI) Host Bridge */
1595     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1596                             "bar", &error_fatal);
1597     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1598                              &local_err);
1599     if (local_err) {
1600         error_propagate(errp, local_err);
1601         return;
1602     }
1603     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1604                             &PNV_PSI(&chip10->psi)->xscom_regs);
1605 
1606     /* LPC */
1607     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1608                              &error_abort);
1609     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1610                              &local_err);
1611     if (local_err) {
1612         error_propagate(errp, local_err);
1613         return;
1614     }
1615     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1616                                 &chip10->lpc.xscom_regs);
1617 
1618     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1619                                             (uint64_t) PNV10_LPCM_BASE(chip));
1620 }
1621 
1622 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1623 {
1624     addr &= (PNV10_XSCOM_SIZE - 1);
1625     return addr >> 3;
1626 }
1627 
1628 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1629 {
1630     DeviceClass *dc = DEVICE_CLASS(klass);
1631     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1632 
1633     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1634     k->cores_mask = POWER10_CORE_MASK;
1635     k->core_pir = pnv_chip_core_pir_p10;
1636     k->intc_create = pnv_chip_power10_intc_create;
1637     k->intc_reset = pnv_chip_power10_intc_reset;
1638     k->intc_destroy = pnv_chip_power10_intc_destroy;
1639     k->intc_print_info = pnv_chip_power10_intc_print_info;
1640     k->isa_create = pnv_chip_power10_isa_create;
1641     k->dt_populate = pnv_chip_power10_dt_populate;
1642     k->pic_print_info = pnv_chip_power10_pic_print_info;
1643     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1644     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1645     dc->desc = "PowerNV Chip POWER10";
1646 
1647     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1648                                     &k->parent_realize);
1649 }
1650 
1651 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1652 {
1653     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1654     int cores_max;
1655 
1656     /*
1657      * No custom mask for this chip, let's use the default one from *
1658      * the chip class
1659      */
1660     if (!chip->cores_mask) {
1661         chip->cores_mask = pcc->cores_mask;
1662     }
1663 
1664     /* filter alien core ids ! some are reserved */
1665     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1666         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1667                    chip->cores_mask);
1668         return;
1669     }
1670     chip->cores_mask &= pcc->cores_mask;
1671 
1672     /* now that we have a sane layout, let check the number of cores */
1673     cores_max = ctpop64(chip->cores_mask);
1674     if (chip->nr_cores > cores_max) {
1675         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1676                    cores_max);
1677         return;
1678     }
1679 }
1680 
1681 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1682 {
1683     Error *error = NULL;
1684     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1685     const char *typename = pnv_chip_core_typename(chip);
1686     int i, core_hwid;
1687     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1688 
1689     if (!object_class_by_name(typename)) {
1690         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1691         return;
1692     }
1693 
1694     /* Cores */
1695     pnv_chip_core_sanitize(chip, &error);
1696     if (error) {
1697         error_propagate(errp, error);
1698         return;
1699     }
1700 
1701     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1702 
1703     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1704              && (i < chip->nr_cores); core_hwid++) {
1705         char core_name[32];
1706         PnvCore *pnv_core;
1707         uint64_t xscom_core_base;
1708 
1709         if (!(chip->cores_mask & (1ull << core_hwid))) {
1710             continue;
1711         }
1712 
1713         pnv_core = PNV_CORE(object_new(typename));
1714 
1715         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1716         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1717                                   &error_abort);
1718         chip->cores[i] = pnv_core;
1719         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1720                                 "nr-threads", &error_fatal);
1721         object_property_set_int(OBJECT(pnv_core), core_hwid,
1722                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1723         object_property_set_int(OBJECT(pnv_core),
1724                                 pcc->core_pir(chip, core_hwid),
1725                                 "pir", &error_fatal);
1726         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1727                                 "hrmor", &error_fatal);
1728         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1729                                  &error_abort);
1730         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1731                                  &error_fatal);
1732 
1733         /* Each core has an XSCOM MMIO region */
1734         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1735 
1736         pnv_xscom_add_subregion(chip, xscom_core_base,
1737                                 &pnv_core->xscom_regs);
1738         i++;
1739     }
1740 }
1741 
1742 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1743 {
1744     PnvChip *chip = PNV_CHIP(dev);
1745     Error *error = NULL;
1746 
1747     /* Cores */
1748     pnv_chip_core_realize(chip, &error);
1749     if (error) {
1750         error_propagate(errp, error);
1751         return;
1752     }
1753 }
1754 
1755 static Property pnv_chip_properties[] = {
1756     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1757     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1758     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1759     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1760     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1761     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1762     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1763     DEFINE_PROP_END_OF_LIST(),
1764 };
1765 
1766 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1767 {
1768     DeviceClass *dc = DEVICE_CLASS(klass);
1769 
1770     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1771     dc->realize = pnv_chip_realize;
1772     device_class_set_props(dc, pnv_chip_properties);
1773     dc->desc = "PowerNV Chip";
1774 }
1775 
1776 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1777 {
1778     int i, j;
1779 
1780     for (i = 0; i < chip->nr_cores; i++) {
1781         PnvCore *pc = chip->cores[i];
1782         CPUCore *cc = CPU_CORE(pc);
1783 
1784         for (j = 0; j < cc->nr_threads; j++) {
1785             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1786                 return pc->threads[j];
1787             }
1788         }
1789     }
1790     return NULL;
1791 }
1792 
1793 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1794 {
1795     PnvMachineState *pnv = PNV_MACHINE(xi);
1796     int i, j;
1797 
1798     for (i = 0; i < pnv->num_chips; i++) {
1799         PnvChip *chip = pnv->chips[i];
1800         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1801 
1802         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1803             return &chip8->psi.ics;
1804         }
1805         for (j = 0; j < chip->num_phbs; j++) {
1806             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1807                 return &chip8->phbs[j].lsis;
1808             }
1809             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1810                 return ICS(&chip8->phbs[j].msis);
1811             }
1812         }
1813     }
1814     return NULL;
1815 }
1816 
1817 static void pnv_ics_resend(XICSFabric *xi)
1818 {
1819     PnvMachineState *pnv = PNV_MACHINE(xi);
1820     int i, j;
1821 
1822     for (i = 0; i < pnv->num_chips; i++) {
1823         PnvChip *chip = pnv->chips[i];
1824         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1825 
1826         ics_resend(&chip8->psi.ics);
1827         for (j = 0; j < chip->num_phbs; j++) {
1828             ics_resend(&chip8->phbs[j].lsis);
1829             ics_resend(ICS(&chip8->phbs[j].msis));
1830         }
1831     }
1832 }
1833 
1834 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1835 {
1836     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1837 
1838     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1839 }
1840 
1841 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1842                                Monitor *mon)
1843 {
1844     PnvMachineState *pnv = PNV_MACHINE(obj);
1845     int i;
1846     CPUState *cs;
1847 
1848     CPU_FOREACH(cs) {
1849         PowerPCCPU *cpu = POWERPC_CPU(cs);
1850 
1851         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1852         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1853                                                            mon);
1854     }
1855 
1856     for (i = 0; i < pnv->num_chips; i++) {
1857         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1858     }
1859 }
1860 
1861 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1862                          uint8_t nvt_blk, uint32_t nvt_idx,
1863                          bool cam_ignore, uint8_t priority,
1864                          uint32_t logic_serv,
1865                          XiveTCTXMatch *match)
1866 {
1867     PnvMachineState *pnv = PNV_MACHINE(xfb);
1868     int total_count = 0;
1869     int i;
1870 
1871     for (i = 0; i < pnv->num_chips; i++) {
1872         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1873         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1874         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1875         int count;
1876 
1877         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1878                                priority, logic_serv, match);
1879 
1880         if (count < 0) {
1881             return count;
1882         }
1883 
1884         total_count += count;
1885     }
1886 
1887     return total_count;
1888 }
1889 
1890 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1891 {
1892     MachineClass *mc = MACHINE_CLASS(oc);
1893     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1894     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1895     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1896 
1897     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1898     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1899 
1900     xic->icp_get = pnv_icp_get;
1901     xic->ics_get = pnv_ics_get;
1902     xic->ics_resend = pnv_ics_resend;
1903 
1904     pmc->compat = compat;
1905     pmc->compat_size = sizeof(compat);
1906 }
1907 
1908 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1909 {
1910     MachineClass *mc = MACHINE_CLASS(oc);
1911     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1912     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1913     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1914 
1915     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1916     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1917     xfc->match_nvt = pnv_match_nvt;
1918 
1919     mc->alias = "powernv";
1920 
1921     pmc->compat = compat;
1922     pmc->compat_size = sizeof(compat);
1923     pmc->dt_power_mgt = pnv_dt_power_mgt;
1924 }
1925 
1926 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1927 {
1928     MachineClass *mc = MACHINE_CLASS(oc);
1929     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1930     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1931 
1932     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1933     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1934 
1935     pmc->compat = compat;
1936     pmc->compat_size = sizeof(compat);
1937     pmc->dt_power_mgt = pnv_dt_power_mgt;
1938 }
1939 
1940 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1941 {
1942     PnvMachineState *pnv = PNV_MACHINE(obj);
1943 
1944     return !!pnv->fw_load_addr;
1945 }
1946 
1947 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1948 {
1949     PnvMachineState *pnv = PNV_MACHINE(obj);
1950 
1951     if (value) {
1952         pnv->fw_load_addr = 0x8000000;
1953     }
1954 }
1955 
1956 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1957 {
1958     MachineClass *mc = MACHINE_CLASS(oc);
1959     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1960 
1961     mc->desc = "IBM PowerNV (Non-Virtualized)";
1962     mc->init = pnv_init;
1963     mc->reset = pnv_reset;
1964     mc->max_cpus = MAX_CPUS;
1965     /* Pnv provides a AHCI device for storage */
1966     mc->block_default_type = IF_IDE;
1967     mc->no_parallel = 1;
1968     mc->default_boot_order = NULL;
1969     /*
1970      * RAM defaults to less than 2048 for 32-bit hosts, and large
1971      * enough to fit the maximum initrd size at it's load address
1972      */
1973     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1974     mc->default_ram_id = "pnv.ram";
1975     ispc->print_info = pnv_pic_print_info;
1976 
1977     object_class_property_add_bool(oc, "hb-mode",
1978                                    pnv_machine_get_hb, pnv_machine_set_hb,
1979                                    &error_abort);
1980     object_class_property_set_description(oc, "hb-mode",
1981                               "Use a hostboot like boot loader",
1982                               NULL);
1983 }
1984 
1985 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1986     {                                             \
1987         .name          = type,                    \
1988         .class_init    = class_initfn,            \
1989         .parent        = TYPE_PNV8_CHIP,          \
1990     }
1991 
1992 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1993     {                                             \
1994         .name          = type,                    \
1995         .class_init    = class_initfn,            \
1996         .parent        = TYPE_PNV9_CHIP,          \
1997     }
1998 
1999 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2000     {                                              \
2001         .name          = type,                     \
2002         .class_init    = class_initfn,             \
2003         .parent        = TYPE_PNV10_CHIP,          \
2004     }
2005 
2006 static const TypeInfo types[] = {
2007     {
2008         .name          = MACHINE_TYPE_NAME("powernv10"),
2009         .parent        = TYPE_PNV_MACHINE,
2010         .class_init    = pnv_machine_power10_class_init,
2011     },
2012     {
2013         .name          = MACHINE_TYPE_NAME("powernv9"),
2014         .parent        = TYPE_PNV_MACHINE,
2015         .class_init    = pnv_machine_power9_class_init,
2016         .interfaces = (InterfaceInfo[]) {
2017             { TYPE_XIVE_FABRIC },
2018             { },
2019         },
2020     },
2021     {
2022         .name          = MACHINE_TYPE_NAME("powernv8"),
2023         .parent        = TYPE_PNV_MACHINE,
2024         .class_init    = pnv_machine_power8_class_init,
2025         .interfaces = (InterfaceInfo[]) {
2026             { TYPE_XICS_FABRIC },
2027             { },
2028         },
2029     },
2030     {
2031         .name          = TYPE_PNV_MACHINE,
2032         .parent        = TYPE_MACHINE,
2033         .abstract       = true,
2034         .instance_size = sizeof(PnvMachineState),
2035         .class_init    = pnv_machine_class_init,
2036         .class_size    = sizeof(PnvMachineClass),
2037         .interfaces = (InterfaceInfo[]) {
2038             { TYPE_INTERRUPT_STATS_PROVIDER },
2039             { },
2040         },
2041     },
2042     {
2043         .name          = TYPE_PNV_CHIP,
2044         .parent        = TYPE_SYS_BUS_DEVICE,
2045         .class_init    = pnv_chip_class_init,
2046         .instance_size = sizeof(PnvChip),
2047         .class_size    = sizeof(PnvChipClass),
2048         .abstract      = true,
2049     },
2050 
2051     /*
2052      * P10 chip and variants
2053      */
2054     {
2055         .name          = TYPE_PNV10_CHIP,
2056         .parent        = TYPE_PNV_CHIP,
2057         .instance_init = pnv_chip_power10_instance_init,
2058         .instance_size = sizeof(Pnv10Chip),
2059     },
2060     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2061 
2062     /*
2063      * P9 chip and variants
2064      */
2065     {
2066         .name          = TYPE_PNV9_CHIP,
2067         .parent        = TYPE_PNV_CHIP,
2068         .instance_init = pnv_chip_power9_instance_init,
2069         .instance_size = sizeof(Pnv9Chip),
2070     },
2071     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2072 
2073     /*
2074      * P8 chip and variants
2075      */
2076     {
2077         .name          = TYPE_PNV8_CHIP,
2078         .parent        = TYPE_PNV_CHIP,
2079         .instance_init = pnv_chip_power8_instance_init,
2080         .instance_size = sizeof(Pnv8Chip),
2081     },
2082     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2083     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2084     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2085                           pnv_chip_power8nvl_class_init),
2086 };
2087 
2088 DEFINE_TYPES(types)
2089