xref: /openbmc/qemu/hw/ppc/pnv.c (revision 91aef87a)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44 
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49 
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54 
55 #include <libfdt.h>
56 
57 #define FDT_MAX_SIZE            (1 * MiB)
58 
59 #define FW_FILE_NAME            "skiboot.lid"
60 #define FW_LOAD_ADDR            0x0
61 #define FW_MAX_SIZE             (4 * MiB)
62 
63 #define KERNEL_LOAD_ADDR        0x20000000
64 #define KERNEL_MAX_SIZE         (256 * MiB)
65 #define INITRD_LOAD_ADDR        0x60000000
66 #define INITRD_MAX_SIZE         (256 * MiB)
67 
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73     const char *core_type = object_class_get_name(object_class_by_name(s));
74     g_free(s);
75     return core_type;
76 }
77 
78 /*
79  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80  *     4 * 4 sockets * 12 cores * 8 threads = 1536
81  * Let's make it 2^11
82  */
83 #define MAX_CPUS                2048
84 
85 /*
86  * Memory nodes are created by hostboot, one for each range of memory
87  * that has a different "affinity". In practice, it means one range
88  * per chip.
89  */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92     char *mem_name;
93     uint64_t mem_reg_property[2];
94     int off;
95 
96     mem_reg_property[0] = cpu_to_be64(start);
97     mem_reg_property[1] = cpu_to_be64(size);
98 
99     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100     off = fdt_add_subnode(fdt, 0, mem_name);
101     g_free(mem_name);
102 
103     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105                        sizeof(mem_reg_property))));
106     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108 
109 static int get_cpus_node(void *fdt)
110 {
111     int cpus_offset = fdt_path_offset(fdt, "/cpus");
112 
113     if (cpus_offset < 0) {
114         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115         if (cpus_offset) {
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118         }
119     }
120     _FDT(cpus_offset);
121     return cpus_offset;
122 }
123 
124 /*
125  * The PowerNV cores (and threads) need to use real HW ids and not an
126  * incremental index like it has been done on other platforms. This HW
127  * id is stored in the CPU PIR, it is used to create cpu nodes in the
128  * device tree, used in XSCOM to address cores and in interrupt
129  * servers.
130  */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133     PowerPCCPU *cpu = pc->threads[0];
134     CPUState *cs = CPU(cpu);
135     DeviceClass *dc = DEVICE_GET_CLASS(cs);
136     int smt_threads = CPU_CORE(pc)->nr_threads;
137     CPUPPCState *env = &cpu->env;
138     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139     uint32_t servers_prop[smt_threads];
140     int i;
141     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                        0xffffffff, 0xffffffff};
143     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144     uint32_t cpufreq = 1000000000;
145     uint32_t page_sizes_prop[64];
146     size_t page_sizes_prop_size;
147     const uint8_t pa_features[] = { 24, 0,
148                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152     int offset;
153     char *nodename;
154     int cpus_offset = get_cpus_node(fdt);
155 
156     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158     _FDT(offset);
159     g_free(nodename);
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173                             env->icache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175                             env->icache_line_size)));
176 
177     if (pcc->l1_dcache_size) {
178         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179                                pcc->l1_dcache_size)));
180     } else {
181         warn_report("Unknown L1 dcache size for cpu");
182     }
183     if (pcc->l1_icache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185                                pcc->l1_icache_size)));
186     } else {
187         warn_report("Unknown L1 icache size for cpu");
188     }
189 
190     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193                            cpu->hash64_opts->slb_size)));
194     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196 
197     if (env->spr_cb[SPR_PURR].oea_read) {
198         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199     }
200 
201     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203                            segs, sizeof(segs))));
204     }
205 
206     /*
207      * Advertise VMX/VSX (vector extensions) if available
208      *   0 / no property == no vector extensions
209      *   1               == VMX / Altivec available
210      *   2               == VSX available
211      */
212     if (env->insns_flags & PPC_ALTIVEC) {
213         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214 
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216     }
217 
218     /*
219      * Advertise DFP (Decimal Floating Point) if available
220      *   0 / no property == no DFP
221      *   1               == DFP available
222      */
223     if (env->insns_flags2 & PPC2_DFP) {
224         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225     }
226 
227     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228                                                       sizeof(page_sizes_prop));
229     if (page_sizes_prop_size) {
230         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231                            page_sizes_prop, page_sizes_prop_size)));
232     }
233 
234     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235                        pa_features, sizeof(pa_features))));
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pc->pir + i);
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(servers_prop))));
243 }
244 
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246                        uint32_t nr_threads)
247 {
248     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249     char *name;
250     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251     uint32_t irange[2], i, rsize;
252     uint64_t *reg;
253     int offset;
254 
255     irange[0] = cpu_to_be32(pir);
256     irange[1] = cpu_to_be32(nr_threads);
257 
258     rsize = sizeof(uint64_t) * 2 * nr_threads;
259     reg = g_malloc(rsize);
260     for (i = 0; i < nr_threads; i++) {
261         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262         reg[i * 2 + 1] = cpu_to_be64(0x1000);
263     }
264 
265     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266     offset = fdt_add_subnode(fdt, 0, name);
267     _FDT(offset);
268     g_free(name);
269 
270     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272     _FDT((fdt_setprop_string(fdt, offset, "device_type",
273                               "PowerPC-External-Interrupt-Presentation")));
274     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276                        irange, sizeof(irange))));
277     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279     g_free(reg);
280 }
281 
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0,
288                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
289                  cpu_to_be64(PNV_XSCOM_SIZE),
290                  compat, sizeof(compat));
291 
292     for (i = 0; i < chip->nr_cores; i++) {
293         PnvCore *pnv_core = chip->cores[i];
294 
295         pnv_dt_core(chip, pnv_core, fdt);
296 
297         /* Interrupt Control Presenters (ICP). One per core. */
298         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299     }
300 
301     if (chip->ram_size) {
302         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303     }
304 }
305 
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309     int i;
310 
311     pnv_dt_xscom(chip, fdt, 0,
312                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313                  cpu_to_be64(PNV9_XSCOM_SIZE),
314                  compat, sizeof(compat));
315 
316     for (i = 0; i < chip->nr_cores; i++) {
317         PnvCore *pnv_core = chip->cores[i];
318 
319         pnv_dt_core(chip, pnv_core, fdt);
320     }
321 
322     if (chip->ram_size) {
323         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324     }
325 
326     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328 
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332     int i;
333 
334     pnv_dt_xscom(chip, fdt, 0,
335                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336                  cpu_to_be64(PNV10_XSCOM_SIZE),
337                  compat, sizeof(compat));
338 
339     for (i = 0; i < chip->nr_cores; i++) {
340         PnvCore *pnv_core = chip->cores[i];
341 
342         pnv_dt_core(chip, pnv_core, fdt);
343     }
344 
345     if (chip->ram_size) {
346         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347     }
348 
349     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351 
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354     uint32_t io_base = d->ioport_id;
355     uint32_t io_regs[] = {
356         cpu_to_be32(1),
357         cpu_to_be32(io_base),
358         cpu_to_be32(2)
359     };
360     char *name;
361     int node;
362 
363     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364     node = fdt_add_subnode(fdt, lpc_off, name);
365     _FDT(node);
366     g_free(name);
367 
368     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371 
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374     const char compatible[] = "ns16550\0pnpPNP,501";
375     uint32_t io_base = d->ioport_id;
376     uint32_t io_regs[] = {
377         cpu_to_be32(1),
378         cpu_to_be32(io_base),
379         cpu_to_be32(8)
380     };
381     char *name;
382     int node;
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 
399     /* This is needed by Linux */
400     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402 
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405     const char compatible[] = "bt\0ipmi-bt";
406     uint32_t io_base;
407     uint32_t io_regs[] = {
408         cpu_to_be32(1),
409         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410         cpu_to_be32(3)
411     };
412     uint32_t irq;
413     char *name;
414     int node;
415 
416     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417     io_regs[1] = cpu_to_be32(io_base);
418 
419     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420 
421     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422     node = fdt_add_subnode(fdt, lpc_off, name);
423     _FDT(node);
424     g_free(name);
425 
426     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428                       sizeof(compatible))));
429 
430     /* Mark it as reserved to avoid Linux trying to claim it */
431     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434                            fdt_get_phandle(fdt, lpc_off))));
435 }
436 
437 typedef struct ForeachPopulateArgs {
438     void *fdt;
439     int offset;
440 } ForeachPopulateArgs;
441 
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444     ForeachPopulateArgs *args = opaque;
445     ISADevice *d = ISA_DEVICE(dev);
446 
447     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448         pnv_dt_rtc(d, args->fdt, args->offset);
449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450         pnv_dt_serial(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453     } else {
454         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455                      d->ioport_id);
456     }
457 
458     return 0;
459 }
460 
461 /*
462  * The default LPC bus of a multichip system is on chip 0. It's
463  * recognized by the firmware (skiboot) using a "primary" property.
464  */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468     ForeachPopulateArgs args = {
469         .fdt = fdt,
470         .offset = isa_offset,
471     };
472     uint32_t phandle;
473 
474     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475 
476     phandle = qemu_fdt_alloc_phandle(fdt);
477     assert(phandle > 0);
478     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479 
480     /*
481      * ISA devices are not necessarily parented to the ISA bus so we
482      * can not use object_child_foreach()
483      */
484     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485                        &args);
486 }
487 
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490     int off;
491 
492     off = fdt_add_subnode(fdt, 0, "ibm,opal");
493     off = fdt_add_subnode(fdt, off, "power-mgt");
494 
495     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497 
498 static void *pnv_dt_create(MachineState *machine)
499 {
500     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501     PnvMachineState *pnv = PNV_MACHINE(machine);
502     void *fdt;
503     char *buf;
504     int off;
505     int i;
506 
507     fdt = g_malloc0(FDT_MAX_SIZE);
508     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509 
510     /* /qemu node */
511     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512 
513     /* Root node */
514     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516     _FDT((fdt_setprop_string(fdt, 0, "model",
517                              "IBM PowerNV (emulated by qemu)")));
518     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519 
520     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
521     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522     if (qemu_uuid_set) {
523         _FDT((fdt_property_string(fdt, "system-id", buf)));
524     }
525     g_free(buf);
526 
527     off = fdt_add_subnode(fdt, 0, "chosen");
528     if (machine->kernel_cmdline) {
529         _FDT((fdt_setprop_string(fdt, off, "bootargs",
530                                  machine->kernel_cmdline)));
531     }
532 
533     if (pnv->initrd_size) {
534         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536 
537         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538                                &start_prop, sizeof(start_prop))));
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540                                &end_prop, sizeof(end_prop))));
541     }
542 
543     /* Populate device tree for each chip */
544     for (i = 0; i < pnv->num_chips; i++) {
545         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546     }
547 
548     /* Populate ISA devices on chip 0 */
549     pnv_dt_isa(pnv, fdt);
550 
551     if (pnv->bmc) {
552         pnv_dt_bmc_sensors(pnv->bmc, fdt);
553     }
554 
555     /* Create an extra node for power management on machines that support it */
556     if (pmc->dt_power_mgt) {
557         pmc->dt_power_mgt(pnv, fdt);
558     }
559 
560     return fdt;
561 }
562 
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566 
567     if (pnv->bmc) {
568         pnv_bmc_powerdown(pnv->bmc);
569     }
570 }
571 
572 static void pnv_reset(MachineState *machine)
573 {
574     void *fdt;
575 
576     qemu_devices_reset();
577 
578     fdt = pnv_dt_create(machine);
579 
580     /* Pack resulting tree */
581     _FDT((fdt_pack(fdt)));
582 
583     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
584     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
585 }
586 
587 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
588 {
589     Pnv8Chip *chip8 = PNV8_CHIP(chip);
590     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
591 }
592 
593 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
594 {
595     Pnv8Chip *chip8 = PNV8_CHIP(chip);
596     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
597 }
598 
599 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
600 {
601     Pnv9Chip *chip9 = PNV9_CHIP(chip);
602     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
603 }
604 
605 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
606 {
607     Pnv10Chip *chip10 = PNV10_CHIP(chip);
608     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
609 }
610 
611 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
612 {
613     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
614 }
615 
616 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
617 {
618     Pnv8Chip *chip8 = PNV8_CHIP(chip);
619     int i;
620 
621     ics_pic_print_info(&chip8->psi.ics, mon);
622     for (i = 0; i < chip->num_phbs; i++) {
623         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
624         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
625     }
626 }
627 
628 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
629 {
630     Pnv9Chip *chip9 = PNV9_CHIP(chip);
631     int i, j;
632 
633     pnv_xive_pic_print_info(&chip9->xive, mon);
634     pnv_psi_pic_print_info(&chip9->psi, mon);
635 
636     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
637         PnvPhb4PecState *pec = &chip9->pecs[i];
638         for (j = 0; j < pec->num_stacks; j++) {
639             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
640         }
641     }
642 }
643 
644 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
645                                                 uint32_t core_id)
646 {
647     return PNV_XSCOM_EX_BASE(core_id);
648 }
649 
650 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
651                                                 uint32_t core_id)
652 {
653     return PNV9_XSCOM_EC_BASE(core_id);
654 }
655 
656 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
657                                                  uint32_t core_id)
658 {
659     return PNV10_XSCOM_EC_BASE(core_id);
660 }
661 
662 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
663 {
664     PowerPCCPUClass *ppc_default =
665         POWERPC_CPU_CLASS(object_class_by_name(default_type));
666     PowerPCCPUClass *ppc =
667         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
668 
669     return ppc_default->pvr_match(ppc_default, ppc->pvr);
670 }
671 
672 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
673 {
674     Object *obj;
675 
676     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
677     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
678     object_property_set_int(obj, irq, "irq", &error_fatal);
679     object_property_set_bool(obj, true, "realized", &error_fatal);
680 }
681 
682 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
683 {
684     Pnv10Chip *chip10 = PNV10_CHIP(chip);
685 
686     pnv_psi_pic_print_info(&chip10->psi, mon);
687 }
688 
689 static void pnv_init(MachineState *machine)
690 {
691     PnvMachineState *pnv = PNV_MACHINE(machine);
692     MachineClass *mc = MACHINE_GET_CLASS(machine);
693     MemoryRegion *ram;
694     char *fw_filename;
695     long fw_size;
696     int i;
697     char *chip_typename;
698     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
699     DeviceState *dev;
700 
701     /* allocate RAM */
702     if (machine->ram_size < (1 * GiB)) {
703         warn_report("skiboot may not work with < 1GB of RAM");
704     }
705 
706     ram = g_new(MemoryRegion, 1);
707     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
708                                          machine->ram_size);
709     memory_region_add_subregion(get_system_memory(), 0, ram);
710 
711     /*
712      * Create our simple PNOR device
713      */
714     dev = qdev_create(NULL, TYPE_PNV_PNOR);
715     if (pnor) {
716         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
717                             &error_abort);
718     }
719     qdev_init_nofail(dev);
720     pnv->pnor = PNV_PNOR(dev);
721 
722     /* load skiboot firmware  */
723     if (bios_name == NULL) {
724         bios_name = FW_FILE_NAME;
725     }
726 
727     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
728     if (!fw_filename) {
729         error_report("Could not find OPAL firmware '%s'", bios_name);
730         exit(1);
731     }
732 
733     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
734     if (fw_size < 0) {
735         error_report("Could not load OPAL firmware '%s'", fw_filename);
736         exit(1);
737     }
738     g_free(fw_filename);
739 
740     /* load kernel */
741     if (machine->kernel_filename) {
742         long kernel_size;
743 
744         kernel_size = load_image_targphys(machine->kernel_filename,
745                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
746         if (kernel_size < 0) {
747             error_report("Could not load kernel '%s'",
748                          machine->kernel_filename);
749             exit(1);
750         }
751     }
752 
753     /* load initrd */
754     if (machine->initrd_filename) {
755         pnv->initrd_base = INITRD_LOAD_ADDR;
756         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
757                                   pnv->initrd_base, INITRD_MAX_SIZE);
758         if (pnv->initrd_size < 0) {
759             error_report("Could not load initial ram disk '%s'",
760                          machine->initrd_filename);
761             exit(1);
762         }
763     }
764 
765     /* MSIs are supported on this platform */
766     msi_nonbroken = true;
767 
768     /*
769      * Check compatibility of the specified CPU with the machine
770      * default.
771      */
772     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
773         error_report("invalid CPU model '%s' for %s machine",
774                      machine->cpu_type, mc->name);
775         exit(1);
776     }
777 
778     /* Create the processor chips */
779     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
780     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
781                                     i, machine->cpu_type);
782     if (!object_class_by_name(chip_typename)) {
783         error_report("invalid chip model '%.*s' for %s machine",
784                      i, machine->cpu_type, mc->name);
785         exit(1);
786     }
787 
788     pnv->num_chips =
789         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
790     /*
791      * TODO: should we decide on how many chips we can create based
792      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
793      */
794     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
795         error_report("invalid number of chips: '%d'", pnv->num_chips);
796         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
797         exit(1);
798     }
799 
800     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
801     for (i = 0; i < pnv->num_chips; i++) {
802         char chip_name[32];
803         Object *chip = object_new(chip_typename);
804 
805         pnv->chips[i] = PNV_CHIP(chip);
806 
807         /*
808          * TODO: put all the memory in one node on chip 0 until we find a
809          * way to specify different ranges for each chip
810          */
811         if (i == 0) {
812             object_property_set_int(chip, machine->ram_size, "ram-size",
813                                     &error_fatal);
814         }
815 
816         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
817         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
818         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
819                                 &error_fatal);
820         object_property_set_int(chip, machine->smp.cores,
821                                 "nr-cores", &error_fatal);
822         object_property_set_int(chip, machine->smp.threads,
823                                 "nr-threads", &error_fatal);
824         /*
825          * The POWER8 machine use the XICS interrupt interface.
826          * Propagate the XICS fabric to the chip and its controllers.
827          */
828         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
829             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
830         }
831         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
832             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
833                                      &error_abort);
834         }
835         object_property_set_bool(chip, true, "realized", &error_fatal);
836     }
837     g_free(chip_typename);
838 
839     /* Create the machine BMC simulator */
840     pnv->bmc = pnv_bmc_create(pnv->pnor);
841 
842     /* Instantiate ISA bus on chip 0 */
843     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
844 
845     /* Create serial port */
846     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
847 
848     /* Create an RTC ISA device too */
849     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
850 
851     /* Create the IPMI BT device for communication with the BMC */
852     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
853 
854     /*
855      * OpenPOWER systems use a IPMI SEL Event message to notify the
856      * host to powerdown
857      */
858     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
859     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
860 }
861 
862 /*
863  *    0:21  Reserved - Read as zeros
864  *   22:24  Chip ID
865  *   25:28  Core number
866  *   29:31  Thread ID
867  */
868 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
869 {
870     return (chip->chip_id << 7) | (core_id << 3);
871 }
872 
873 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
874                                         Error **errp)
875 {
876     Pnv8Chip *chip8 = PNV8_CHIP(chip);
877     Error *local_err = NULL;
878     Object *obj;
879     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
880 
881     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
882     if (local_err) {
883         error_propagate(errp, local_err);
884         return;
885     }
886 
887     pnv_cpu->intc = obj;
888 }
889 
890 
891 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
892 {
893     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
894 
895     icp_reset(ICP(pnv_cpu->intc));
896 }
897 
898 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
899 {
900     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
901 
902     icp_destroy(ICP(pnv_cpu->intc));
903     pnv_cpu->intc = NULL;
904 }
905 
906 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
907                                             Monitor *mon)
908 {
909     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
910 }
911 
912 /*
913  *    0:48  Reserved - Read as zeroes
914  *   49:52  Node ID
915  *   53:55  Chip ID
916  *   56     Reserved - Read as zero
917  *   57:61  Core number
918  *   62:63  Thread ID
919  *
920  * We only care about the lower bits. uint32_t is fine for the moment.
921  */
922 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
923 {
924     return (chip->chip_id << 8) | (core_id << 2);
925 }
926 
927 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
928 {
929     return (chip->chip_id << 8) | (core_id << 2);
930 }
931 
932 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
933                                         Error **errp)
934 {
935     Pnv9Chip *chip9 = PNV9_CHIP(chip);
936     Error *local_err = NULL;
937     Object *obj;
938     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
939 
940     /*
941      * The core creates its interrupt presenter but the XIVE interrupt
942      * controller object is initialized afterwards. Hopefully, it's
943      * only used at runtime.
944      */
945     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
946                            &local_err);
947     if (local_err) {
948         error_propagate(errp, local_err);
949         return;
950     }
951 
952     pnv_cpu->intc = obj;
953 }
954 
955 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
956 {
957     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
958 
959     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
960 }
961 
962 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
963 {
964     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
965 
966     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
967     pnv_cpu->intc = NULL;
968 }
969 
970 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
971                                             Monitor *mon)
972 {
973     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
974 }
975 
976 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
977                                         Error **errp)
978 {
979     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
980 
981     /* Will be defined when the interrupt controller is */
982     pnv_cpu->intc = NULL;
983 }
984 
985 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
986 {
987     ;
988 }
989 
990 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
991 {
992     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
993 
994     pnv_cpu->intc = NULL;
995 }
996 
997 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
998                                              Monitor *mon)
999 {
1000 }
1001 
1002 /*
1003  * Allowed core identifiers on a POWER8 Processor Chip :
1004  *
1005  * <EX0 reserved>
1006  *  EX1  - Venice only
1007  *  EX2  - Venice only
1008  *  EX3  - Venice only
1009  *  EX4
1010  *  EX5
1011  *  EX6
1012  * <EX7,8 reserved> <reserved>
1013  *  EX9  - Venice only
1014  *  EX10 - Venice only
1015  *  EX11 - Venice only
1016  *  EX12
1017  *  EX13
1018  *  EX14
1019  * <EX15 reserved>
1020  */
1021 #define POWER8E_CORE_MASK  (0x7070ull)
1022 #define POWER8_CORE_MASK   (0x7e7eull)
1023 
1024 /*
1025  * POWER9 has 24 cores, ids starting at 0x0
1026  */
1027 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1028 
1029 
1030 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1031 
1032 static void pnv_chip_power8_instance_init(Object *obj)
1033 {
1034     PnvChip *chip = PNV_CHIP(obj);
1035     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1036     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1037     int i;
1038 
1039     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1040                              (Object **)&chip8->xics,
1041                              object_property_allow_set_link,
1042                              OBJ_PROP_LINK_STRONG,
1043                              &error_abort);
1044 
1045     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1046                             TYPE_PNV8_PSI, &error_abort, NULL);
1047 
1048     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1049                             TYPE_PNV8_LPC, &error_abort, NULL);
1050 
1051     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1052                             TYPE_PNV8_OCC, &error_abort, NULL);
1053 
1054     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1055                             TYPE_PNV8_HOMER, &error_abort, NULL);
1056 
1057     for (i = 0; i < pcc->num_phbs; i++) {
1058         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1059                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1060                                 &error_abort, NULL);
1061     }
1062 
1063     /*
1064      * Number of PHBs is the chip default
1065      */
1066     chip->num_phbs = pcc->num_phbs;
1067 }
1068 
1069 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1070  {
1071     PnvChip *chip = PNV_CHIP(chip8);
1072     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1073     int i, j;
1074     char *name;
1075 
1076     name = g_strdup_printf("icp-%x", chip->chip_id);
1077     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1078     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1079     g_free(name);
1080 
1081     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1082 
1083     /* Map the ICP registers for each thread */
1084     for (i = 0; i < chip->nr_cores; i++) {
1085         PnvCore *pnv_core = chip->cores[i];
1086         int core_hwid = CPU_CORE(pnv_core)->core_id;
1087 
1088         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1089             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1090             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1091 
1092             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1093                                         &icp->mmio);
1094         }
1095     }
1096 }
1097 
1098 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1099 {
1100     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1101     PnvChip *chip = PNV_CHIP(dev);
1102     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1103     Pnv8Psi *psi8 = &chip8->psi;
1104     Error *local_err = NULL;
1105     int i;
1106 
1107     assert(chip8->xics);
1108 
1109     /* XSCOM bridge is first */
1110     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1111     if (local_err) {
1112         error_propagate(errp, local_err);
1113         return;
1114     }
1115     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1116 
1117     pcc->parent_realize(dev, &local_err);
1118     if (local_err) {
1119         error_propagate(errp, local_err);
1120         return;
1121     }
1122 
1123     /* Processor Service Interface (PSI) Host Bridge */
1124     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1125                             "bar", &error_fatal);
1126     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1127                              ICS_PROP_XICS, &error_abort);
1128     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1129     if (local_err) {
1130         error_propagate(errp, local_err);
1131         return;
1132     }
1133     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1134                             &PNV_PSI(psi8)->xscom_regs);
1135 
1136     /* Create LPC controller */
1137     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1138                              &error_abort);
1139     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1140                              &error_fatal);
1141     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1142 
1143     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1144                                             (uint64_t) PNV_XSCOM_BASE(chip),
1145                                             PNV_XSCOM_LPC_BASE);
1146 
1147     /*
1148      * Interrupt Management Area. This is the memory region holding
1149      * all the Interrupt Control Presenter (ICP) registers
1150      */
1151     pnv_chip_icp_realize(chip8, &local_err);
1152     if (local_err) {
1153         error_propagate(errp, local_err);
1154         return;
1155     }
1156 
1157     /* Create the simplified OCC model */
1158     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1159                              &error_abort);
1160     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1161     if (local_err) {
1162         error_propagate(errp, local_err);
1163         return;
1164     }
1165     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1166 
1167     /* OCC SRAM model */
1168     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1169                                 &chip8->occ.sram_regs);
1170 
1171     /* HOMER */
1172     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1173                              &error_abort);
1174     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1175                              &local_err);
1176     if (local_err) {
1177         error_propagate(errp, local_err);
1178         return;
1179     }
1180     /* Homer Xscom region */
1181     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1182 
1183     /* Homer mmio region */
1184     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1185                                 &chip8->homer.regs);
1186 
1187     /* PHB3 controllers */
1188     for (i = 0; i < chip->num_phbs; i++) {
1189         PnvPHB3 *phb = &chip8->phbs[i];
1190         PnvPBCQState *pbcq = &phb->pbcq;
1191 
1192         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1193         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1194                                 &error_fatal);
1195         object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1196         if (local_err) {
1197             error_propagate(errp, local_err);
1198             return;
1199         }
1200         qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1201 
1202         /* Populate the XSCOM address space. */
1203         pnv_xscom_add_subregion(chip,
1204                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1205                                 &pbcq->xscom_nest_regs);
1206         pnv_xscom_add_subregion(chip,
1207                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1208                                 &pbcq->xscom_pci_regs);
1209         pnv_xscom_add_subregion(chip,
1210                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1211                                 &pbcq->xscom_spci_regs);
1212     }
1213 }
1214 
1215 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1216 {
1217     addr &= (PNV_XSCOM_SIZE - 1);
1218     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1219 }
1220 
1221 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1222 {
1223     DeviceClass *dc = DEVICE_CLASS(klass);
1224     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1225 
1226     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1227     k->cores_mask = POWER8E_CORE_MASK;
1228     k->num_phbs = 3;
1229     k->core_pir = pnv_chip_core_pir_p8;
1230     k->intc_create = pnv_chip_power8_intc_create;
1231     k->intc_reset = pnv_chip_power8_intc_reset;
1232     k->intc_destroy = pnv_chip_power8_intc_destroy;
1233     k->intc_print_info = pnv_chip_power8_intc_print_info;
1234     k->isa_create = pnv_chip_power8_isa_create;
1235     k->dt_populate = pnv_chip_power8_dt_populate;
1236     k->pic_print_info = pnv_chip_power8_pic_print_info;
1237     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1238     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1239     dc->desc = "PowerNV Chip POWER8E";
1240 
1241     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1242                                     &k->parent_realize);
1243 }
1244 
1245 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1246 {
1247     DeviceClass *dc = DEVICE_CLASS(klass);
1248     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1249 
1250     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1251     k->cores_mask = POWER8_CORE_MASK;
1252     k->num_phbs = 3;
1253     k->core_pir = pnv_chip_core_pir_p8;
1254     k->intc_create = pnv_chip_power8_intc_create;
1255     k->intc_reset = pnv_chip_power8_intc_reset;
1256     k->intc_destroy = pnv_chip_power8_intc_destroy;
1257     k->intc_print_info = pnv_chip_power8_intc_print_info;
1258     k->isa_create = pnv_chip_power8_isa_create;
1259     k->dt_populate = pnv_chip_power8_dt_populate;
1260     k->pic_print_info = pnv_chip_power8_pic_print_info;
1261     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1262     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1263     dc->desc = "PowerNV Chip POWER8";
1264 
1265     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1266                                     &k->parent_realize);
1267 }
1268 
1269 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1270 {
1271     DeviceClass *dc = DEVICE_CLASS(klass);
1272     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1273 
1274     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1275     k->cores_mask = POWER8_CORE_MASK;
1276     k->num_phbs = 3;
1277     k->core_pir = pnv_chip_core_pir_p8;
1278     k->intc_create = pnv_chip_power8_intc_create;
1279     k->intc_reset = pnv_chip_power8_intc_reset;
1280     k->intc_destroy = pnv_chip_power8_intc_destroy;
1281     k->intc_print_info = pnv_chip_power8_intc_print_info;
1282     k->isa_create = pnv_chip_power8nvl_isa_create;
1283     k->dt_populate = pnv_chip_power8_dt_populate;
1284     k->pic_print_info = pnv_chip_power8_pic_print_info;
1285     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1286     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1287     dc->desc = "PowerNV Chip POWER8NVL";
1288 
1289     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1290                                     &k->parent_realize);
1291 }
1292 
1293 static void pnv_chip_power9_instance_init(Object *obj)
1294 {
1295     PnvChip *chip = PNV_CHIP(obj);
1296     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1297     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1298     int i;
1299 
1300     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1301                             TYPE_PNV_XIVE, &error_abort, NULL);
1302     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1303                               "xive-fabric", &error_abort);
1304 
1305     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1306                             TYPE_PNV9_PSI, &error_abort, NULL);
1307 
1308     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1309                             TYPE_PNV9_LPC, &error_abort, NULL);
1310 
1311     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1312                             TYPE_PNV9_OCC, &error_abort, NULL);
1313 
1314     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1315                             TYPE_PNV9_HOMER, &error_abort, NULL);
1316 
1317     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1318         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1319                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1320                                 &error_abort, NULL);
1321     }
1322 
1323     /*
1324      * Number of PHBs is the chip default
1325      */
1326     chip->num_phbs = pcc->num_phbs;
1327 }
1328 
1329 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1330 {
1331     PnvChip *chip = PNV_CHIP(chip9);
1332     int i;
1333 
1334     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1335     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1336 
1337     for (i = 0; i < chip9->nr_quads; i++) {
1338         char eq_name[32];
1339         PnvQuad *eq = &chip9->quads[i];
1340         PnvCore *pnv_core = chip->cores[i * 4];
1341         int core_id = CPU_CORE(pnv_core)->core_id;
1342 
1343         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1344         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1345                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1346 
1347         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1348         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1349 
1350         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1351                                 &eq->xscom_regs);
1352     }
1353 }
1354 
1355 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1356 {
1357     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1358     Error *local_err = NULL;
1359     int i, j;
1360     int phb_id = 0;
1361 
1362     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1363         PnvPhb4PecState *pec = &chip9->pecs[i];
1364         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1365         uint32_t pec_nest_base;
1366         uint32_t pec_pci_base;
1367 
1368         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1369         /*
1370          * PEC0 -> 1 stack
1371          * PEC1 -> 2 stacks
1372          * PEC2 -> 3 stacks
1373          */
1374         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1375                                 &error_fatal);
1376         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1377                                  &error_fatal);
1378         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1379                                  "system-memory", &error_abort);
1380         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1381         if (local_err) {
1382             error_propagate(errp, local_err);
1383             return;
1384         }
1385 
1386         pec_nest_base = pecc->xscom_nest_base(pec);
1387         pec_pci_base = pecc->xscom_pci_base(pec);
1388 
1389         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1390         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1391 
1392         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1393              j++, phb_id++) {
1394             PnvPhb4PecStack *stack = &pec->stacks[j];
1395             Object *obj = OBJECT(&stack->phb);
1396 
1397             object_property_set_int(obj, phb_id, "index", &error_fatal);
1398             object_property_set_int(obj, chip->chip_id, "chip-id",
1399                                     &error_fatal);
1400             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1401                                     &error_fatal);
1402             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1403                                     &error_fatal);
1404             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1405             object_property_set_bool(obj, true, "realized", &local_err);
1406             if (local_err) {
1407                 error_propagate(errp, local_err);
1408                 return;
1409             }
1410             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1411 
1412             /* Populate the XSCOM address space. */
1413             pnv_xscom_add_subregion(chip,
1414                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1415                                    &stack->nest_regs_mr);
1416             pnv_xscom_add_subregion(chip,
1417                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1418                                     &stack->pci_regs_mr);
1419             pnv_xscom_add_subregion(chip,
1420                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1421                                     0x40 * stack->stack_no,
1422                                     &stack->phb_regs_mr);
1423         }
1424     }
1425 }
1426 
1427 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1428 {
1429     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1430     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1431     PnvChip *chip = PNV_CHIP(dev);
1432     Pnv9Psi *psi9 = &chip9->psi;
1433     Error *local_err = NULL;
1434 
1435     /* XSCOM bridge is first */
1436     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1437     if (local_err) {
1438         error_propagate(errp, local_err);
1439         return;
1440     }
1441     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1442 
1443     pcc->parent_realize(dev, &local_err);
1444     if (local_err) {
1445         error_propagate(errp, local_err);
1446         return;
1447     }
1448 
1449     pnv_chip_quad_realize(chip9, &local_err);
1450     if (local_err) {
1451         error_propagate(errp, local_err);
1452         return;
1453     }
1454 
1455     /* XIVE interrupt controller (POWER9) */
1456     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1457                             "ic-bar", &error_fatal);
1458     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1459                             "vc-bar", &error_fatal);
1460     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1461                             "pc-bar", &error_fatal);
1462     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1463                             "tm-bar", &error_fatal);
1464     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1465                              &error_abort);
1466     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1467                              &local_err);
1468     if (local_err) {
1469         error_propagate(errp, local_err);
1470         return;
1471     }
1472     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1473                             &chip9->xive.xscom_regs);
1474 
1475     /* Processor Service Interface (PSI) Host Bridge */
1476     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1477                             "bar", &error_fatal);
1478     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1479     if (local_err) {
1480         error_propagate(errp, local_err);
1481         return;
1482     }
1483     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1484                             &PNV_PSI(psi9)->xscom_regs);
1485 
1486     /* LPC */
1487     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1488                              &error_abort);
1489     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1490     if (local_err) {
1491         error_propagate(errp, local_err);
1492         return;
1493     }
1494     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1495                                 &chip9->lpc.xscom_regs);
1496 
1497     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1498                                             (uint64_t) PNV9_LPCM_BASE(chip));
1499 
1500     /* Create the simplified OCC model */
1501     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1502                              &error_abort);
1503     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1504     if (local_err) {
1505         error_propagate(errp, local_err);
1506         return;
1507     }
1508     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1509 
1510     /* OCC SRAM model */
1511     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1512                                 &chip9->occ.sram_regs);
1513 
1514     /* HOMER */
1515     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1516                              &error_abort);
1517     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1518                              &local_err);
1519     if (local_err) {
1520         error_propagate(errp, local_err);
1521         return;
1522     }
1523     /* Homer Xscom region */
1524     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1525 
1526     /* Homer mmio region */
1527     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1528                                 &chip9->homer.regs);
1529 
1530     /* PHBs */
1531     pnv_chip_power9_phb_realize(chip, &local_err);
1532     if (local_err) {
1533         error_propagate(errp, local_err);
1534         return;
1535     }
1536 }
1537 
1538 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1539 {
1540     addr &= (PNV9_XSCOM_SIZE - 1);
1541     return addr >> 3;
1542 }
1543 
1544 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1545 {
1546     DeviceClass *dc = DEVICE_CLASS(klass);
1547     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1548 
1549     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1550     k->cores_mask = POWER9_CORE_MASK;
1551     k->core_pir = pnv_chip_core_pir_p9;
1552     k->intc_create = pnv_chip_power9_intc_create;
1553     k->intc_reset = pnv_chip_power9_intc_reset;
1554     k->intc_destroy = pnv_chip_power9_intc_destroy;
1555     k->intc_print_info = pnv_chip_power9_intc_print_info;
1556     k->isa_create = pnv_chip_power9_isa_create;
1557     k->dt_populate = pnv_chip_power9_dt_populate;
1558     k->pic_print_info = pnv_chip_power9_pic_print_info;
1559     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1560     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1561     dc->desc = "PowerNV Chip POWER9";
1562     k->num_phbs = 6;
1563 
1564     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1565                                     &k->parent_realize);
1566 }
1567 
1568 static void pnv_chip_power10_instance_init(Object *obj)
1569 {
1570     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1571 
1572     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1573                             TYPE_PNV10_PSI, &error_abort, NULL);
1574     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1575                             TYPE_PNV10_LPC, &error_abort, NULL);
1576 }
1577 
1578 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1579 {
1580     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1581     PnvChip *chip = PNV_CHIP(dev);
1582     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1583     Error *local_err = NULL;
1584 
1585     /* XSCOM bridge is first */
1586     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1587     if (local_err) {
1588         error_propagate(errp, local_err);
1589         return;
1590     }
1591     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1592 
1593     pcc->parent_realize(dev, &local_err);
1594     if (local_err) {
1595         error_propagate(errp, local_err);
1596         return;
1597     }
1598 
1599     /* Processor Service Interface (PSI) Host Bridge */
1600     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1601                             "bar", &error_fatal);
1602     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1603                              &local_err);
1604     if (local_err) {
1605         error_propagate(errp, local_err);
1606         return;
1607     }
1608     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1609                             &PNV_PSI(&chip10->psi)->xscom_regs);
1610 
1611     /* LPC */
1612     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1613                              &error_abort);
1614     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1615                              &local_err);
1616     if (local_err) {
1617         error_propagate(errp, local_err);
1618         return;
1619     }
1620     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1621                                 &chip10->lpc.xscom_regs);
1622 
1623     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1624                                             (uint64_t) PNV10_LPCM_BASE(chip));
1625 }
1626 
1627 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1628 {
1629     addr &= (PNV10_XSCOM_SIZE - 1);
1630     return addr >> 3;
1631 }
1632 
1633 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1634 {
1635     DeviceClass *dc = DEVICE_CLASS(klass);
1636     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1637 
1638     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1639     k->cores_mask = POWER10_CORE_MASK;
1640     k->core_pir = pnv_chip_core_pir_p10;
1641     k->intc_create = pnv_chip_power10_intc_create;
1642     k->intc_reset = pnv_chip_power10_intc_reset;
1643     k->intc_destroy = pnv_chip_power10_intc_destroy;
1644     k->intc_print_info = pnv_chip_power10_intc_print_info;
1645     k->isa_create = pnv_chip_power10_isa_create;
1646     k->dt_populate = pnv_chip_power10_dt_populate;
1647     k->pic_print_info = pnv_chip_power10_pic_print_info;
1648     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1649     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1650     dc->desc = "PowerNV Chip POWER10";
1651 
1652     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1653                                     &k->parent_realize);
1654 }
1655 
1656 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1657 {
1658     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1659     int cores_max;
1660 
1661     /*
1662      * No custom mask for this chip, let's use the default one from *
1663      * the chip class
1664      */
1665     if (!chip->cores_mask) {
1666         chip->cores_mask = pcc->cores_mask;
1667     }
1668 
1669     /* filter alien core ids ! some are reserved */
1670     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1671         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1672                    chip->cores_mask);
1673         return;
1674     }
1675     chip->cores_mask &= pcc->cores_mask;
1676 
1677     /* now that we have a sane layout, let check the number of cores */
1678     cores_max = ctpop64(chip->cores_mask);
1679     if (chip->nr_cores > cores_max) {
1680         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1681                    cores_max);
1682         return;
1683     }
1684 }
1685 
1686 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1687 {
1688     Error *error = NULL;
1689     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1690     const char *typename = pnv_chip_core_typename(chip);
1691     int i, core_hwid;
1692     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1693 
1694     if (!object_class_by_name(typename)) {
1695         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1696         return;
1697     }
1698 
1699     /* Cores */
1700     pnv_chip_core_sanitize(chip, &error);
1701     if (error) {
1702         error_propagate(errp, error);
1703         return;
1704     }
1705 
1706     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1707 
1708     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1709              && (i < chip->nr_cores); core_hwid++) {
1710         char core_name[32];
1711         PnvCore *pnv_core;
1712         uint64_t xscom_core_base;
1713 
1714         if (!(chip->cores_mask & (1ull << core_hwid))) {
1715             continue;
1716         }
1717 
1718         pnv_core = PNV_CORE(object_new(typename));
1719 
1720         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1721         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1722                                   &error_abort);
1723         chip->cores[i] = pnv_core;
1724         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1725                                 "nr-threads", &error_fatal);
1726         object_property_set_int(OBJECT(pnv_core), core_hwid,
1727                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1728         object_property_set_int(OBJECT(pnv_core),
1729                                 pcc->core_pir(chip, core_hwid),
1730                                 "pir", &error_fatal);
1731         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1732                                 "hrmor", &error_fatal);
1733         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1734                                  &error_abort);
1735         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1736                                  &error_fatal);
1737 
1738         /* Each core has an XSCOM MMIO region */
1739         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1740 
1741         pnv_xscom_add_subregion(chip, xscom_core_base,
1742                                 &pnv_core->xscom_regs);
1743         i++;
1744     }
1745 }
1746 
1747 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1748 {
1749     PnvChip *chip = PNV_CHIP(dev);
1750     Error *error = NULL;
1751 
1752     /* Cores */
1753     pnv_chip_core_realize(chip, &error);
1754     if (error) {
1755         error_propagate(errp, error);
1756         return;
1757     }
1758 }
1759 
1760 static Property pnv_chip_properties[] = {
1761     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1762     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1763     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1764     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1765     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1766     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1767     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1768     DEFINE_PROP_END_OF_LIST(),
1769 };
1770 
1771 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1772 {
1773     DeviceClass *dc = DEVICE_CLASS(klass);
1774 
1775     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1776     dc->realize = pnv_chip_realize;
1777     device_class_set_props(dc, pnv_chip_properties);
1778     dc->desc = "PowerNV Chip";
1779 }
1780 
1781 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1782 {
1783     int i, j;
1784 
1785     for (i = 0; i < chip->nr_cores; i++) {
1786         PnvCore *pc = chip->cores[i];
1787         CPUCore *cc = CPU_CORE(pc);
1788 
1789         for (j = 0; j < cc->nr_threads; j++) {
1790             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1791                 return pc->threads[j];
1792             }
1793         }
1794     }
1795     return NULL;
1796 }
1797 
1798 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1799 {
1800     PnvMachineState *pnv = PNV_MACHINE(xi);
1801     int i, j;
1802 
1803     for (i = 0; i < pnv->num_chips; i++) {
1804         PnvChip *chip = pnv->chips[i];
1805         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1806 
1807         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1808             return &chip8->psi.ics;
1809         }
1810         for (j = 0; j < chip->num_phbs; j++) {
1811             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1812                 return &chip8->phbs[j].lsis;
1813             }
1814             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1815                 return ICS(&chip8->phbs[j].msis);
1816             }
1817         }
1818     }
1819     return NULL;
1820 }
1821 
1822 static void pnv_ics_resend(XICSFabric *xi)
1823 {
1824     PnvMachineState *pnv = PNV_MACHINE(xi);
1825     int i, j;
1826 
1827     for (i = 0; i < pnv->num_chips; i++) {
1828         PnvChip *chip = pnv->chips[i];
1829         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1830 
1831         ics_resend(&chip8->psi.ics);
1832         for (j = 0; j < chip->num_phbs; j++) {
1833             ics_resend(&chip8->phbs[j].lsis);
1834             ics_resend(ICS(&chip8->phbs[j].msis));
1835         }
1836     }
1837 }
1838 
1839 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1840 {
1841     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1842 
1843     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1844 }
1845 
1846 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1847                                Monitor *mon)
1848 {
1849     PnvMachineState *pnv = PNV_MACHINE(obj);
1850     int i;
1851     CPUState *cs;
1852 
1853     CPU_FOREACH(cs) {
1854         PowerPCCPU *cpu = POWERPC_CPU(cs);
1855 
1856         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1857         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1858                                                            mon);
1859     }
1860 
1861     for (i = 0; i < pnv->num_chips; i++) {
1862         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1863     }
1864 }
1865 
1866 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1867                          uint8_t nvt_blk, uint32_t nvt_idx,
1868                          bool cam_ignore, uint8_t priority,
1869                          uint32_t logic_serv,
1870                          XiveTCTXMatch *match)
1871 {
1872     PnvMachineState *pnv = PNV_MACHINE(xfb);
1873     int total_count = 0;
1874     int i;
1875 
1876     for (i = 0; i < pnv->num_chips; i++) {
1877         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1878         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1879         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1880         int count;
1881 
1882         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1883                                priority, logic_serv, match);
1884 
1885         if (count < 0) {
1886             return count;
1887         }
1888 
1889         total_count += count;
1890     }
1891 
1892     return total_count;
1893 }
1894 
1895 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1896 {
1897     MachineClass *mc = MACHINE_CLASS(oc);
1898     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1899     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1900     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1901 
1902     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1903     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1904 
1905     xic->icp_get = pnv_icp_get;
1906     xic->ics_get = pnv_ics_get;
1907     xic->ics_resend = pnv_ics_resend;
1908 
1909     pmc->compat = compat;
1910     pmc->compat_size = sizeof(compat);
1911 }
1912 
1913 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1914 {
1915     MachineClass *mc = MACHINE_CLASS(oc);
1916     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1917     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1918     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1919 
1920     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1921     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1922     xfc->match_nvt = pnv_match_nvt;
1923 
1924     mc->alias = "powernv";
1925 
1926     pmc->compat = compat;
1927     pmc->compat_size = sizeof(compat);
1928     pmc->dt_power_mgt = pnv_dt_power_mgt;
1929 }
1930 
1931 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1932 {
1933     MachineClass *mc = MACHINE_CLASS(oc);
1934     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1935     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1936 
1937     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1938     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1939 
1940     pmc->compat = compat;
1941     pmc->compat_size = sizeof(compat);
1942     pmc->dt_power_mgt = pnv_dt_power_mgt;
1943 }
1944 
1945 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1946 {
1947     PnvMachineState *pnv = PNV_MACHINE(obj);
1948 
1949     return !!pnv->fw_load_addr;
1950 }
1951 
1952 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1953 {
1954     PnvMachineState *pnv = PNV_MACHINE(obj);
1955 
1956     if (value) {
1957         pnv->fw_load_addr = 0x8000000;
1958     }
1959 }
1960 
1961 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1962 {
1963     MachineClass *mc = MACHINE_CLASS(oc);
1964     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1965 
1966     mc->desc = "IBM PowerNV (Non-Virtualized)";
1967     mc->init = pnv_init;
1968     mc->reset = pnv_reset;
1969     mc->max_cpus = MAX_CPUS;
1970     /* Pnv provides a AHCI device for storage */
1971     mc->block_default_type = IF_IDE;
1972     mc->no_parallel = 1;
1973     mc->default_boot_order = NULL;
1974     /*
1975      * RAM defaults to less than 2048 for 32-bit hosts, and large
1976      * enough to fit the maximum initrd size at it's load address
1977      */
1978     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1979     ispc->print_info = pnv_pic_print_info;
1980 
1981     object_class_property_add_bool(oc, "hb-mode",
1982                                    pnv_machine_get_hb, pnv_machine_set_hb,
1983                                    &error_abort);
1984     object_class_property_set_description(oc, "hb-mode",
1985                               "Use a hostboot like boot loader",
1986                               NULL);
1987 }
1988 
1989 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1990     {                                             \
1991         .name          = type,                    \
1992         .class_init    = class_initfn,            \
1993         .parent        = TYPE_PNV8_CHIP,          \
1994     }
1995 
1996 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1997     {                                             \
1998         .name          = type,                    \
1999         .class_init    = class_initfn,            \
2000         .parent        = TYPE_PNV9_CHIP,          \
2001     }
2002 
2003 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2004     {                                              \
2005         .name          = type,                     \
2006         .class_init    = class_initfn,             \
2007         .parent        = TYPE_PNV10_CHIP,          \
2008     }
2009 
2010 static const TypeInfo types[] = {
2011     {
2012         .name          = MACHINE_TYPE_NAME("powernv10"),
2013         .parent        = TYPE_PNV_MACHINE,
2014         .class_init    = pnv_machine_power10_class_init,
2015     },
2016     {
2017         .name          = MACHINE_TYPE_NAME("powernv9"),
2018         .parent        = TYPE_PNV_MACHINE,
2019         .class_init    = pnv_machine_power9_class_init,
2020         .interfaces = (InterfaceInfo[]) {
2021             { TYPE_XIVE_FABRIC },
2022             { },
2023         },
2024     },
2025     {
2026         .name          = MACHINE_TYPE_NAME("powernv8"),
2027         .parent        = TYPE_PNV_MACHINE,
2028         .class_init    = pnv_machine_power8_class_init,
2029         .interfaces = (InterfaceInfo[]) {
2030             { TYPE_XICS_FABRIC },
2031             { },
2032         },
2033     },
2034     {
2035         .name          = TYPE_PNV_MACHINE,
2036         .parent        = TYPE_MACHINE,
2037         .abstract       = true,
2038         .instance_size = sizeof(PnvMachineState),
2039         .class_init    = pnv_machine_class_init,
2040         .class_size    = sizeof(PnvMachineClass),
2041         .interfaces = (InterfaceInfo[]) {
2042             { TYPE_INTERRUPT_STATS_PROVIDER },
2043             { },
2044         },
2045     },
2046     {
2047         .name          = TYPE_PNV_CHIP,
2048         .parent        = TYPE_SYS_BUS_DEVICE,
2049         .class_init    = pnv_chip_class_init,
2050         .instance_size = sizeof(PnvChip),
2051         .class_size    = sizeof(PnvChipClass),
2052         .abstract      = true,
2053     },
2054 
2055     /*
2056      * P10 chip and variants
2057      */
2058     {
2059         .name          = TYPE_PNV10_CHIP,
2060         .parent        = TYPE_PNV_CHIP,
2061         .instance_init = pnv_chip_power10_instance_init,
2062         .instance_size = sizeof(Pnv10Chip),
2063     },
2064     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2065 
2066     /*
2067      * P9 chip and variants
2068      */
2069     {
2070         .name          = TYPE_PNV9_CHIP,
2071         .parent        = TYPE_PNV_CHIP,
2072         .instance_init = pnv_chip_power9_instance_init,
2073         .instance_size = sizeof(Pnv9Chip),
2074     },
2075     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2076 
2077     /*
2078      * P8 chip and variants
2079      */
2080     {
2081         .name          = TYPE_PNV8_CHIP,
2082         .parent        = TYPE_PNV_CHIP,
2083         .instance_init = pnv_chip_power8_instance_init,
2084         .instance_size = sizeof(Pnv8Chip),
2085     },
2086     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2087     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2088     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2089                           pnv_chip_power8nvl_class_init),
2090 };
2091 
2092 DEFINE_TYPES(types)
2093