xref: /openbmc/qemu/hw/ppc/pnv.c (revision 8e6fe6b8)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/device_tree.h"
28 #include "hw/hw.h"
29 #include "target/ppc/cpu.h"
30 #include "qemu/log.h"
31 #include "hw/ppc/fdt.h"
32 #include "hw/ppc/ppc.h"
33 #include "hw/ppc/pnv.h"
34 #include "hw/ppc/pnv_core.h"
35 #include "hw/loader.h"
36 #include "exec/address-spaces.h"
37 #include "qapi/visitor.h"
38 #include "monitor/monitor.h"
39 #include "hw/intc/intc.h"
40 #include "hw/ipmi/ipmi.h"
41 #include "target/ppc/mmu-hash64.h"
42 
43 #include "hw/ppc/xics.h"
44 #include "hw/ppc/pnv_xscom.h"
45 
46 #include "hw/isa/isa.h"
47 #include "hw/char/serial.h"
48 #include "hw/timer/mc146818rtc.h"
49 
50 #include <libfdt.h>
51 
52 #define FDT_MAX_SIZE            (1 * MiB)
53 
54 #define FW_FILE_NAME            "skiboot.lid"
55 #define FW_LOAD_ADDR            0x0
56 #define FW_MAX_SIZE             (4 * MiB)
57 
58 #define KERNEL_LOAD_ADDR        0x20000000
59 #define KERNEL_MAX_SIZE         (256 * MiB)
60 #define INITRD_LOAD_ADDR        0x60000000
61 #define INITRD_MAX_SIZE         (256 * MiB)
62 
63 static const char *pnv_chip_core_typename(const PnvChip *o)
64 {
65     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
66     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
67     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
68     const char *core_type = object_class_get_name(object_class_by_name(s));
69     g_free(s);
70     return core_type;
71 }
72 
73 /*
74  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
75  *     4 * 4 sockets * 12 cores * 8 threads = 1536
76  * Let's make it 2^11
77  */
78 #define MAX_CPUS                2048
79 
80 /*
81  * Memory nodes are created by hostboot, one for each range of memory
82  * that has a different "affinity". In practice, it means one range
83  * per chip.
84  */
85 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
86 {
87     char *mem_name;
88     uint64_t mem_reg_property[2];
89     int off;
90 
91     mem_reg_property[0] = cpu_to_be64(start);
92     mem_reg_property[1] = cpu_to_be64(size);
93 
94     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
95     off = fdt_add_subnode(fdt, 0, mem_name);
96     g_free(mem_name);
97 
98     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
99     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
100                        sizeof(mem_reg_property))));
101     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
102 }
103 
104 static int get_cpus_node(void *fdt)
105 {
106     int cpus_offset = fdt_path_offset(fdt, "/cpus");
107 
108     if (cpus_offset < 0) {
109         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
110         if (cpus_offset) {
111             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
112             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
113         }
114     }
115     _FDT(cpus_offset);
116     return cpus_offset;
117 }
118 
119 /*
120  * The PowerNV cores (and threads) need to use real HW ids and not an
121  * incremental index like it has been done on other platforms. This HW
122  * id is stored in the CPU PIR, it is used to create cpu nodes in the
123  * device tree, used in XSCOM to address cores and in interrupt
124  * servers.
125  */
126 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
127 {
128     PowerPCCPU *cpu = pc->threads[0];
129     CPUState *cs = CPU(cpu);
130     DeviceClass *dc = DEVICE_GET_CLASS(cs);
131     int smt_threads = CPU_CORE(pc)->nr_threads;
132     CPUPPCState *env = &cpu->env;
133     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
134     uint32_t servers_prop[smt_threads];
135     int i;
136     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
137                        0xffffffff, 0xffffffff};
138     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
139     uint32_t cpufreq = 1000000000;
140     uint32_t page_sizes_prop[64];
141     size_t page_sizes_prop_size;
142     const uint8_t pa_features[] = { 24, 0,
143                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
144                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
145                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
146                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
147     int offset;
148     char *nodename;
149     int cpus_offset = get_cpus_node(fdt);
150 
151     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
152     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
153     _FDT(offset);
154     g_free(nodename);
155 
156     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
157 
158     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
159     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
160     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
163     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
164                             env->dcache_line_size)));
165     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
166                             env->dcache_line_size)));
167     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
168                             env->icache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
170                             env->icache_line_size)));
171 
172     if (pcc->l1_dcache_size) {
173         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
174                                pcc->l1_dcache_size)));
175     } else {
176         warn_report("Unknown L1 dcache size for cpu");
177     }
178     if (pcc->l1_icache_size) {
179         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
180                                pcc->l1_icache_size)));
181     } else {
182         warn_report("Unknown L1 icache size for cpu");
183     }
184 
185     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
186     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
187     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
188     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
189     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
190 
191     if (env->spr_cb[SPR_PURR].oea_read) {
192         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
193     }
194 
195     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
196         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
197                            segs, sizeof(segs))));
198     }
199 
200     /* Advertise VMX/VSX (vector extensions) if available
201      *   0 / no property == no vector extensions
202      *   1               == VMX / Altivec available
203      *   2               == VSX available */
204     if (env->insns_flags & PPC_ALTIVEC) {
205         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
206 
207         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
208     }
209 
210     /* Advertise DFP (Decimal Floating Point) if available
211      *   0 / no property == no DFP
212      *   1               == DFP available */
213     if (env->insns_flags2 & PPC2_DFP) {
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
215     }
216 
217     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
218                                                       sizeof(page_sizes_prop));
219     if (page_sizes_prop_size) {
220         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
221                            page_sizes_prop, page_sizes_prop_size)));
222     }
223 
224     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
225                        pa_features, sizeof(pa_features))));
226 
227     /* Build interrupt servers properties */
228     for (i = 0; i < smt_threads; i++) {
229         servers_prop[i] = cpu_to_be32(pc->pir + i);
230     }
231     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
232                        servers_prop, sizeof(servers_prop))));
233 }
234 
235 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
236                        uint32_t nr_threads)
237 {
238     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
239     char *name;
240     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
241     uint32_t irange[2], i, rsize;
242     uint64_t *reg;
243     int offset;
244 
245     irange[0] = cpu_to_be32(pir);
246     irange[1] = cpu_to_be32(nr_threads);
247 
248     rsize = sizeof(uint64_t) * 2 * nr_threads;
249     reg = g_malloc(rsize);
250     for (i = 0; i < nr_threads; i++) {
251         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
252         reg[i * 2 + 1] = cpu_to_be64(0x1000);
253     }
254 
255     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
256     offset = fdt_add_subnode(fdt, 0, name);
257     _FDT(offset);
258     g_free(name);
259 
260     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
261     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
262     _FDT((fdt_setprop_string(fdt, offset, "device_type",
263                               "PowerPC-External-Interrupt-Presentation")));
264     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
265     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
266                        irange, sizeof(irange))));
267     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
268     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
269     g_free(reg);
270 }
271 
272 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
273 {
274     const char *typename = pnv_chip_core_typename(chip);
275     size_t typesize = object_type_get_instance_size(typename);
276     int i;
277 
278     pnv_dt_xscom(chip, fdt, 0);
279 
280     for (i = 0; i < chip->nr_cores; i++) {
281         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
282 
283         pnv_dt_core(chip, pnv_core, fdt);
284 
285         /* Interrupt Control Presenters (ICP). One per core. */
286         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
287     }
288 
289     if (chip->ram_size) {
290         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
291     }
292 }
293 
294 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
295 {
296     const char *typename = pnv_chip_core_typename(chip);
297     size_t typesize = object_type_get_instance_size(typename);
298     int i;
299 
300     pnv_dt_xscom(chip, fdt, 0);
301 
302     for (i = 0; i < chip->nr_cores; i++) {
303         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
304 
305         pnv_dt_core(chip, pnv_core, fdt);
306     }
307 
308     if (chip->ram_size) {
309         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
310     }
311 
312     pnv_dt_lpc(chip, fdt, 0);
313 }
314 
315 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
316 {
317     uint32_t io_base = d->ioport_id;
318     uint32_t io_regs[] = {
319         cpu_to_be32(1),
320         cpu_to_be32(io_base),
321         cpu_to_be32(2)
322     };
323     char *name;
324     int node;
325 
326     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
327     node = fdt_add_subnode(fdt, lpc_off, name);
328     _FDT(node);
329     g_free(name);
330 
331     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
332     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
333 }
334 
335 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
336 {
337     const char compatible[] = "ns16550\0pnpPNP,501";
338     uint32_t io_base = d->ioport_id;
339     uint32_t io_regs[] = {
340         cpu_to_be32(1),
341         cpu_to_be32(io_base),
342         cpu_to_be32(8)
343     };
344     char *name;
345     int node;
346 
347     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
348     node = fdt_add_subnode(fdt, lpc_off, name);
349     _FDT(node);
350     g_free(name);
351 
352     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
353     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
354                       sizeof(compatible))));
355 
356     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
357     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
358     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
359     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
360                            fdt_get_phandle(fdt, lpc_off))));
361 
362     /* This is needed by Linux */
363     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
364 }
365 
366 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
367 {
368     const char compatible[] = "bt\0ipmi-bt";
369     uint32_t io_base;
370     uint32_t io_regs[] = {
371         cpu_to_be32(1),
372         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
373         cpu_to_be32(3)
374     };
375     uint32_t irq;
376     char *name;
377     int node;
378 
379     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
380     io_regs[1] = cpu_to_be32(io_base);
381 
382     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     /* Mark it as reserved to avoid Linux trying to claim it */
394     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 }
399 
400 typedef struct ForeachPopulateArgs {
401     void *fdt;
402     int offset;
403 } ForeachPopulateArgs;
404 
405 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
406 {
407     ForeachPopulateArgs *args = opaque;
408     ISADevice *d = ISA_DEVICE(dev);
409 
410     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
411         pnv_dt_rtc(d, args->fdt, args->offset);
412     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
413         pnv_dt_serial(d, args->fdt, args->offset);
414     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
415         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
416     } else {
417         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
418                      d->ioport_id);
419     }
420 
421     return 0;
422 }
423 
424 /* The default LPC bus of a multichip system is on chip 0. It's
425  * recognized by the firmware (skiboot) using a "primary" property.
426  */
427 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
428 {
429     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
430     ForeachPopulateArgs args = {
431         .fdt = fdt,
432         .offset = isa_offset,
433     };
434 
435     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
436 
437     /* ISA devices are not necessarily parented to the ISA bus so we
438      * can not use object_child_foreach() */
439     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
440                        &args);
441 }
442 
443 static void pnv_dt_power_mgt(void *fdt)
444 {
445     int off;
446 
447     off = fdt_add_subnode(fdt, 0, "ibm,opal");
448     off = fdt_add_subnode(fdt, off, "power-mgt");
449 
450     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
451 }
452 
453 static void *pnv_dt_create(MachineState *machine)
454 {
455     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
456     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
457     PnvMachineState *pnv = PNV_MACHINE(machine);
458     void *fdt;
459     char *buf;
460     int off;
461     int i;
462 
463     fdt = g_malloc0(FDT_MAX_SIZE);
464     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
465 
466     /* Root node */
467     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
468     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
469     _FDT((fdt_setprop_string(fdt, 0, "model",
470                              "IBM PowerNV (emulated by qemu)")));
471     if (pnv_is_power9(pnv)) {
472         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
473                           sizeof(plat_compat9))));
474     } else {
475         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
476                           sizeof(plat_compat8))));
477     }
478 
479 
480     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
481     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
482     if (qemu_uuid_set) {
483         _FDT((fdt_property_string(fdt, "system-id", buf)));
484     }
485     g_free(buf);
486 
487     off = fdt_add_subnode(fdt, 0, "chosen");
488     if (machine->kernel_cmdline) {
489         _FDT((fdt_setprop_string(fdt, off, "bootargs",
490                                  machine->kernel_cmdline)));
491     }
492 
493     if (pnv->initrd_size) {
494         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
495         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
496 
497         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
498                                &start_prop, sizeof(start_prop))));
499         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
500                                &end_prop, sizeof(end_prop))));
501     }
502 
503     /* Populate device tree for each chip */
504     for (i = 0; i < pnv->num_chips; i++) {
505         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
506     }
507 
508     /* Populate ISA devices on chip 0 */
509     pnv_dt_isa(pnv, fdt);
510 
511     if (pnv->bmc) {
512         pnv_dt_bmc_sensors(pnv->bmc, fdt);
513     }
514 
515     /* Create an extra node for power management on Power9 */
516     if (pnv_is_power9(pnv)) {
517         pnv_dt_power_mgt(fdt);
518     }
519 
520     return fdt;
521 }
522 
523 static void pnv_powerdown_notify(Notifier *n, void *opaque)
524 {
525     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
526 
527     if (pnv->bmc) {
528         pnv_bmc_powerdown(pnv->bmc);
529     }
530 }
531 
532 static void pnv_reset(void)
533 {
534     MachineState *machine = MACHINE(qdev_get_machine());
535     PnvMachineState *pnv = PNV_MACHINE(machine);
536     void *fdt;
537     Object *obj;
538 
539     qemu_devices_reset();
540 
541     /* OpenPOWER systems have a BMC, which can be defined on the
542      * command line with:
543      *
544      *   -device ipmi-bmc-sim,id=bmc0
545      *
546      * This is the internal simulator but it could also be an external
547      * BMC.
548      */
549     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
550     if (obj) {
551         pnv->bmc = IPMI_BMC(obj);
552     }
553 
554     fdt = pnv_dt_create(machine);
555 
556     /* Pack resulting tree */
557     _FDT((fdt_pack(fdt)));
558 
559     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
560     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
561 }
562 
563 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
564 {
565     Pnv8Chip *chip8 = PNV8_CHIP(chip);
566     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
567 }
568 
569 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
570 {
571     Pnv8Chip *chip8 = PNV8_CHIP(chip);
572     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
573 }
574 
575 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
576 {
577     Pnv9Chip *chip9 = PNV9_CHIP(chip);
578     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
579 }
580 
581 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
582 {
583     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
584 }
585 
586 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589 
590     ics_pic_print_info(&chip8->psi.ics, mon);
591 }
592 
593 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
594 {
595     Pnv9Chip *chip9 = PNV9_CHIP(chip);
596 
597     pnv_xive_pic_print_info(&chip9->xive, mon);
598     pnv_psi_pic_print_info(&chip9->psi, mon);
599 }
600 
601 static void pnv_init(MachineState *machine)
602 {
603     PnvMachineState *pnv = PNV_MACHINE(machine);
604     MemoryRegion *ram;
605     char *fw_filename;
606     long fw_size;
607     int i;
608     char *chip_typename;
609 
610     /* allocate RAM */
611     if (machine->ram_size < (1 * GiB)) {
612         warn_report("skiboot may not work with < 1GB of RAM");
613     }
614 
615     ram = g_new(MemoryRegion, 1);
616     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
617                                          machine->ram_size);
618     memory_region_add_subregion(get_system_memory(), 0, ram);
619 
620     /* load skiboot firmware  */
621     if (bios_name == NULL) {
622         bios_name = FW_FILE_NAME;
623     }
624 
625     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
626     if (!fw_filename) {
627         error_report("Could not find OPAL firmware '%s'", bios_name);
628         exit(1);
629     }
630 
631     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
632     if (fw_size < 0) {
633         error_report("Could not load OPAL firmware '%s'", fw_filename);
634         exit(1);
635     }
636     g_free(fw_filename);
637 
638     /* load kernel */
639     if (machine->kernel_filename) {
640         long kernel_size;
641 
642         kernel_size = load_image_targphys(machine->kernel_filename,
643                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
644         if (kernel_size < 0) {
645             error_report("Could not load kernel '%s'",
646                          machine->kernel_filename);
647             exit(1);
648         }
649     }
650 
651     /* load initrd */
652     if (machine->initrd_filename) {
653         pnv->initrd_base = INITRD_LOAD_ADDR;
654         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
655                                   pnv->initrd_base, INITRD_MAX_SIZE);
656         if (pnv->initrd_size < 0) {
657             error_report("Could not load initial ram disk '%s'",
658                          machine->initrd_filename);
659             exit(1);
660         }
661     }
662 
663     /* Create the processor chips */
664     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
665     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
666                                     i, machine->cpu_type);
667     if (!object_class_by_name(chip_typename)) {
668         error_report("invalid CPU model '%.*s' for %s machine",
669                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
670         exit(1);
671     }
672 
673     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
674     for (i = 0; i < pnv->num_chips; i++) {
675         char chip_name[32];
676         Object *chip = object_new(chip_typename);
677 
678         pnv->chips[i] = PNV_CHIP(chip);
679 
680         /* TODO: put all the memory in one node on chip 0 until we find a
681          * way to specify different ranges for each chip
682          */
683         if (i == 0) {
684             object_property_set_int(chip, machine->ram_size, "ram-size",
685                                     &error_fatal);
686         }
687 
688         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
689         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
690         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
691                                 &error_fatal);
692         object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
693         object_property_set_bool(chip, true, "realized", &error_fatal);
694     }
695     g_free(chip_typename);
696 
697     /* Instantiate ISA bus on chip 0 */
698     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
699 
700     /* Create serial port */
701     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
702 
703     /* Create an RTC ISA device too */
704     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
705 
706     /* OpenPOWER systems use a IPMI SEL Event message to notify the
707      * host to powerdown */
708     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
709     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
710 }
711 
712 /*
713  *    0:21  Reserved - Read as zeros
714  *   22:24  Chip ID
715  *   25:28  Core number
716  *   29:31  Thread ID
717  */
718 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
719 {
720     return (chip->chip_id << 7) | (core_id << 3);
721 }
722 
723 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
724                                         Error **errp)
725 {
726     Error *local_err = NULL;
727     Object *obj;
728     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
729 
730     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
731                      &local_err);
732     if (local_err) {
733         error_propagate(errp, local_err);
734         return;
735     }
736 
737     pnv_cpu->intc = obj;
738 }
739 
740 /*
741  *    0:48  Reserved - Read as zeroes
742  *   49:52  Node ID
743  *   53:55  Chip ID
744  *   56     Reserved - Read as zero
745  *   57:61  Core number
746  *   62:63  Thread ID
747  *
748  * We only care about the lower bits. uint32_t is fine for the moment.
749  */
750 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
751 {
752     return (chip->chip_id << 8) | (core_id << 2);
753 }
754 
755 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
756                                         Error **errp)
757 {
758     Pnv9Chip *chip9 = PNV9_CHIP(chip);
759     Error *local_err = NULL;
760     Object *obj;
761     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
762 
763     /*
764      * The core creates its interrupt presenter but the XIVE interrupt
765      * controller object is initialized afterwards. Hopefully, it's
766      * only used at runtime.
767      */
768     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
769     if (local_err) {
770         error_propagate(errp, local_err);
771         return;
772     }
773 
774     pnv_cpu->intc = obj;
775 }
776 
777 /* Allowed core identifiers on a POWER8 Processor Chip :
778  *
779  * <EX0 reserved>
780  *  EX1  - Venice only
781  *  EX2  - Venice only
782  *  EX3  - Venice only
783  *  EX4
784  *  EX5
785  *  EX6
786  * <EX7,8 reserved> <reserved>
787  *  EX9  - Venice only
788  *  EX10 - Venice only
789  *  EX11 - Venice only
790  *  EX12
791  *  EX13
792  *  EX14
793  * <EX15 reserved>
794  */
795 #define POWER8E_CORE_MASK  (0x7070ull)
796 #define POWER8_CORE_MASK   (0x7e7eull)
797 
798 /*
799  * POWER9 has 24 cores, ids starting at 0x0
800  */
801 #define POWER9_CORE_MASK   (0xffffffffffffffull)
802 
803 static void pnv_chip_power8_instance_init(Object *obj)
804 {
805     Pnv8Chip *chip8 = PNV8_CHIP(obj);
806 
807     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
808                             TYPE_PNV8_PSI, &error_abort, NULL);
809     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
810                                    OBJECT(qdev_get_machine()), &error_abort);
811 
812     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
813                             TYPE_PNV8_LPC, &error_abort, NULL);
814     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
815                                    OBJECT(&chip8->psi), &error_abort);
816 
817     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
818                             TYPE_PNV8_OCC, &error_abort, NULL);
819     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
820                                    OBJECT(&chip8->psi), &error_abort);
821 }
822 
823 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
824  {
825     PnvChip *chip = PNV_CHIP(chip8);
826     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
827     const char *typename = pnv_chip_core_typename(chip);
828     size_t typesize = object_type_get_instance_size(typename);
829     int i, j;
830     char *name;
831     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
832 
833     name = g_strdup_printf("icp-%x", chip->chip_id);
834     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
835     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
836     g_free(name);
837 
838     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
839 
840     /* Map the ICP registers for each thread */
841     for (i = 0; i < chip->nr_cores; i++) {
842         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
843         int core_hwid = CPU_CORE(pnv_core)->core_id;
844 
845         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
846             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
847             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
848 
849             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
850                                         &icp->mmio);
851         }
852     }
853 }
854 
855 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
856 {
857     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
858     PnvChip *chip = PNV_CHIP(dev);
859     Pnv8Chip *chip8 = PNV8_CHIP(dev);
860     Pnv8Psi *psi8 = &chip8->psi;
861     Error *local_err = NULL;
862 
863     pcc->parent_realize(dev, &local_err);
864     if (local_err) {
865         error_propagate(errp, local_err);
866         return;
867     }
868 
869     /* Processor Service Interface (PSI) Host Bridge */
870     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
871                             "bar", &error_fatal);
872     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
873     if (local_err) {
874         error_propagate(errp, local_err);
875         return;
876     }
877     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
878                             &PNV_PSI(psi8)->xscom_regs);
879 
880     /* Create LPC controller */
881     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
882                              &error_fatal);
883     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
884 
885     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
886                                             (uint64_t) PNV_XSCOM_BASE(chip),
887                                             PNV_XSCOM_LPC_BASE);
888 
889     /* Interrupt Management Area. This is the memory region holding
890      * all the Interrupt Control Presenter (ICP) registers */
891     pnv_chip_icp_realize(chip8, &local_err);
892     if (local_err) {
893         error_propagate(errp, local_err);
894         return;
895     }
896 
897     /* Create the simplified OCC model */
898     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
899     if (local_err) {
900         error_propagate(errp, local_err);
901         return;
902     }
903     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
904 }
905 
906 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
907 {
908     DeviceClass *dc = DEVICE_CLASS(klass);
909     PnvChipClass *k = PNV_CHIP_CLASS(klass);
910 
911     k->chip_type = PNV_CHIP_POWER8E;
912     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
913     k->cores_mask = POWER8E_CORE_MASK;
914     k->core_pir = pnv_chip_core_pir_p8;
915     k->intc_create = pnv_chip_power8_intc_create;
916     k->isa_create = pnv_chip_power8_isa_create;
917     k->dt_populate = pnv_chip_power8_dt_populate;
918     k->pic_print_info = pnv_chip_power8_pic_print_info;
919     k->xscom_base = 0x003fc0000000000ull;
920     dc->desc = "PowerNV Chip POWER8E";
921 
922     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
923                                     &k->parent_realize);
924 }
925 
926 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
927 {
928     DeviceClass *dc = DEVICE_CLASS(klass);
929     PnvChipClass *k = PNV_CHIP_CLASS(klass);
930 
931     k->chip_type = PNV_CHIP_POWER8;
932     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
933     k->cores_mask = POWER8_CORE_MASK;
934     k->core_pir = pnv_chip_core_pir_p8;
935     k->intc_create = pnv_chip_power8_intc_create;
936     k->isa_create = pnv_chip_power8_isa_create;
937     k->dt_populate = pnv_chip_power8_dt_populate;
938     k->pic_print_info = pnv_chip_power8_pic_print_info;
939     k->xscom_base = 0x003fc0000000000ull;
940     dc->desc = "PowerNV Chip POWER8";
941 
942     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
943                                     &k->parent_realize);
944 }
945 
946 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
947 {
948     DeviceClass *dc = DEVICE_CLASS(klass);
949     PnvChipClass *k = PNV_CHIP_CLASS(klass);
950 
951     k->chip_type = PNV_CHIP_POWER8NVL;
952     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
953     k->cores_mask = POWER8_CORE_MASK;
954     k->core_pir = pnv_chip_core_pir_p8;
955     k->intc_create = pnv_chip_power8_intc_create;
956     k->isa_create = pnv_chip_power8nvl_isa_create;
957     k->dt_populate = pnv_chip_power8_dt_populate;
958     k->pic_print_info = pnv_chip_power8_pic_print_info;
959     k->xscom_base = 0x003fc0000000000ull;
960     dc->desc = "PowerNV Chip POWER8NVL";
961 
962     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
963                                     &k->parent_realize);
964 }
965 
966 static void pnv_chip_power9_instance_init(Object *obj)
967 {
968     Pnv9Chip *chip9 = PNV9_CHIP(obj);
969 
970     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
971                             TYPE_PNV_XIVE, &error_abort, NULL);
972     object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
973                                    &error_abort);
974 
975     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
976                             TYPE_PNV9_PSI, &error_abort, NULL);
977     object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
978                                    &error_abort);
979 
980     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
981                             TYPE_PNV9_LPC, &error_abort, NULL);
982     object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
983                                    OBJECT(&chip9->psi), &error_abort);
984 
985     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
986                             TYPE_PNV9_OCC, &error_abort, NULL);
987     object_property_add_const_link(OBJECT(&chip9->occ), "psi",
988                                    OBJECT(&chip9->psi), &error_abort);
989 }
990 
991 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
992 {
993     PnvChip *chip = PNV_CHIP(chip9);
994     const char *typename = pnv_chip_core_typename(chip);
995     size_t typesize = object_type_get_instance_size(typename);
996     int i;
997 
998     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
999     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1000 
1001     for (i = 0; i < chip9->nr_quads; i++) {
1002         char eq_name[32];
1003         PnvQuad *eq = &chip9->quads[i];
1004         PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1005         int core_id = CPU_CORE(pnv_core)->core_id;
1006 
1007         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1008         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1009                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1010 
1011         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1012         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1013 
1014         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1015                                 &eq->xscom_regs);
1016     }
1017 }
1018 
1019 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1020 {
1021     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1022     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1023     PnvChip *chip = PNV_CHIP(dev);
1024     Pnv9Psi *psi9 = &chip9->psi;
1025     Error *local_err = NULL;
1026 
1027     pcc->parent_realize(dev, &local_err);
1028     if (local_err) {
1029         error_propagate(errp, local_err);
1030         return;
1031     }
1032 
1033     pnv_chip_quad_realize(chip9, &local_err);
1034     if (local_err) {
1035         error_propagate(errp, local_err);
1036         return;
1037     }
1038 
1039     /* XIVE interrupt controller (POWER9) */
1040     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1041                             "ic-bar", &error_fatal);
1042     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1043                             "vc-bar", &error_fatal);
1044     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1045                             "pc-bar", &error_fatal);
1046     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1047                             "tm-bar", &error_fatal);
1048     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1049                              &local_err);
1050     if (local_err) {
1051         error_propagate(errp, local_err);
1052         return;
1053     }
1054     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1055                             &chip9->xive.xscom_regs);
1056 
1057     /* Processor Service Interface (PSI) Host Bridge */
1058     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1059                             "bar", &error_fatal);
1060     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1061     if (local_err) {
1062         error_propagate(errp, local_err);
1063         return;
1064     }
1065     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1066                             &PNV_PSI(psi9)->xscom_regs);
1067 
1068     /* LPC */
1069     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1070     if (local_err) {
1071         error_propagate(errp, local_err);
1072         return;
1073     }
1074     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1075                                 &chip9->lpc.xscom_regs);
1076 
1077     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1078                                             (uint64_t) PNV9_LPCM_BASE(chip));
1079 
1080     /* Create the simplified OCC model */
1081     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1082     if (local_err) {
1083         error_propagate(errp, local_err);
1084         return;
1085     }
1086     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1087 }
1088 
1089 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1090 {
1091     DeviceClass *dc = DEVICE_CLASS(klass);
1092     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1093 
1094     k->chip_type = PNV_CHIP_POWER9;
1095     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1096     k->cores_mask = POWER9_CORE_MASK;
1097     k->core_pir = pnv_chip_core_pir_p9;
1098     k->intc_create = pnv_chip_power9_intc_create;
1099     k->isa_create = pnv_chip_power9_isa_create;
1100     k->dt_populate = pnv_chip_power9_dt_populate;
1101     k->pic_print_info = pnv_chip_power9_pic_print_info;
1102     k->xscom_base = 0x00603fc00000000ull;
1103     dc->desc = "PowerNV Chip POWER9";
1104 
1105     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1106                                     &k->parent_realize);
1107 }
1108 
1109 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1110 {
1111     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1112     int cores_max;
1113 
1114     /*
1115      * No custom mask for this chip, let's use the default one from *
1116      * the chip class
1117      */
1118     if (!chip->cores_mask) {
1119         chip->cores_mask = pcc->cores_mask;
1120     }
1121 
1122     /* filter alien core ids ! some are reserved */
1123     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1124         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1125                    chip->cores_mask);
1126         return;
1127     }
1128     chip->cores_mask &= pcc->cores_mask;
1129 
1130     /* now that we have a sane layout, let check the number of cores */
1131     cores_max = ctpop64(chip->cores_mask);
1132     if (chip->nr_cores > cores_max) {
1133         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1134                    cores_max);
1135         return;
1136     }
1137 }
1138 
1139 static void pnv_chip_instance_init(Object *obj)
1140 {
1141     PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base;
1142 }
1143 
1144 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1145 {
1146     Error *error = NULL;
1147     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1148     const char *typename = pnv_chip_core_typename(chip);
1149     size_t typesize = object_type_get_instance_size(typename);
1150     int i, core_hwid;
1151 
1152     if (!object_class_by_name(typename)) {
1153         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1154         return;
1155     }
1156 
1157     /* Cores */
1158     pnv_chip_core_sanitize(chip, &error);
1159     if (error) {
1160         error_propagate(errp, error);
1161         return;
1162     }
1163 
1164     chip->cores = g_malloc0(typesize * chip->nr_cores);
1165 
1166     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1167              && (i < chip->nr_cores); core_hwid++) {
1168         char core_name[32];
1169         void *pnv_core = chip->cores + i * typesize;
1170         uint64_t xscom_core_base;
1171 
1172         if (!(chip->cores_mask & (1ull << core_hwid))) {
1173             continue;
1174         }
1175 
1176         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1177         object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1178                                 typename, &error_fatal, NULL);
1179         object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
1180                                 &error_fatal);
1181         object_property_set_int(OBJECT(pnv_core), core_hwid,
1182                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1183         object_property_set_int(OBJECT(pnv_core),
1184                                 pcc->core_pir(chip, core_hwid),
1185                                 "pir", &error_fatal);
1186         object_property_add_const_link(OBJECT(pnv_core), "chip",
1187                                        OBJECT(chip), &error_fatal);
1188         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1189                                  &error_fatal);
1190 
1191         /* Each core has an XSCOM MMIO region */
1192         if (!pnv_chip_is_power9(chip)) {
1193             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1194         } else {
1195             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1196         }
1197 
1198         pnv_xscom_add_subregion(chip, xscom_core_base,
1199                                 &PNV_CORE(pnv_core)->xscom_regs);
1200         i++;
1201     }
1202 }
1203 
1204 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1205 {
1206     PnvChip *chip = PNV_CHIP(dev);
1207     Error *error = NULL;
1208 
1209     /* XSCOM bridge */
1210     pnv_xscom_realize(chip, &error);
1211     if (error) {
1212         error_propagate(errp, error);
1213         return;
1214     }
1215     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1216 
1217     /* Cores */
1218     pnv_chip_core_realize(chip, &error);
1219     if (error) {
1220         error_propagate(errp, error);
1221         return;
1222     }
1223 }
1224 
1225 static Property pnv_chip_properties[] = {
1226     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1227     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1228     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1229     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1230     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1231     DEFINE_PROP_END_OF_LIST(),
1232 };
1233 
1234 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1235 {
1236     DeviceClass *dc = DEVICE_CLASS(klass);
1237 
1238     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1239     dc->realize = pnv_chip_realize;
1240     dc->props = pnv_chip_properties;
1241     dc->desc = "PowerNV Chip";
1242 }
1243 
1244 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1245 {
1246     PnvMachineState *pnv = PNV_MACHINE(xi);
1247     int i;
1248 
1249     for (i = 0; i < pnv->num_chips; i++) {
1250         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1251 
1252         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1253             return &chip8->psi.ics;
1254         }
1255     }
1256     return NULL;
1257 }
1258 
1259 static void pnv_ics_resend(XICSFabric *xi)
1260 {
1261     PnvMachineState *pnv = PNV_MACHINE(xi);
1262     int i;
1263 
1264     for (i = 0; i < pnv->num_chips; i++) {
1265         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1266         ics_resend(&chip8->psi.ics);
1267     }
1268 }
1269 
1270 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1271 {
1272     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1273 
1274     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1275 }
1276 
1277 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1278                                Monitor *mon)
1279 {
1280     PnvMachineState *pnv = PNV_MACHINE(obj);
1281     int i;
1282     CPUState *cs;
1283 
1284     CPU_FOREACH(cs) {
1285         PowerPCCPU *cpu = POWERPC_CPU(cs);
1286 
1287         if (pnv_chip_is_power9(pnv->chips[0])) {
1288             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1289         } else {
1290             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1291         }
1292     }
1293 
1294     for (i = 0; i < pnv->num_chips; i++) {
1295         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1296     }
1297 }
1298 
1299 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1300                               void *opaque, Error **errp)
1301 {
1302     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1303 }
1304 
1305 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1306                               void *opaque, Error **errp)
1307 {
1308     PnvMachineState *pnv = PNV_MACHINE(obj);
1309     uint32_t num_chips;
1310     Error *local_err = NULL;
1311 
1312     visit_type_uint32(v, name, &num_chips, &local_err);
1313     if (local_err) {
1314         error_propagate(errp, local_err);
1315         return;
1316     }
1317 
1318     /*
1319      * TODO: should we decide on how many chips we can create based
1320      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1321      */
1322     if (!is_power_of_2(num_chips) || num_chips > 4) {
1323         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1324         return;
1325     }
1326 
1327     pnv->num_chips = num_chips;
1328 }
1329 
1330 static void pnv_machine_instance_init(Object *obj)
1331 {
1332     PnvMachineState *pnv = PNV_MACHINE(obj);
1333     pnv->num_chips = 1;
1334 }
1335 
1336 static void pnv_machine_class_props_init(ObjectClass *oc)
1337 {
1338     object_class_property_add(oc, "num-chips", "uint32",
1339                               pnv_get_num_chips, pnv_set_num_chips,
1340                               NULL, NULL, NULL);
1341     object_class_property_set_description(oc, "num-chips",
1342                               "Specifies the number of processor chips",
1343                               NULL);
1344 }
1345 
1346 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1347 {
1348     MachineClass *mc = MACHINE_CLASS(oc);
1349     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1350     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1351 
1352     mc->desc = "IBM PowerNV (Non-Virtualized)";
1353     mc->init = pnv_init;
1354     mc->reset = pnv_reset;
1355     mc->max_cpus = MAX_CPUS;
1356     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1357     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1358                                       * storage */
1359     mc->no_parallel = 1;
1360     mc->default_boot_order = NULL;
1361     mc->default_ram_size = 1 * GiB;
1362     xic->icp_get = pnv_icp_get;
1363     xic->ics_get = pnv_ics_get;
1364     xic->ics_resend = pnv_ics_resend;
1365     ispc->print_info = pnv_pic_print_info;
1366 
1367     pnv_machine_class_props_init(oc);
1368 }
1369 
1370 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1371     {                                             \
1372         .name          = type,                    \
1373         .class_init    = class_initfn,            \
1374         .parent        = TYPE_PNV8_CHIP,          \
1375     }
1376 
1377 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1378     {                                             \
1379         .name          = type,                    \
1380         .class_init    = class_initfn,            \
1381         .parent        = TYPE_PNV9_CHIP,          \
1382     }
1383 
1384 static const TypeInfo types[] = {
1385     {
1386         .name          = TYPE_PNV_MACHINE,
1387         .parent        = TYPE_MACHINE,
1388         .instance_size = sizeof(PnvMachineState),
1389         .instance_init = pnv_machine_instance_init,
1390         .class_init    = pnv_machine_class_init,
1391         .interfaces = (InterfaceInfo[]) {
1392             { TYPE_XICS_FABRIC },
1393             { TYPE_INTERRUPT_STATS_PROVIDER },
1394             { },
1395         },
1396     },
1397     {
1398         .name          = TYPE_PNV_CHIP,
1399         .parent        = TYPE_SYS_BUS_DEVICE,
1400         .class_init    = pnv_chip_class_init,
1401         .instance_init = pnv_chip_instance_init,
1402         .instance_size = sizeof(PnvChip),
1403         .class_size    = sizeof(PnvChipClass),
1404         .abstract      = true,
1405     },
1406 
1407     /*
1408      * P9 chip and variants
1409      */
1410     {
1411         .name          = TYPE_PNV9_CHIP,
1412         .parent        = TYPE_PNV_CHIP,
1413         .instance_init = pnv_chip_power9_instance_init,
1414         .instance_size = sizeof(Pnv9Chip),
1415     },
1416     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1417 
1418     /*
1419      * P8 chip and variants
1420      */
1421     {
1422         .name          = TYPE_PNV8_CHIP,
1423         .parent        = TYPE_PNV_CHIP,
1424         .instance_init = pnv_chip_power8_instance_init,
1425         .instance_size = sizeof(Pnv8Chip),
1426     },
1427     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1428     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1429     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1430                           pnv_chip_power8nvl_class_init),
1431 };
1432 
1433 DEFINE_TYPES(types)
1434