1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/datadir.h" 22 #include "qemu/units.h" 23 #include "qemu/cutils.h" 24 #include "qapi/error.h" 25 #include "sysemu/qtest.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/numa.h" 28 #include "sysemu/reset.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/cpus.h" 31 #include "sysemu/device_tree.h" 32 #include "sysemu/hw_accel.h" 33 #include "target/ppc/cpu.h" 34 #include "hw/ppc/fdt.h" 35 #include "hw/ppc/ppc.h" 36 #include "hw/ppc/pnv.h" 37 #include "hw/ppc/pnv_core.h" 38 #include "hw/loader.h" 39 #include "hw/nmi.h" 40 #include "qapi/visitor.h" 41 #include "hw/intc/intc.h" 42 #include "hw/ipmi/ipmi.h" 43 #include "target/ppc/mmu-hash64.h" 44 #include "hw/pci/msi.h" 45 #include "hw/pci-host/pnv_phb.h" 46 #include "hw/pci-host/pnv_phb3.h" 47 #include "hw/pci-host/pnv_phb4.h" 48 49 #include "hw/ppc/xics.h" 50 #include "hw/qdev-properties.h" 51 #include "hw/ppc/pnv_chip.h" 52 #include "hw/ppc/pnv_xscom.h" 53 #include "hw/ppc/pnv_pnor.h" 54 55 #include "hw/isa/isa.h" 56 #include "hw/char/serial.h" 57 #include "hw/rtc/mc146818rtc.h" 58 59 #include <libfdt.h> 60 61 #define FDT_MAX_SIZE (1 * MiB) 62 63 #define FW_FILE_NAME "skiboot.lid" 64 #define FW_LOAD_ADDR 0x0 65 #define FW_MAX_SIZE (16 * MiB) 66 67 #define KERNEL_LOAD_ADDR 0x20000000 68 #define KERNEL_MAX_SIZE (128 * MiB) 69 #define INITRD_LOAD_ADDR 0x28000000 70 #define INITRD_MAX_SIZE (128 * MiB) 71 72 static const char *pnv_chip_core_typename(const PnvChip *o) 73 { 74 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 75 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 76 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 77 const char *core_type = object_class_get_name(object_class_by_name(s)); 78 g_free(s); 79 return core_type; 80 } 81 82 /* 83 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 84 * 4 * 4 sockets * 12 cores * 8 threads = 1536 85 * Let's make it 2^11 86 */ 87 #define MAX_CPUS 2048 88 89 /* 90 * Memory nodes are created by hostboot, one for each range of memory 91 * that has a different "affinity". In practice, it means one range 92 * per chip. 93 */ 94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 95 { 96 char *mem_name; 97 uint64_t mem_reg_property[2]; 98 int off; 99 100 mem_reg_property[0] = cpu_to_be64(start); 101 mem_reg_property[1] = cpu_to_be64(size); 102 103 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 104 off = fdt_add_subnode(fdt, 0, mem_name); 105 g_free(mem_name); 106 107 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 108 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 109 sizeof(mem_reg_property)))); 110 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 111 } 112 113 static int get_cpus_node(void *fdt) 114 { 115 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 116 117 if (cpus_offset < 0) { 118 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 119 if (cpus_offset) { 120 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 122 } 123 } 124 _FDT(cpus_offset); 125 return cpus_offset; 126 } 127 128 /* 129 * The PowerNV cores (and threads) need to use real HW ids and not an 130 * incremental index like it has been done on other platforms. This HW 131 * id is stored in the CPU PIR, it is used to create cpu nodes in the 132 * device tree, used in XSCOM to address cores and in interrupt 133 * servers. 134 */ 135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 136 { 137 PowerPCCPU *cpu = pc->threads[0]; 138 CPUState *cs = CPU(cpu); 139 DeviceClass *dc = DEVICE_GET_CLASS(cs); 140 int smt_threads = CPU_CORE(pc)->nr_threads; 141 CPUPPCState *env = &cpu->env; 142 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 143 PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip); 144 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 145 int i; 146 uint32_t pir; 147 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 148 0xffffffff, 0xffffffff}; 149 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 150 uint32_t cpufreq = 1000000000; 151 uint32_t page_sizes_prop[64]; 152 size_t page_sizes_prop_size; 153 int offset; 154 char *nodename; 155 int cpus_offset = get_cpus_node(fdt); 156 157 pir = pnv_cc->chip_pir(chip, pc->hwid, 0); 158 159 nodename = g_strdup_printf("%s@%x", dc->fw_name, pir); 160 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 161 _FDT(offset); 162 g_free(nodename); 163 164 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 165 166 _FDT((fdt_setprop_cell(fdt, offset, "reg", pir))); 167 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir))); 168 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 169 170 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 171 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 172 env->dcache_line_size))); 173 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 174 env->dcache_line_size))); 175 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 176 env->icache_line_size))); 177 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 178 env->icache_line_size))); 179 180 if (pcc->l1_dcache_size) { 181 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 182 pcc->l1_dcache_size))); 183 } else { 184 warn_report("Unknown L1 dcache size for cpu"); 185 } 186 if (pcc->l1_icache_size) { 187 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 188 pcc->l1_icache_size))); 189 } else { 190 warn_report("Unknown L1 icache size for cpu"); 191 } 192 193 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 194 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 195 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 196 cpu->hash64_opts->slb_size))); 197 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 198 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 199 200 if (ppc_has_spr(cpu, SPR_PURR)) { 201 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 202 } 203 204 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 205 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 206 segs, sizeof(segs)))); 207 } 208 209 /* 210 * Advertise VMX/VSX (vector extensions) if available 211 * 0 / no property == no vector extensions 212 * 1 == VMX / Altivec available 213 * 2 == VSX available 214 */ 215 if (env->insns_flags & PPC_ALTIVEC) { 216 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 217 218 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 219 } 220 221 /* 222 * Advertise DFP (Decimal Floating Point) if available 223 * 0 / no property == no DFP 224 * 1 == DFP available 225 */ 226 if (env->insns_flags2 & PPC2_DFP) { 227 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 228 } 229 230 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 231 sizeof(page_sizes_prop)); 232 if (page_sizes_prop_size) { 233 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 234 page_sizes_prop, page_sizes_prop_size))); 235 } 236 237 /* Build interrupt servers properties */ 238 for (i = 0; i < smt_threads; i++) { 239 servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i)); 240 } 241 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 242 servers_prop, sizeof(*servers_prop) * smt_threads))); 243 244 return offset; 245 } 246 247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid, 248 uint32_t nr_threads) 249 { 250 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 251 uint32_t pir = pcc->chip_pir(chip, hwid, 0); 252 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 253 char *name; 254 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 255 uint32_t irange[2], i, rsize; 256 uint64_t *reg; 257 int offset; 258 259 irange[0] = cpu_to_be32(pir); 260 irange[1] = cpu_to_be32(nr_threads); 261 262 rsize = sizeof(uint64_t) * 2 * nr_threads; 263 reg = g_malloc(rsize); 264 for (i = 0; i < nr_threads; i++) { 265 /* We know P8 PIR is linear with thread id */ 266 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 267 reg[i * 2 + 1] = cpu_to_be64(0x1000); 268 } 269 270 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 271 offset = fdt_add_subnode(fdt, 0, name); 272 _FDT(offset); 273 g_free(name); 274 275 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 276 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 277 _FDT((fdt_setprop_string(fdt, offset, "device_type", 278 "PowerPC-External-Interrupt-Presentation"))); 279 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 280 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 281 irange, sizeof(irange)))); 282 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 283 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 284 g_free(reg); 285 } 286 287 /* 288 * Adds a PnvPHB to the chip on P8. 289 * Implemented here, like for defaults PHBs 290 */ 291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb) 292 { 293 Pnv8Chip *chip8 = PNV8_CHIP(chip); 294 295 phb->chip = chip; 296 297 chip8->phbs[chip8->num_phbs] = phb; 298 chip8->num_phbs++; 299 return chip; 300 } 301 302 /* 303 * Same as spapr pa_features_207 except pnv always enables CI largepages bit. 304 * HTM is always enabled because TCG does implement HTM, it's just a 305 * degenerate implementation. 306 */ 307 static const uint8_t pa_features_207[] = { 24, 0, 308 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, 309 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 310 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 311 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 312 313 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 314 { 315 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 316 int i; 317 318 pnv_dt_xscom(chip, fdt, 0, 319 cpu_to_be64(PNV_XSCOM_BASE(chip)), 320 cpu_to_be64(PNV_XSCOM_SIZE), 321 compat, sizeof(compat)); 322 323 for (i = 0; i < chip->nr_cores; i++) { 324 PnvCore *pnv_core = chip->cores[i]; 325 int offset; 326 327 offset = pnv_dt_core(chip, pnv_core, fdt); 328 329 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 330 pa_features_207, sizeof(pa_features_207)))); 331 332 /* Interrupt Control Presenters (ICP). One per core. */ 333 pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads); 334 } 335 336 if (chip->ram_size) { 337 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 338 } 339 } 340 341 /* 342 * Same as spapr pa_features_300 except pnv always enables CI largepages bit. 343 */ 344 static const uint8_t pa_features_300[] = { 66, 0, 345 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 346 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 347 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 348 /* 6: DS207 */ 349 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 350 /* 16: Vector */ 351 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 352 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 353 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */ 354 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 355 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 356 /* 32: LE atomic, 34: EBB + ext EBB */ 357 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 358 /* 40: Radix MMU */ 359 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 360 /* 42: PM, 44: PC RA, 46: SC vec'd */ 361 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 362 /* 48: SIMD, 50: QP BFP, 52: String */ 363 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 364 /* 54: DecFP, 56: DecI, 58: SHA */ 365 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 366 /* 60: NM atomic, 62: RNG */ 367 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 368 }; 369 370 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 371 { 372 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 373 int i; 374 375 pnv_dt_xscom(chip, fdt, 0, 376 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 377 cpu_to_be64(PNV9_XSCOM_SIZE), 378 compat, sizeof(compat)); 379 380 for (i = 0; i < chip->nr_cores; i++) { 381 PnvCore *pnv_core = chip->cores[i]; 382 int offset; 383 384 offset = pnv_dt_core(chip, pnv_core, fdt); 385 386 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 387 pa_features_300, sizeof(pa_features_300)))); 388 } 389 390 if (chip->ram_size) { 391 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 392 } 393 394 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 395 } 396 397 /* 398 * Same as spapr pa_features_31 except pnv always enables CI largepages bit, 399 * always disables copy/paste. 400 */ 401 static const uint8_t pa_features_31[] = { 74, 0, 402 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 403 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 404 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 405 /* 6: DS207 */ 406 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 407 /* 16: Vector */ 408 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 409 /* 18: Vec. Scalar, 20: Vec. XOR */ 410 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 411 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 412 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 413 /* 32: LE atomic, 34: EBB + ext EBB */ 414 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 415 /* 40: Radix MMU */ 416 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 417 /* 42: PM, 44: PC RA, 46: SC vec'd */ 418 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 419 /* 48: SIMD, 50: QP BFP, 52: String */ 420 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 421 /* 54: DecFP, 56: DecI, 58: SHA */ 422 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 423 /* 60: NM atomic, 62: RNG */ 424 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 425 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 426 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 427 /* 72: [P]HASHST/[P]HASHCHK */ 428 0x80, 0x00, /* 72 - 73 */ 429 }; 430 431 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 432 { 433 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 434 int i; 435 436 pnv_dt_xscom(chip, fdt, 0, 437 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 438 cpu_to_be64(PNV10_XSCOM_SIZE), 439 compat, sizeof(compat)); 440 441 for (i = 0; i < chip->nr_cores; i++) { 442 PnvCore *pnv_core = chip->cores[i]; 443 int offset; 444 445 offset = pnv_dt_core(chip, pnv_core, fdt); 446 447 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 448 pa_features_31, sizeof(pa_features_31)))); 449 } 450 451 if (chip->ram_size) { 452 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 453 } 454 455 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 456 } 457 458 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 459 { 460 uint32_t io_base = d->ioport_id; 461 uint32_t io_regs[] = { 462 cpu_to_be32(1), 463 cpu_to_be32(io_base), 464 cpu_to_be32(2) 465 }; 466 char *name; 467 int node; 468 469 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 470 node = fdt_add_subnode(fdt, lpc_off, name); 471 _FDT(node); 472 g_free(name); 473 474 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 475 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 476 } 477 478 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 479 { 480 const char compatible[] = "ns16550\0pnpPNP,501"; 481 uint32_t io_base = d->ioport_id; 482 uint32_t io_regs[] = { 483 cpu_to_be32(1), 484 cpu_to_be32(io_base), 485 cpu_to_be32(8) 486 }; 487 uint32_t irq; 488 char *name; 489 int node; 490 491 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal); 492 493 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 494 node = fdt_add_subnode(fdt, lpc_off, name); 495 _FDT(node); 496 g_free(name); 497 498 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 499 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 500 sizeof(compatible)))); 501 502 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 503 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 504 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 505 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 506 fdt_get_phandle(fdt, lpc_off)))); 507 508 /* This is needed by Linux */ 509 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 510 } 511 512 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 513 { 514 const char compatible[] = "bt\0ipmi-bt"; 515 uint32_t io_base; 516 uint32_t io_regs[] = { 517 cpu_to_be32(1), 518 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 519 cpu_to_be32(3) 520 }; 521 uint32_t irq; 522 char *name; 523 int node; 524 525 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 526 io_regs[1] = cpu_to_be32(io_base); 527 528 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 529 530 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 531 node = fdt_add_subnode(fdt, lpc_off, name); 532 _FDT(node); 533 g_free(name); 534 535 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 536 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 537 sizeof(compatible)))); 538 539 /* Mark it as reserved to avoid Linux trying to claim it */ 540 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 541 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 542 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 543 fdt_get_phandle(fdt, lpc_off)))); 544 } 545 546 typedef struct ForeachPopulateArgs { 547 void *fdt; 548 int offset; 549 } ForeachPopulateArgs; 550 551 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 552 { 553 ForeachPopulateArgs *args = opaque; 554 ISADevice *d = ISA_DEVICE(dev); 555 556 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 557 pnv_dt_rtc(d, args->fdt, args->offset); 558 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 559 pnv_dt_serial(d, args->fdt, args->offset); 560 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 561 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 562 } else { 563 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 564 d->ioport_id); 565 } 566 567 return 0; 568 } 569 570 /* 571 * The default LPC bus of a multichip system is on chip 0. It's 572 * recognized by the firmware (skiboot) using a "primary" property. 573 */ 574 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 575 { 576 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 577 ForeachPopulateArgs args = { 578 .fdt = fdt, 579 .offset = isa_offset, 580 }; 581 uint32_t phandle; 582 583 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 584 585 phandle = qemu_fdt_alloc_phandle(fdt); 586 assert(phandle > 0); 587 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 588 589 /* 590 * ISA devices are not necessarily parented to the ISA bus so we 591 * can not use object_child_foreach() 592 */ 593 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 594 &args); 595 } 596 597 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 598 { 599 int off; 600 601 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 602 off = fdt_add_subnode(fdt, off, "power-mgt"); 603 604 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 605 } 606 607 static void *pnv_dt_create(MachineState *machine) 608 { 609 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 610 PnvMachineState *pnv = PNV_MACHINE(machine); 611 void *fdt; 612 char *buf; 613 int off; 614 int i; 615 616 fdt = g_malloc0(FDT_MAX_SIZE); 617 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 618 619 /* /qemu node */ 620 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 621 622 /* Root node */ 623 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 624 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 625 _FDT((fdt_setprop_string(fdt, 0, "model", 626 "IBM PowerNV (emulated by qemu)"))); 627 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 628 629 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 630 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 631 if (qemu_uuid_set) { 632 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf))); 633 } 634 g_free(buf); 635 636 off = fdt_add_subnode(fdt, 0, "chosen"); 637 if (machine->kernel_cmdline) { 638 _FDT((fdt_setprop_string(fdt, off, "bootargs", 639 machine->kernel_cmdline))); 640 } 641 642 if (pnv->initrd_size) { 643 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 644 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 645 646 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 647 &start_prop, sizeof(start_prop)))); 648 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 649 &end_prop, sizeof(end_prop)))); 650 } 651 652 /* Populate device tree for each chip */ 653 for (i = 0; i < pnv->num_chips; i++) { 654 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 655 } 656 657 /* Populate ISA devices on chip 0 */ 658 pnv_dt_isa(pnv, fdt); 659 660 if (pnv->bmc) { 661 pnv_dt_bmc_sensors(pnv->bmc, fdt); 662 } 663 664 /* Create an extra node for power management on machines that support it */ 665 if (pmc->dt_power_mgt) { 666 pmc->dt_power_mgt(pnv, fdt); 667 } 668 669 return fdt; 670 } 671 672 static void pnv_powerdown_notify(Notifier *n, void *opaque) 673 { 674 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 675 676 if (pnv->bmc) { 677 pnv_bmc_powerdown(pnv->bmc); 678 } 679 } 680 681 static void pnv_reset(MachineState *machine, ShutdownCause reason) 682 { 683 PnvMachineState *pnv = PNV_MACHINE(machine); 684 IPMIBmc *bmc; 685 void *fdt; 686 687 qemu_devices_reset(reason); 688 689 /* 690 * The machine should provide by default an internal BMC simulator. 691 * If not, try to use the BMC device that was provided on the command 692 * line. 693 */ 694 bmc = pnv_bmc_find(&error_fatal); 695 if (!pnv->bmc) { 696 if (!bmc) { 697 if (!qtest_enabled()) { 698 warn_report("machine has no BMC device. Use '-device " 699 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " 700 "to define one"); 701 } 702 } else { 703 pnv_bmc_set_pnor(bmc, pnv->pnor); 704 pnv->bmc = bmc; 705 } 706 } 707 708 fdt = pnv_dt_create(machine); 709 710 /* Pack resulting tree */ 711 _FDT((fdt_pack(fdt))); 712 713 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 714 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 715 716 /* 717 * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free 718 * the existing machine->fdt to avoid leaking it during 719 * a reset. 720 */ 721 g_free(machine->fdt); 722 machine->fdt = fdt; 723 } 724 725 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 726 { 727 Pnv8Chip *chip8 = PNV8_CHIP(chip); 728 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL); 729 730 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq); 731 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 732 } 733 734 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 735 { 736 Pnv8Chip *chip8 = PNV8_CHIP(chip); 737 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C); 738 739 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq); 740 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 741 } 742 743 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 744 { 745 Pnv9Chip *chip9 = PNV9_CHIP(chip); 746 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC); 747 748 qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq); 749 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 750 } 751 752 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 753 { 754 Pnv10Chip *chip10 = PNV10_CHIP(chip); 755 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC); 756 757 qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq); 758 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 759 } 760 761 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 762 { 763 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 764 } 765 766 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf) 767 { 768 Pnv8Chip *chip8 = PNV8_CHIP(chip); 769 int i; 770 771 ics_pic_print_info(&chip8->psi.ics, buf); 772 773 for (i = 0; i < chip8->num_phbs; i++) { 774 PnvPHB *phb = chip8->phbs[i]; 775 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 776 777 pnv_phb3_msi_pic_print_info(&phb3->msis, buf); 778 ics_pic_print_info(&phb3->lsis, buf); 779 } 780 } 781 782 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque) 783 { 784 GString *buf = opaque; 785 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB); 786 787 if (!phb) { 788 return 0; 789 } 790 791 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf); 792 793 return 0; 794 } 795 796 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf) 797 { 798 Pnv9Chip *chip9 = PNV9_CHIP(chip); 799 800 pnv_xive_pic_print_info(&chip9->xive, buf); 801 pnv_psi_pic_print_info(&chip9->psi, buf); 802 object_child_foreach_recursive(OBJECT(chip), 803 pnv_chip_power9_pic_print_info_child, buf); 804 } 805 806 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 807 uint32_t core_id) 808 { 809 return PNV_XSCOM_EX_BASE(core_id); 810 } 811 812 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 813 uint32_t core_id) 814 { 815 return PNV9_XSCOM_EC_BASE(core_id); 816 } 817 818 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 819 uint32_t core_id) 820 { 821 return PNV10_XSCOM_EC_BASE(core_id); 822 } 823 824 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 825 { 826 PowerPCCPUClass *ppc_default = 827 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 828 PowerPCCPUClass *ppc = 829 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 830 831 return ppc_default->pvr_match(ppc_default, ppc->pvr, false); 832 } 833 834 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 835 { 836 ISADevice *dev = isa_new("isa-ipmi-bt"); 837 838 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); 839 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); 840 isa_realize_and_unref(dev, bus, &error_fatal); 841 } 842 843 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf) 844 { 845 Pnv10Chip *chip10 = PNV10_CHIP(chip); 846 847 pnv_xive2_pic_print_info(&chip10->xive, buf); 848 pnv_psi_pic_print_info(&chip10->psi, buf); 849 object_child_foreach_recursive(OBJECT(chip), 850 pnv_chip_power9_pic_print_info_child, buf); 851 } 852 853 /* Always give the first 1GB to chip 0 else we won't boot */ 854 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id) 855 { 856 MachineState *machine = MACHINE(pnv); 857 uint64_t ram_per_chip; 858 859 assert(machine->ram_size >= 1 * GiB); 860 861 ram_per_chip = machine->ram_size / pnv->num_chips; 862 if (ram_per_chip >= 1 * GiB) { 863 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 864 } 865 866 assert(pnv->num_chips > 1); 867 868 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1); 869 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 870 } 871 872 static void pnv_init(MachineState *machine) 873 { 874 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 875 PnvMachineState *pnv = PNV_MACHINE(machine); 876 MachineClass *mc = MACHINE_GET_CLASS(machine); 877 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 878 char *fw_filename; 879 long fw_size; 880 uint64_t chip_ram_start = 0; 881 int i; 882 char *chip_typename; 883 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 884 DeviceState *dev; 885 886 if (kvm_enabled()) { 887 error_report("machine %s does not support the KVM accelerator", 888 mc->name); 889 exit(EXIT_FAILURE); 890 } 891 892 /* allocate RAM */ 893 if (machine->ram_size < mc->default_ram_size) { 894 char *sz = size_to_str(mc->default_ram_size); 895 error_report("Invalid RAM size, should be bigger than %s", sz); 896 g_free(sz); 897 exit(EXIT_FAILURE); 898 } 899 memory_region_add_subregion(get_system_memory(), 0, machine->ram); 900 901 /* 902 * Create our simple PNOR device 903 */ 904 dev = qdev_new(TYPE_PNV_PNOR); 905 if (pnor) { 906 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); 907 } 908 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 909 pnv->pnor = PNV_PNOR(dev); 910 911 /* load skiboot firmware */ 912 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 913 if (!fw_filename) { 914 error_report("Could not find OPAL firmware '%s'", bios_name); 915 exit(1); 916 } 917 918 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); 919 if (fw_size < 0) { 920 error_report("Could not load OPAL firmware '%s'", fw_filename); 921 exit(1); 922 } 923 g_free(fw_filename); 924 925 /* load kernel */ 926 if (machine->kernel_filename) { 927 long kernel_size; 928 929 kernel_size = load_image_targphys(machine->kernel_filename, 930 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 931 if (kernel_size < 0) { 932 error_report("Could not load kernel '%s'", 933 machine->kernel_filename); 934 exit(1); 935 } 936 } 937 938 /* load initrd */ 939 if (machine->initrd_filename) { 940 pnv->initrd_base = INITRD_LOAD_ADDR; 941 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 942 pnv->initrd_base, INITRD_MAX_SIZE); 943 if (pnv->initrd_size < 0) { 944 error_report("Could not load initial ram disk '%s'", 945 machine->initrd_filename); 946 exit(1); 947 } 948 } 949 950 /* MSIs are supported on this platform */ 951 msi_nonbroken = true; 952 953 /* 954 * Check compatibility of the specified CPU with the machine 955 * default. 956 */ 957 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 958 error_report("invalid CPU model '%s' for %s machine", 959 machine->cpu_type, mc->name); 960 exit(1); 961 } 962 963 /* Create the processor chips */ 964 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 965 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 966 i, machine->cpu_type); 967 if (!object_class_by_name(chip_typename)) { 968 error_report("invalid chip model '%.*s' for %s machine", 969 i, machine->cpu_type, mc->name); 970 exit(1); 971 } 972 973 pnv->num_chips = 974 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 975 976 if (machine->smp.threads > 8) { 977 error_report("Cannot support more than 8 threads/core " 978 "on a powernv machine"); 979 exit(1); 980 } 981 if (!is_power_of_2(machine->smp.threads)) { 982 error_report("Cannot support %d threads/core on a powernv" 983 "machine because it must be a power of 2", 984 machine->smp.threads); 985 exit(1); 986 } 987 /* 988 * TODO: should we decide on how many chips we can create based 989 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 990 */ 991 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) { 992 error_report("invalid number of chips: '%d'", pnv->num_chips); 993 error_printf( 994 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n"); 995 exit(1); 996 } 997 998 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 999 for (i = 0; i < pnv->num_chips; i++) { 1000 char chip_name[32]; 1001 Object *chip = OBJECT(qdev_new(chip_typename)); 1002 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i); 1003 1004 pnv->chips[i] = PNV_CHIP(chip); 1005 1006 /* Distribute RAM among the chips */ 1007 object_property_set_int(chip, "ram-start", chip_ram_start, 1008 &error_fatal); 1009 object_property_set_int(chip, "ram-size", chip_ram_size, 1010 &error_fatal); 1011 chip_ram_start += chip_ram_size; 1012 1013 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i); 1014 object_property_add_child(OBJECT(pnv), chip_name, chip); 1015 object_property_set_int(chip, "chip-id", i, &error_fatal); 1016 object_property_set_int(chip, "nr-cores", machine->smp.cores, 1017 &error_fatal); 1018 object_property_set_int(chip, "nr-threads", machine->smp.threads, 1019 &error_fatal); 1020 /* 1021 * The POWER8 machine use the XICS interrupt interface. 1022 * Propagate the XICS fabric to the chip and its controllers. 1023 */ 1024 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 1025 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); 1026 } 1027 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 1028 object_property_set_link(chip, "xive-fabric", OBJECT(pnv), 1029 &error_abort); 1030 } 1031 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); 1032 } 1033 g_free(chip_typename); 1034 1035 /* Instantiate ISA bus on chip 0 */ 1036 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 1037 1038 /* Create serial port */ 1039 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1040 1041 /* Create an RTC ISA device too */ 1042 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 1043 1044 /* 1045 * Create the machine BMC simulator and the IPMI BT device for 1046 * communication with the BMC 1047 */ 1048 if (defaults_enabled()) { 1049 pnv->bmc = pnv_bmc_create(pnv->pnor); 1050 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 1051 } 1052 1053 /* 1054 * The PNOR is mapped on the LPC FW address space by the BMC. 1055 * Since we can not reach the remote BMC machine with LPC memops, 1056 * map it always for now. 1057 */ 1058 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, 1059 &pnv->pnor->mmio); 1060 1061 /* 1062 * OpenPOWER systems use a IPMI SEL Event message to notify the 1063 * host to powerdown 1064 */ 1065 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 1066 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 1067 1068 /* 1069 * Create/Connect any machine-specific I2C devices 1070 */ 1071 if (pmc->i2c_init) { 1072 pmc->i2c_init(pnv); 1073 } 1074 } 1075 1076 /* 1077 * 0:21 Reserved - Read as zeros 1078 * 22:24 Chip ID 1079 * 25:28 Core number 1080 * 29:31 Thread ID 1081 */ 1082 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id, 1083 uint32_t thread_id) 1084 { 1085 return (chip->chip_id << 7) | (core_id << 3) | thread_id; 1086 } 1087 1088 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1089 Error **errp) 1090 { 1091 Pnv8Chip *chip8 = PNV8_CHIP(chip); 1092 Error *local_err = NULL; 1093 Object *obj; 1094 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1095 1096 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 1097 if (local_err) { 1098 error_propagate(errp, local_err); 1099 return; 1100 } 1101 1102 pnv_cpu->intc = obj; 1103 } 1104 1105 1106 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1107 { 1108 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1109 1110 icp_reset(ICP(pnv_cpu->intc)); 1111 } 1112 1113 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1114 { 1115 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1116 1117 icp_destroy(ICP(pnv_cpu->intc)); 1118 pnv_cpu->intc = NULL; 1119 } 1120 1121 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1122 GString *buf) 1123 { 1124 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf); 1125 } 1126 1127 /* 1128 * 0:48 Reserved - Read as zeroes 1129 * 49:52 Node ID 1130 * 53:55 Chip ID 1131 * 56 Reserved - Read as zero 1132 * 57:61 Core number 1133 * 62:63 Thread ID 1134 * 1135 * We only care about the lower bits. uint32_t is fine for the moment. 1136 */ 1137 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id, 1138 uint32_t thread_id) 1139 { 1140 if (chip->nr_threads == 8) { 1141 return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) | 1142 (thread_id >> 1); 1143 } else { 1144 return (chip->chip_id << 8) | (core_id << 2) | thread_id; 1145 } 1146 } 1147 1148 /* 1149 * 0:48 Reserved - Read as zeroes 1150 * 49:52 Node ID 1151 * 53:55 Chip ID 1152 * 56 Reserved - Read as zero 1153 * 57:59 Quad ID 1154 * 60 Core Chiplet Pair ID 1155 * 61:63 Thread/Core Chiplet ID t0-t2 1156 * 1157 * We only care about the lower bits. uint32_t is fine for the moment. 1158 */ 1159 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id, 1160 uint32_t thread_id) 1161 { 1162 if (chip->nr_threads == 8) { 1163 return (chip->chip_id << 8) | ((core_id / 4) << 4) | 1164 ((core_id % 2) << 3) | thread_id; 1165 } else { 1166 return (chip->chip_id << 8) | (core_id << 2) | thread_id; 1167 } 1168 } 1169 1170 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1171 Error **errp) 1172 { 1173 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1174 Error *local_err = NULL; 1175 Object *obj; 1176 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1177 1178 /* 1179 * The core creates its interrupt presenter but the XIVE interrupt 1180 * controller object is initialized afterwards. Hopefully, it's 1181 * only used at runtime. 1182 */ 1183 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), 1184 &local_err); 1185 if (local_err) { 1186 error_propagate(errp, local_err); 1187 return; 1188 } 1189 1190 pnv_cpu->intc = obj; 1191 } 1192 1193 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1194 { 1195 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1196 1197 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1198 } 1199 1200 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1201 { 1202 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1203 1204 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1205 pnv_cpu->intc = NULL; 1206 } 1207 1208 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1209 GString *buf) 1210 { 1211 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf); 1212 } 1213 1214 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1215 Error **errp) 1216 { 1217 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1218 Error *local_err = NULL; 1219 Object *obj; 1220 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1221 1222 /* 1223 * The core creates its interrupt presenter but the XIVE2 interrupt 1224 * controller object is initialized afterwards. Hopefully, it's 1225 * only used at runtime. 1226 */ 1227 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive), 1228 &local_err); 1229 if (local_err) { 1230 error_propagate(errp, local_err); 1231 return; 1232 } 1233 1234 pnv_cpu->intc = obj; 1235 } 1236 1237 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1238 { 1239 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1240 1241 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1242 } 1243 1244 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1245 { 1246 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1247 1248 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1249 pnv_cpu->intc = NULL; 1250 } 1251 1252 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1253 GString *buf) 1254 { 1255 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf); 1256 } 1257 1258 /* 1259 * Allowed core identifiers on a POWER8 Processor Chip : 1260 * 1261 * <EX0 reserved> 1262 * EX1 - Venice only 1263 * EX2 - Venice only 1264 * EX3 - Venice only 1265 * EX4 1266 * EX5 1267 * EX6 1268 * <EX7,8 reserved> <reserved> 1269 * EX9 - Venice only 1270 * EX10 - Venice only 1271 * EX11 - Venice only 1272 * EX12 1273 * EX13 1274 * EX14 1275 * <EX15 reserved> 1276 */ 1277 #define POWER8E_CORE_MASK (0x7070ull) 1278 #define POWER8_CORE_MASK (0x7e7eull) 1279 1280 /* 1281 * POWER9 has 24 cores, ids starting at 0x0 1282 */ 1283 #define POWER9_CORE_MASK (0xffffffffffffffull) 1284 1285 1286 #define POWER10_CORE_MASK (0xffffffffffffffull) 1287 1288 static void pnv_chip_power8_instance_init(Object *obj) 1289 { 1290 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1291 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1292 int i; 1293 1294 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1295 (Object **)&chip8->xics, 1296 object_property_allow_set_link, 1297 OBJ_PROP_LINK_STRONG); 1298 1299 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); 1300 1301 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); 1302 1303 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); 1304 1305 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); 1306 1307 if (defaults_enabled()) { 1308 chip8->num_phbs = pcc->num_phbs; 1309 1310 for (i = 0; i < chip8->num_phbs; i++) { 1311 Object *phb = object_new(TYPE_PNV_PHB); 1312 1313 /* 1314 * We need the chip to parent the PHB to allow the DT 1315 * to build correctly (via pnv_xscom_dt()). 1316 * 1317 * TODO: the PHB should be parented by a PEC device that, at 1318 * this moment, is not modelled powernv8/phb3. 1319 */ 1320 object_property_add_child(obj, "phb[*]", phb); 1321 chip8->phbs[i] = PNV_PHB(phb); 1322 } 1323 } 1324 1325 } 1326 1327 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1328 { 1329 PnvChip *chip = PNV_CHIP(chip8); 1330 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1331 int i, j; 1332 char *name; 1333 1334 name = g_strdup_printf("icp-%x", chip->chip_id); 1335 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1336 g_free(name); 1337 memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip), 1338 &chip8->icp_mmio); 1339 1340 /* Map the ICP registers for each thread */ 1341 for (i = 0; i < chip->nr_cores; i++) { 1342 PnvCore *pnv_core = chip->cores[i]; 1343 int core_hwid = CPU_CORE(pnv_core)->core_id; 1344 1345 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1346 uint32_t pir = pcc->chip_pir(chip, core_hwid, j); 1347 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1348 1349 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1350 &icp->mmio); 1351 } 1352 } 1353 } 1354 1355 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1356 { 1357 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1358 PnvChip *chip = PNV_CHIP(dev); 1359 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1360 Pnv8Psi *psi8 = &chip8->psi; 1361 Error *local_err = NULL; 1362 int i; 1363 1364 assert(chip8->xics); 1365 1366 /* XSCOM bridge is first */ 1367 pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip)); 1368 1369 pcc->parent_realize(dev, &local_err); 1370 if (local_err) { 1371 error_propagate(errp, local_err); 1372 return; 1373 } 1374 1375 /* Processor Service Interface (PSI) Host Bridge */ 1376 object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip), 1377 &error_fatal); 1378 object_property_set_link(OBJECT(psi8), ICS_PROP_XICS, 1379 OBJECT(chip8->xics), &error_abort); 1380 if (!qdev_realize(DEVICE(psi8), NULL, errp)) { 1381 return; 1382 } 1383 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1384 &PNV_PSI(psi8)->xscom_regs); 1385 1386 /* Create LPC controller */ 1387 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); 1388 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1389 1390 chip->fw_mr = &chip8->lpc.isa_fw; 1391 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1392 (uint64_t) PNV_XSCOM_BASE(chip), 1393 PNV_XSCOM_LPC_BASE); 1394 1395 /* 1396 * Interrupt Management Area. This is the memory region holding 1397 * all the Interrupt Control Presenter (ICP) registers 1398 */ 1399 pnv_chip_icp_realize(chip8, &local_err); 1400 if (local_err) { 1401 error_propagate(errp, local_err); 1402 return; 1403 } 1404 1405 /* Create the simplified OCC model */ 1406 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { 1407 return; 1408 } 1409 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1410 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0, 1411 qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC)); 1412 1413 /* OCC SRAM model */ 1414 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1415 &chip8->occ.sram_regs); 1416 1417 /* HOMER */ 1418 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), 1419 &error_abort); 1420 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { 1421 return; 1422 } 1423 /* Homer Xscom region */ 1424 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1425 1426 /* Homer mmio region */ 1427 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1428 &chip8->homer.regs); 1429 1430 /* PHB controllers */ 1431 for (i = 0; i < chip8->num_phbs; i++) { 1432 PnvPHB *phb = chip8->phbs[i]; 1433 1434 object_property_set_int(OBJECT(phb), "index", i, &error_fatal); 1435 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, 1436 &error_fatal); 1437 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip), 1438 &error_fatal); 1439 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { 1440 return; 1441 } 1442 } 1443 } 1444 1445 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1446 { 1447 addr &= (PNV_XSCOM_SIZE - 1); 1448 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1449 } 1450 1451 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1452 { 1453 DeviceClass *dc = DEVICE_CLASS(klass); 1454 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1455 1456 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1457 k->cores_mask = POWER8E_CORE_MASK; 1458 k->num_phbs = 3; 1459 k->chip_pir = pnv_chip_pir_p8; 1460 k->intc_create = pnv_chip_power8_intc_create; 1461 k->intc_reset = pnv_chip_power8_intc_reset; 1462 k->intc_destroy = pnv_chip_power8_intc_destroy; 1463 k->intc_print_info = pnv_chip_power8_intc_print_info; 1464 k->isa_create = pnv_chip_power8_isa_create; 1465 k->dt_populate = pnv_chip_power8_dt_populate; 1466 k->pic_print_info = pnv_chip_power8_pic_print_info; 1467 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1468 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1469 dc->desc = "PowerNV Chip POWER8E"; 1470 1471 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1472 &k->parent_realize); 1473 } 1474 1475 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1476 { 1477 DeviceClass *dc = DEVICE_CLASS(klass); 1478 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1479 1480 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1481 k->cores_mask = POWER8_CORE_MASK; 1482 k->num_phbs = 3; 1483 k->chip_pir = pnv_chip_pir_p8; 1484 k->intc_create = pnv_chip_power8_intc_create; 1485 k->intc_reset = pnv_chip_power8_intc_reset; 1486 k->intc_destroy = pnv_chip_power8_intc_destroy; 1487 k->intc_print_info = pnv_chip_power8_intc_print_info; 1488 k->isa_create = pnv_chip_power8_isa_create; 1489 k->dt_populate = pnv_chip_power8_dt_populate; 1490 k->pic_print_info = pnv_chip_power8_pic_print_info; 1491 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1492 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1493 dc->desc = "PowerNV Chip POWER8"; 1494 1495 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1496 &k->parent_realize); 1497 } 1498 1499 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1500 { 1501 DeviceClass *dc = DEVICE_CLASS(klass); 1502 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1503 1504 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1505 k->cores_mask = POWER8_CORE_MASK; 1506 k->num_phbs = 4; 1507 k->chip_pir = pnv_chip_pir_p8; 1508 k->intc_create = pnv_chip_power8_intc_create; 1509 k->intc_reset = pnv_chip_power8_intc_reset; 1510 k->intc_destroy = pnv_chip_power8_intc_destroy; 1511 k->intc_print_info = pnv_chip_power8_intc_print_info; 1512 k->isa_create = pnv_chip_power8nvl_isa_create; 1513 k->dt_populate = pnv_chip_power8_dt_populate; 1514 k->pic_print_info = pnv_chip_power8_pic_print_info; 1515 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1516 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1517 dc->desc = "PowerNV Chip POWER8NVL"; 1518 1519 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1520 &k->parent_realize); 1521 } 1522 1523 static void pnv_chip_power9_instance_init(Object *obj) 1524 { 1525 PnvChip *chip = PNV_CHIP(obj); 1526 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1527 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1528 int i; 1529 1530 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); 1531 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1532 "xive-fabric"); 1533 1534 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); 1535 1536 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); 1537 1538 object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD); 1539 1540 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); 1541 1542 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE); 1543 1544 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); 1545 1546 /* Number of PECs is the chip default */ 1547 chip->num_pecs = pcc->num_pecs; 1548 1549 for (i = 0; i < chip->num_pecs; i++) { 1550 object_initialize_child(obj, "pec[*]", &chip9->pecs[i], 1551 TYPE_PNV_PHB4_PEC); 1552 } 1553 1554 for (i = 0; i < pcc->i2c_num_engines; i++) { 1555 object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C); 1556 } 1557 } 1558 1559 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq, 1560 PnvCore *pnv_core, 1561 const char *type) 1562 { 1563 char eq_name[32]; 1564 int core_id = CPU_CORE(pnv_core)->core_id; 1565 1566 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1567 object_initialize_child_with_props(OBJECT(chip), eq_name, eq, 1568 sizeof(*eq), type, 1569 &error_fatal, NULL); 1570 1571 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal); 1572 qdev_realize(DEVICE(eq), NULL, &error_fatal); 1573 } 1574 1575 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1576 { 1577 PnvChip *chip = PNV_CHIP(chip9); 1578 int i; 1579 1580 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1581 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1582 1583 for (i = 0; i < chip9->nr_quads; i++) { 1584 PnvQuad *eq = &chip9->quads[i]; 1585 1586 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], 1587 PNV_QUAD_TYPE_NAME("power9")); 1588 1589 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id), 1590 &eq->xscom_regs); 1591 } 1592 } 1593 1594 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp) 1595 { 1596 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1597 int i; 1598 1599 for (i = 0; i < chip->num_pecs; i++) { 1600 PnvPhb4PecState *pec = &chip9->pecs[i]; 1601 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1602 uint32_t pec_nest_base; 1603 uint32_t pec_pci_base; 1604 1605 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1606 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1607 &error_fatal); 1608 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1609 &error_fatal); 1610 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1611 return; 1612 } 1613 1614 pec_nest_base = pecc->xscom_nest_base(pec); 1615 pec_pci_base = pecc->xscom_pci_base(pec); 1616 1617 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1618 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1619 } 1620 } 1621 1622 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1623 { 1624 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1625 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1626 PnvChip *chip = PNV_CHIP(dev); 1627 Pnv9Psi *psi9 = &chip9->psi; 1628 Error *local_err = NULL; 1629 int i; 1630 1631 /* XSCOM bridge is first */ 1632 pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip)); 1633 1634 pcc->parent_realize(dev, &local_err); 1635 if (local_err) { 1636 error_propagate(errp, local_err); 1637 return; 1638 } 1639 1640 pnv_chip_quad_realize(chip9, &local_err); 1641 if (local_err) { 1642 error_propagate(errp, local_err); 1643 return; 1644 } 1645 1646 /* XIVE interrupt controller (POWER9) */ 1647 object_property_set_int(OBJECT(&chip9->xive), "ic-bar", 1648 PNV9_XIVE_IC_BASE(chip), &error_fatal); 1649 object_property_set_int(OBJECT(&chip9->xive), "vc-bar", 1650 PNV9_XIVE_VC_BASE(chip), &error_fatal); 1651 object_property_set_int(OBJECT(&chip9->xive), "pc-bar", 1652 PNV9_XIVE_PC_BASE(chip), &error_fatal); 1653 object_property_set_int(OBJECT(&chip9->xive), "tm-bar", 1654 PNV9_XIVE_TM_BASE(chip), &error_fatal); 1655 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), 1656 &error_abort); 1657 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { 1658 return; 1659 } 1660 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1661 &chip9->xive.xscom_regs); 1662 1663 /* Processor Service Interface (PSI) Host Bridge */ 1664 object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip), 1665 &error_fatal); 1666 /* This is the only device with 4k ESB pages */ 1667 object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K, 1668 &error_fatal); 1669 if (!qdev_realize(DEVICE(psi9), NULL, errp)) { 1670 return; 1671 } 1672 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1673 &PNV_PSI(psi9)->xscom_regs); 1674 1675 /* LPC */ 1676 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { 1677 return; 1678 } 1679 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1680 &chip9->lpc.xscom_regs); 1681 1682 chip->fw_mr = &chip9->lpc.isa_fw; 1683 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1684 (uint64_t) PNV9_LPCM_BASE(chip)); 1685 1686 /* ChipTOD */ 1687 object_property_set_bool(OBJECT(&chip9->chiptod), "primary", 1688 chip->chip_id == 0, &error_abort); 1689 object_property_set_bool(OBJECT(&chip9->chiptod), "secondary", 1690 chip->chip_id == 1, &error_abort); 1691 object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip), 1692 &error_abort); 1693 if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) { 1694 return; 1695 } 1696 pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE, 1697 &chip9->chiptod.xscom_regs); 1698 1699 /* Create the simplified OCC model */ 1700 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { 1701 return; 1702 } 1703 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1704 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in( 1705 DEVICE(psi9), PSIHB9_IRQ_OCC)); 1706 1707 /* OCC SRAM model */ 1708 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1709 &chip9->occ.sram_regs); 1710 1711 /* SBE */ 1712 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) { 1713 return; 1714 } 1715 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE, 1716 &chip9->sbe.xscom_ctrl_regs); 1717 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE, 1718 &chip9->sbe.xscom_mbox_regs); 1719 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in( 1720 DEVICE(psi9), PSIHB9_IRQ_PSU)); 1721 1722 /* HOMER */ 1723 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), 1724 &error_abort); 1725 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { 1726 return; 1727 } 1728 /* Homer Xscom region */ 1729 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1730 1731 /* Homer mmio region */ 1732 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1733 &chip9->homer.regs); 1734 1735 /* PEC PHBs */ 1736 pnv_chip_power9_pec_realize(chip, &local_err); 1737 if (local_err) { 1738 error_propagate(errp, local_err); 1739 return; 1740 } 1741 1742 /* 1743 * I2C 1744 */ 1745 for (i = 0; i < pcc->i2c_num_engines; i++) { 1746 Object *obj = OBJECT(&chip9->i2c[i]); 1747 1748 object_property_set_int(obj, "engine", i + 1, &error_fatal); 1749 object_property_set_int(obj, "num-busses", 1750 pcc->i2c_ports_per_engine[i], 1751 &error_fatal); 1752 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort); 1753 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 1754 return; 1755 } 1756 pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE + 1757 (chip9->i2c[i].engine - 1) * 1758 PNV9_XSCOM_I2CM_SIZE, 1759 &chip9->i2c[i].xscom_regs); 1760 qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0, 1761 qdev_get_gpio_in(DEVICE(psi9), 1762 PSIHB9_IRQ_SBE_I2C)); 1763 } 1764 } 1765 1766 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1767 { 1768 addr &= (PNV9_XSCOM_SIZE - 1); 1769 return addr >> 3; 1770 } 1771 1772 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1773 { 1774 DeviceClass *dc = DEVICE_CLASS(klass); 1775 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1776 static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2}; 1777 1778 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1779 k->cores_mask = POWER9_CORE_MASK; 1780 k->chip_pir = pnv_chip_pir_p9; 1781 k->intc_create = pnv_chip_power9_intc_create; 1782 k->intc_reset = pnv_chip_power9_intc_reset; 1783 k->intc_destroy = pnv_chip_power9_intc_destroy; 1784 k->intc_print_info = pnv_chip_power9_intc_print_info; 1785 k->isa_create = pnv_chip_power9_isa_create; 1786 k->dt_populate = pnv_chip_power9_dt_populate; 1787 k->pic_print_info = pnv_chip_power9_pic_print_info; 1788 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1789 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1790 dc->desc = "PowerNV Chip POWER9"; 1791 k->num_pecs = PNV9_CHIP_MAX_PEC; 1792 k->i2c_num_engines = PNV9_CHIP_MAX_I2C; 1793 k->i2c_ports_per_engine = i2c_ports_per_engine; 1794 1795 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1796 &k->parent_realize); 1797 } 1798 1799 static void pnv_chip_power10_instance_init(Object *obj) 1800 { 1801 PnvChip *chip = PNV_CHIP(obj); 1802 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1803 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1804 int i; 1805 1806 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2); 1807 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive), 1808 "xive-fabric"); 1809 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); 1810 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); 1811 object_initialize_child(obj, "chiptod", &chip10->chiptod, 1812 TYPE_PNV10_CHIPTOD); 1813 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC); 1814 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE); 1815 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER); 1816 object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet, 1817 TYPE_PNV_N1_CHIPLET); 1818 1819 chip->num_pecs = pcc->num_pecs; 1820 1821 for (i = 0; i < chip->num_pecs; i++) { 1822 object_initialize_child(obj, "pec[*]", &chip10->pecs[i], 1823 TYPE_PNV_PHB5_PEC); 1824 } 1825 1826 for (i = 0; i < pcc->i2c_num_engines; i++) { 1827 object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C); 1828 } 1829 } 1830 1831 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp) 1832 { 1833 PnvChip *chip = PNV_CHIP(chip10); 1834 int i; 1835 1836 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1837 chip10->quads = g_new0(PnvQuad, chip10->nr_quads); 1838 1839 for (i = 0; i < chip10->nr_quads; i++) { 1840 PnvQuad *eq = &chip10->quads[i]; 1841 1842 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], 1843 PNV_QUAD_TYPE_NAME("power10")); 1844 1845 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id), 1846 &eq->xscom_regs); 1847 1848 pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id), 1849 &eq->xscom_qme_regs); 1850 } 1851 } 1852 1853 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp) 1854 { 1855 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1856 int i; 1857 1858 for (i = 0; i < chip->num_pecs; i++) { 1859 PnvPhb4PecState *pec = &chip10->pecs[i]; 1860 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1861 uint32_t pec_nest_base; 1862 uint32_t pec_pci_base; 1863 1864 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1865 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1866 &error_fatal); 1867 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1868 &error_fatal); 1869 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1870 return; 1871 } 1872 1873 pec_nest_base = pecc->xscom_nest_base(pec); 1874 pec_pci_base = pecc->xscom_pci_base(pec); 1875 1876 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1877 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1878 } 1879 } 1880 1881 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 1882 { 1883 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1884 PnvChip *chip = PNV_CHIP(dev); 1885 Pnv10Chip *chip10 = PNV10_CHIP(dev); 1886 Error *local_err = NULL; 1887 int i; 1888 1889 /* XSCOM bridge is first */ 1890 pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip)); 1891 1892 pcc->parent_realize(dev, &local_err); 1893 if (local_err) { 1894 error_propagate(errp, local_err); 1895 return; 1896 } 1897 1898 pnv_chip_power10_quad_realize(chip10, &local_err); 1899 if (local_err) { 1900 error_propagate(errp, local_err); 1901 return; 1902 } 1903 1904 /* XIVE2 interrupt controller (POWER10) */ 1905 object_property_set_int(OBJECT(&chip10->xive), "ic-bar", 1906 PNV10_XIVE2_IC_BASE(chip), &error_fatal); 1907 object_property_set_int(OBJECT(&chip10->xive), "esb-bar", 1908 PNV10_XIVE2_ESB_BASE(chip), &error_fatal); 1909 object_property_set_int(OBJECT(&chip10->xive), "end-bar", 1910 PNV10_XIVE2_END_BASE(chip), &error_fatal); 1911 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar", 1912 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal); 1913 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar", 1914 PNV10_XIVE2_NVC_BASE(chip), &error_fatal); 1915 object_property_set_int(OBJECT(&chip10->xive), "tm-bar", 1916 PNV10_XIVE2_TM_BASE(chip), &error_fatal); 1917 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip), 1918 &error_abort); 1919 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) { 1920 return; 1921 } 1922 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE, 1923 &chip10->xive.xscom_regs); 1924 1925 /* Processor Service Interface (PSI) Host Bridge */ 1926 object_property_set_int(OBJECT(&chip10->psi), "bar", 1927 PNV10_PSIHB_BASE(chip), &error_fatal); 1928 /* PSI can now be configured to use 64k ESB pages on POWER10 */ 1929 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K, 1930 &error_fatal); 1931 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { 1932 return; 1933 } 1934 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 1935 &PNV_PSI(&chip10->psi)->xscom_regs); 1936 1937 /* LPC */ 1938 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { 1939 return; 1940 } 1941 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 1942 &chip10->lpc.xscom_regs); 1943 1944 chip->fw_mr = &chip10->lpc.isa_fw; 1945 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1946 (uint64_t) PNV10_LPCM_BASE(chip)); 1947 1948 /* ChipTOD */ 1949 object_property_set_bool(OBJECT(&chip10->chiptod), "primary", 1950 chip->chip_id == 0, &error_abort); 1951 object_property_set_bool(OBJECT(&chip10->chiptod), "secondary", 1952 chip->chip_id == 1, &error_abort); 1953 object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip), 1954 &error_abort); 1955 if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) { 1956 return; 1957 } 1958 pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE, 1959 &chip10->chiptod.xscom_regs); 1960 1961 /* Create the simplified OCC model */ 1962 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) { 1963 return; 1964 } 1965 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE, 1966 &chip10->occ.xscom_regs); 1967 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in( 1968 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC)); 1969 1970 /* OCC SRAM model */ 1971 memory_region_add_subregion(get_system_memory(), 1972 PNV10_OCC_SENSOR_BASE(chip), 1973 &chip10->occ.sram_regs); 1974 1975 /* SBE */ 1976 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) { 1977 return; 1978 } 1979 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE, 1980 &chip10->sbe.xscom_ctrl_regs); 1981 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE, 1982 &chip10->sbe.xscom_mbox_regs); 1983 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in( 1984 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU)); 1985 1986 /* HOMER */ 1987 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip), 1988 &error_abort); 1989 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) { 1990 return; 1991 } 1992 /* Homer Xscom region */ 1993 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE, 1994 &chip10->homer.pba_regs); 1995 1996 /* Homer mmio region */ 1997 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip), 1998 &chip10->homer.regs); 1999 2000 /* N1 chiplet */ 2001 if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) { 2002 return; 2003 } 2004 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE, 2005 &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr); 2006 2007 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE, 2008 &chip10->n1_chiplet.xscom_pb_eq_mr); 2009 2010 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE, 2011 &chip10->n1_chiplet.xscom_pb_es_mr); 2012 2013 /* PHBs */ 2014 pnv_chip_power10_phb_realize(chip, &local_err); 2015 if (local_err) { 2016 error_propagate(errp, local_err); 2017 return; 2018 } 2019 2020 2021 /* 2022 * I2C 2023 */ 2024 for (i = 0; i < pcc->i2c_num_engines; i++) { 2025 Object *obj = OBJECT(&chip10->i2c[i]); 2026 2027 object_property_set_int(obj, "engine", i + 1, &error_fatal); 2028 object_property_set_int(obj, "num-busses", 2029 pcc->i2c_ports_per_engine[i], 2030 &error_fatal); 2031 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort); 2032 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 2033 return; 2034 } 2035 pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE + 2036 (chip10->i2c[i].engine - 1) * 2037 PNV10_XSCOM_I2CM_SIZE, 2038 &chip10->i2c[i].xscom_regs); 2039 qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0, 2040 qdev_get_gpio_in(DEVICE(&chip10->psi), 2041 PSIHB9_IRQ_SBE_I2C)); 2042 } 2043 2044 } 2045 2046 static void pnv_rainier_i2c_init(PnvMachineState *pnv) 2047 { 2048 int i; 2049 for (i = 0; i < pnv->num_chips; i++) { 2050 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 2051 2052 /* 2053 * Add a PCA9552 I2C device for PCIe hotplug control 2054 * to engine 2, bus 1, address 0x63 2055 */ 2056 I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1], 2057 "pca9552", 0x63); 2058 2059 /* 2060 * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9 2061 * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots 2062 * after hypervisor code sets a SLOTx_EN pin high. 2063 */ 2064 qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5)); 2065 qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6)); 2066 qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7)); 2067 qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8)); 2068 qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9)); 2069 2070 /* 2071 * Add a PCA9554 I2C device for cable card presence detection 2072 * to engine 2, bus 1, address 0x25 2073 */ 2074 i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25); 2075 } 2076 } 2077 2078 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 2079 { 2080 addr &= (PNV10_XSCOM_SIZE - 1); 2081 return addr >> 3; 2082 } 2083 2084 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 2085 { 2086 DeviceClass *dc = DEVICE_CLASS(klass); 2087 PnvChipClass *k = PNV_CHIP_CLASS(klass); 2088 static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16}; 2089 2090 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */ 2091 k->cores_mask = POWER10_CORE_MASK; 2092 k->chip_pir = pnv_chip_pir_p10; 2093 k->intc_create = pnv_chip_power10_intc_create; 2094 k->intc_reset = pnv_chip_power10_intc_reset; 2095 k->intc_destroy = pnv_chip_power10_intc_destroy; 2096 k->intc_print_info = pnv_chip_power10_intc_print_info; 2097 k->isa_create = pnv_chip_power10_isa_create; 2098 k->dt_populate = pnv_chip_power10_dt_populate; 2099 k->pic_print_info = pnv_chip_power10_pic_print_info; 2100 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 2101 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 2102 dc->desc = "PowerNV Chip POWER10"; 2103 k->num_pecs = PNV10_CHIP_MAX_PEC; 2104 k->i2c_num_engines = PNV10_CHIP_MAX_I2C; 2105 k->i2c_ports_per_engine = i2c_ports_per_engine; 2106 2107 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 2108 &k->parent_realize); 2109 } 2110 2111 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 2112 { 2113 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 2114 int cores_max; 2115 2116 /* 2117 * No custom mask for this chip, let's use the default one from * 2118 * the chip class 2119 */ 2120 if (!chip->cores_mask) { 2121 chip->cores_mask = pcc->cores_mask; 2122 } 2123 2124 /* filter alien core ids ! some are reserved */ 2125 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 2126 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 2127 chip->cores_mask); 2128 return; 2129 } 2130 chip->cores_mask &= pcc->cores_mask; 2131 2132 /* now that we have a sane layout, let check the number of cores */ 2133 cores_max = ctpop64(chip->cores_mask); 2134 if (chip->nr_cores > cores_max) { 2135 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 2136 cores_max); 2137 return; 2138 } 2139 } 2140 2141 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 2142 { 2143 Error *error = NULL; 2144 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 2145 const char *typename = pnv_chip_core_typename(chip); 2146 int i, core_hwid; 2147 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 2148 2149 if (!object_class_by_name(typename)) { 2150 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 2151 return; 2152 } 2153 2154 /* Cores */ 2155 pnv_chip_core_sanitize(chip, &error); 2156 if (error) { 2157 error_propagate(errp, error); 2158 return; 2159 } 2160 2161 chip->cores = g_new0(PnvCore *, chip->nr_cores); 2162 2163 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 2164 && (i < chip->nr_cores); core_hwid++) { 2165 char core_name[32]; 2166 PnvCore *pnv_core; 2167 uint64_t xscom_core_base; 2168 2169 if (!(chip->cores_mask & (1ull << core_hwid))) { 2170 continue; 2171 } 2172 2173 pnv_core = PNV_CORE(object_new(typename)); 2174 2175 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 2176 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); 2177 chip->cores[i] = pnv_core; 2178 object_property_set_int(OBJECT(pnv_core), "nr-threads", 2179 chip->nr_threads, &error_fatal); 2180 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, 2181 core_hwid, &error_fatal); 2182 object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid, 2183 &error_fatal); 2184 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, 2185 &error_fatal); 2186 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), 2187 &error_abort); 2188 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); 2189 2190 /* Each core has an XSCOM MMIO region */ 2191 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 2192 2193 pnv_xscom_add_subregion(chip, xscom_core_base, 2194 &pnv_core->xscom_regs); 2195 i++; 2196 } 2197 } 2198 2199 static void pnv_chip_realize(DeviceState *dev, Error **errp) 2200 { 2201 PnvChip *chip = PNV_CHIP(dev); 2202 Error *error = NULL; 2203 2204 /* Cores */ 2205 pnv_chip_core_realize(chip, &error); 2206 if (error) { 2207 error_propagate(errp, error); 2208 return; 2209 } 2210 } 2211 2212 static Property pnv_chip_properties[] = { 2213 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 2214 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 2215 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 2216 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 2217 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 2218 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 2219 DEFINE_PROP_END_OF_LIST(), 2220 }; 2221 2222 static void pnv_chip_class_init(ObjectClass *klass, void *data) 2223 { 2224 DeviceClass *dc = DEVICE_CLASS(klass); 2225 2226 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 2227 dc->realize = pnv_chip_realize; 2228 device_class_set_props(dc, pnv_chip_properties); 2229 dc->desc = "PowerNV Chip"; 2230 } 2231 2232 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id) 2233 { 2234 int i; 2235 2236 for (i = 0; i < chip->nr_cores; i++) { 2237 PnvCore *pc = chip->cores[i]; 2238 CPUCore *cc = CPU_CORE(pc); 2239 2240 if (cc->core_id == core_id) { 2241 return pc; 2242 } 2243 } 2244 return NULL; 2245 } 2246 2247 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 2248 { 2249 int i, j; 2250 2251 for (i = 0; i < chip->nr_cores; i++) { 2252 PnvCore *pc = chip->cores[i]; 2253 CPUCore *cc = CPU_CORE(pc); 2254 2255 for (j = 0; j < cc->nr_threads; j++) { 2256 if (ppc_cpu_pir(pc->threads[j]) == pir) { 2257 return pc->threads[j]; 2258 } 2259 } 2260 } 2261 return NULL; 2262 } 2263 2264 static void pnv_chip_foreach_cpu(PnvChip *chip, 2265 void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque), 2266 void *opaque) 2267 { 2268 int i, j; 2269 2270 for (i = 0; i < chip->nr_cores; i++) { 2271 PnvCore *pc = chip->cores[i]; 2272 2273 for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) { 2274 fn(chip, pc->threads[j], opaque); 2275 } 2276 } 2277 } 2278 2279 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 2280 { 2281 PnvMachineState *pnv = PNV_MACHINE(xi); 2282 int i, j; 2283 2284 for (i = 0; i < pnv->num_chips; i++) { 2285 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2286 2287 if (ics_valid_irq(&chip8->psi.ics, irq)) { 2288 return &chip8->psi.ics; 2289 } 2290 2291 for (j = 0; j < chip8->num_phbs; j++) { 2292 PnvPHB *phb = chip8->phbs[j]; 2293 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2294 2295 if (ics_valid_irq(&phb3->lsis, irq)) { 2296 return &phb3->lsis; 2297 } 2298 2299 if (ics_valid_irq(ICS(&phb3->msis), irq)) { 2300 return ICS(&phb3->msis); 2301 } 2302 } 2303 } 2304 return NULL; 2305 } 2306 2307 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id) 2308 { 2309 int i; 2310 2311 for (i = 0; i < pnv->num_chips; i++) { 2312 PnvChip *chip = pnv->chips[i]; 2313 if (chip->chip_id == chip_id) { 2314 return chip; 2315 } 2316 } 2317 return NULL; 2318 } 2319 2320 static void pnv_ics_resend(XICSFabric *xi) 2321 { 2322 PnvMachineState *pnv = PNV_MACHINE(xi); 2323 int i, j; 2324 2325 for (i = 0; i < pnv->num_chips; i++) { 2326 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2327 2328 ics_resend(&chip8->psi.ics); 2329 2330 for (j = 0; j < chip8->num_phbs; j++) { 2331 PnvPHB *phb = chip8->phbs[j]; 2332 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2333 2334 ics_resend(&phb3->lsis); 2335 ics_resend(ICS(&phb3->msis)); 2336 } 2337 } 2338 } 2339 2340 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 2341 { 2342 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 2343 2344 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 2345 } 2346 2347 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 2348 void *opaque) 2349 { 2350 PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque); 2351 } 2352 2353 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf) 2354 { 2355 PnvMachineState *pnv = PNV_MACHINE(obj); 2356 int i; 2357 2358 for (i = 0; i < pnv->num_chips; i++) { 2359 PnvChip *chip = pnv->chips[i]; 2360 2361 /* First CPU presenters */ 2362 pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf); 2363 2364 /* Then other devices, PHB, PSI, XIVE */ 2365 PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf); 2366 } 2367 } 2368 2369 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 2370 uint8_t nvt_blk, uint32_t nvt_idx, 2371 bool cam_ignore, uint8_t priority, 2372 uint32_t logic_serv, 2373 XiveTCTXMatch *match) 2374 { 2375 PnvMachineState *pnv = PNV_MACHINE(xfb); 2376 int total_count = 0; 2377 int i; 2378 2379 for (i = 0; i < pnv->num_chips; i++) { 2380 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 2381 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 2382 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2383 int count; 2384 2385 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2386 priority, logic_serv, match); 2387 2388 if (count < 0) { 2389 return count; 2390 } 2391 2392 total_count += count; 2393 } 2394 2395 return total_count; 2396 } 2397 2398 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format, 2399 uint8_t nvt_blk, uint32_t nvt_idx, 2400 bool cam_ignore, uint8_t priority, 2401 uint32_t logic_serv, 2402 XiveTCTXMatch *match) 2403 { 2404 PnvMachineState *pnv = PNV_MACHINE(xfb); 2405 int total_count = 0; 2406 int i; 2407 2408 for (i = 0; i < pnv->num_chips; i++) { 2409 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 2410 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive); 2411 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2412 int count; 2413 2414 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2415 priority, logic_serv, match); 2416 2417 if (count < 0) { 2418 return count; 2419 } 2420 2421 total_count += count; 2422 } 2423 2424 return total_count; 2425 } 2426 2427 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 2428 { 2429 MachineClass *mc = MACHINE_CLASS(oc); 2430 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 2431 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2432 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 2433 2434 static GlobalProperty phb_compat[] = { 2435 { TYPE_PNV_PHB, "version", "3" }, 2436 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" }, 2437 }; 2438 2439 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 2440 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 2441 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2442 2443 xic->icp_get = pnv_icp_get; 2444 xic->ics_get = pnv_ics_get; 2445 xic->ics_resend = pnv_ics_resend; 2446 2447 pmc->compat = compat; 2448 pmc->compat_size = sizeof(compat); 2449 2450 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2451 } 2452 2453 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 2454 { 2455 MachineClass *mc = MACHINE_CLASS(oc); 2456 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2457 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2458 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 2459 2460 static GlobalProperty phb_compat[] = { 2461 { TYPE_PNV_PHB, "version", "4" }, 2462 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" }, 2463 }; 2464 2465 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 2466 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 2467 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2468 2469 xfc->match_nvt = pnv_match_nvt; 2470 2471 pmc->compat = compat; 2472 pmc->compat_size = sizeof(compat); 2473 pmc->dt_power_mgt = pnv_dt_power_mgt; 2474 2475 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2476 } 2477 2478 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data) 2479 { 2480 MachineClass *mc = MACHINE_CLASS(oc); 2481 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2482 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2483 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 2484 2485 static GlobalProperty phb_compat[] = { 2486 { TYPE_PNV_PHB, "version", "5" }, 2487 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" }, 2488 }; 2489 2490 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 2491 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2492 2493 mc->alias = "powernv"; 2494 2495 pmc->compat = compat; 2496 pmc->compat_size = sizeof(compat); 2497 pmc->dt_power_mgt = pnv_dt_power_mgt; 2498 2499 xfc->match_nvt = pnv10_xive_match_nvt; 2500 2501 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2502 } 2503 2504 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 2505 { 2506 MachineClass *mc = MACHINE_CLASS(oc); 2507 2508 pnv_machine_p10_common_class_init(oc, data); 2509 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 2510 } 2511 2512 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data) 2513 { 2514 MachineClass *mc = MACHINE_CLASS(oc); 2515 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2516 2517 pnv_machine_p10_common_class_init(oc, data); 2518 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier"; 2519 pmc->i2c_init = pnv_rainier_i2c_init; 2520 } 2521 2522 static bool pnv_machine_get_hb(Object *obj, Error **errp) 2523 { 2524 PnvMachineState *pnv = PNV_MACHINE(obj); 2525 2526 return !!pnv->fw_load_addr; 2527 } 2528 2529 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) 2530 { 2531 PnvMachineState *pnv = PNV_MACHINE(obj); 2532 2533 if (value) { 2534 pnv->fw_load_addr = 0x8000000; 2535 } 2536 } 2537 2538 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) 2539 { 2540 CPUPPCState *env = cpu_env(cs); 2541 2542 cpu_synchronize_state(cs); 2543 ppc_cpu_do_system_reset(cs); 2544 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { 2545 /* 2546 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the 2547 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 2548 * (PPC_BIT(43)). 2549 */ 2550 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { 2551 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); 2552 env->spr[SPR_SRR1] |= SRR1_WAKERESET; 2553 } 2554 } else { 2555 /* 2556 * For non-powersave system resets, SRR1[42:45] are defined to be 2557 * implementation-dependent. The POWER9 User Manual specifies that 2558 * an external (SCOM driven, which may come from a BMC nmi command or 2559 * another CPU requesting a NMI IPI) system reset exception should be 2560 * 0b0010 (PPC_BIT(44)). 2561 */ 2562 env->spr[SPR_SRR1] |= SRR1_WAKESCOM; 2563 } 2564 } 2565 2566 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque) 2567 { 2568 async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL); 2569 } 2570 2571 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) 2572 { 2573 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 2574 int i; 2575 2576 for (i = 0; i < pnv->num_chips; i++) { 2577 pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL); 2578 } 2579 } 2580 2581 static void pnv_machine_class_init(ObjectClass *oc, void *data) 2582 { 2583 MachineClass *mc = MACHINE_CLASS(oc); 2584 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 2585 NMIClass *nc = NMI_CLASS(oc); 2586 2587 mc->desc = "IBM PowerNV (Non-Virtualized)"; 2588 mc->init = pnv_init; 2589 mc->reset = pnv_reset; 2590 mc->max_cpus = MAX_CPUS; 2591 /* Pnv provides a AHCI device for storage */ 2592 mc->block_default_type = IF_IDE; 2593 mc->no_parallel = 1; 2594 mc->default_boot_order = NULL; 2595 /* 2596 * RAM defaults to less than 2048 for 32-bit hosts, and large 2597 * enough to fit the maximum initrd size at it's load address 2598 */ 2599 mc->default_ram_size = 1 * GiB; 2600 mc->default_ram_id = "pnv.ram"; 2601 ispc->print_info = pnv_pic_print_info; 2602 nc->nmi_monitor_handler = pnv_nmi; 2603 2604 object_class_property_add_bool(oc, "hb-mode", 2605 pnv_machine_get_hb, pnv_machine_set_hb); 2606 object_class_property_set_description(oc, "hb-mode", 2607 "Use a hostboot like boot loader"); 2608 } 2609 2610 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 2611 { \ 2612 .name = type, \ 2613 .class_init = class_initfn, \ 2614 .parent = TYPE_PNV8_CHIP, \ 2615 } 2616 2617 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 2618 { \ 2619 .name = type, \ 2620 .class_init = class_initfn, \ 2621 .parent = TYPE_PNV9_CHIP, \ 2622 } 2623 2624 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 2625 { \ 2626 .name = type, \ 2627 .class_init = class_initfn, \ 2628 .parent = TYPE_PNV10_CHIP, \ 2629 } 2630 2631 static const TypeInfo types[] = { 2632 { 2633 .name = MACHINE_TYPE_NAME("powernv10-rainier"), 2634 .parent = MACHINE_TYPE_NAME("powernv10"), 2635 .class_init = pnv_machine_p10_rainier_class_init, 2636 }, 2637 { 2638 .name = MACHINE_TYPE_NAME("powernv10"), 2639 .parent = TYPE_PNV_MACHINE, 2640 .class_init = pnv_machine_power10_class_init, 2641 .interfaces = (InterfaceInfo[]) { 2642 { TYPE_XIVE_FABRIC }, 2643 { }, 2644 }, 2645 }, 2646 { 2647 .name = MACHINE_TYPE_NAME("powernv9"), 2648 .parent = TYPE_PNV_MACHINE, 2649 .class_init = pnv_machine_power9_class_init, 2650 .interfaces = (InterfaceInfo[]) { 2651 { TYPE_XIVE_FABRIC }, 2652 { }, 2653 }, 2654 }, 2655 { 2656 .name = MACHINE_TYPE_NAME("powernv8"), 2657 .parent = TYPE_PNV_MACHINE, 2658 .class_init = pnv_machine_power8_class_init, 2659 .interfaces = (InterfaceInfo[]) { 2660 { TYPE_XICS_FABRIC }, 2661 { }, 2662 }, 2663 }, 2664 { 2665 .name = TYPE_PNV_MACHINE, 2666 .parent = TYPE_MACHINE, 2667 .abstract = true, 2668 .instance_size = sizeof(PnvMachineState), 2669 .class_init = pnv_machine_class_init, 2670 .class_size = sizeof(PnvMachineClass), 2671 .interfaces = (InterfaceInfo[]) { 2672 { TYPE_INTERRUPT_STATS_PROVIDER }, 2673 { TYPE_NMI }, 2674 { }, 2675 }, 2676 }, 2677 { 2678 .name = TYPE_PNV_CHIP, 2679 .parent = TYPE_SYS_BUS_DEVICE, 2680 .class_init = pnv_chip_class_init, 2681 .instance_size = sizeof(PnvChip), 2682 .class_size = sizeof(PnvChipClass), 2683 .abstract = true, 2684 }, 2685 2686 /* 2687 * P10 chip and variants 2688 */ 2689 { 2690 .name = TYPE_PNV10_CHIP, 2691 .parent = TYPE_PNV_CHIP, 2692 .instance_init = pnv_chip_power10_instance_init, 2693 .instance_size = sizeof(Pnv10Chip), 2694 }, 2695 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 2696 2697 /* 2698 * P9 chip and variants 2699 */ 2700 { 2701 .name = TYPE_PNV9_CHIP, 2702 .parent = TYPE_PNV_CHIP, 2703 .instance_init = pnv_chip_power9_instance_init, 2704 .instance_size = sizeof(Pnv9Chip), 2705 }, 2706 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 2707 2708 /* 2709 * P8 chip and variants 2710 */ 2711 { 2712 .name = TYPE_PNV8_CHIP, 2713 .parent = TYPE_PNV_CHIP, 2714 .instance_init = pnv_chip_power8_instance_init, 2715 .instance_size = sizeof(Pnv8Chip), 2716 }, 2717 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 2718 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 2719 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 2720 pnv_chip_power8nvl_class_init), 2721 }; 2722 2723 DEFINE_TYPES(types) 2724