xref: /openbmc/qemu/hw/ppc/pnv.c (revision 892609056ddff373f8c8c55525a53dd932ee403d)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 
48 #include "hw/isa/isa.h"
49 #include "hw/boards.h"
50 #include "hw/char/serial.h"
51 #include "hw/timer/mc146818rtc.h"
52 
53 #include <libfdt.h>
54 
55 #define FDT_MAX_SIZE            (1 * MiB)
56 
57 #define FW_FILE_NAME            "skiboot.lid"
58 #define FW_LOAD_ADDR            0x0
59 #define FW_MAX_SIZE             (4 * MiB)
60 
61 #define KERNEL_LOAD_ADDR        0x20000000
62 #define KERNEL_MAX_SIZE         (256 * MiB)
63 #define INITRD_LOAD_ADDR        0x60000000
64 #define INITRD_MAX_SIZE         (256 * MiB)
65 
66 static const char *pnv_chip_core_typename(const PnvChip *o)
67 {
68     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
69     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
70     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
71     const char *core_type = object_class_get_name(object_class_by_name(s));
72     g_free(s);
73     return core_type;
74 }
75 
76 /*
77  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
78  *     4 * 4 sockets * 12 cores * 8 threads = 1536
79  * Let's make it 2^11
80  */
81 #define MAX_CPUS                2048
82 
83 /*
84  * Memory nodes are created by hostboot, one for each range of memory
85  * that has a different "affinity". In practice, it means one range
86  * per chip.
87  */
88 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
89 {
90     char *mem_name;
91     uint64_t mem_reg_property[2];
92     int off;
93 
94     mem_reg_property[0] = cpu_to_be64(start);
95     mem_reg_property[1] = cpu_to_be64(size);
96 
97     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
98     off = fdt_add_subnode(fdt, 0, mem_name);
99     g_free(mem_name);
100 
101     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
102     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
103                        sizeof(mem_reg_property))));
104     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
105 }
106 
107 static int get_cpus_node(void *fdt)
108 {
109     int cpus_offset = fdt_path_offset(fdt, "/cpus");
110 
111     if (cpus_offset < 0) {
112         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
113         if (cpus_offset) {
114             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
116         }
117     }
118     _FDT(cpus_offset);
119     return cpus_offset;
120 }
121 
122 /*
123  * The PowerNV cores (and threads) need to use real HW ids and not an
124  * incremental index like it has been done on other platforms. This HW
125  * id is stored in the CPU PIR, it is used to create cpu nodes in the
126  * device tree, used in XSCOM to address cores and in interrupt
127  * servers.
128  */
129 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
130 {
131     PowerPCCPU *cpu = pc->threads[0];
132     CPUState *cs = CPU(cpu);
133     DeviceClass *dc = DEVICE_GET_CLASS(cs);
134     int smt_threads = CPU_CORE(pc)->nr_threads;
135     CPUPPCState *env = &cpu->env;
136     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
137     uint32_t servers_prop[smt_threads];
138     int i;
139     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
140                        0xffffffff, 0xffffffff};
141     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
142     uint32_t cpufreq = 1000000000;
143     uint32_t page_sizes_prop[64];
144     size_t page_sizes_prop_size;
145     const uint8_t pa_features[] = { 24, 0,
146                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
147                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
148                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
149                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
150     int offset;
151     char *nodename;
152     int cpus_offset = get_cpus_node(fdt);
153 
154     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
155     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
156     _FDT(offset);
157     g_free(nodename);
158 
159     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
162     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
163     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
166     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
167                             env->dcache_line_size)));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
171                             env->icache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
173                             env->icache_line_size)));
174 
175     if (pcc->l1_dcache_size) {
176         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
177                                pcc->l1_dcache_size)));
178     } else {
179         warn_report("Unknown L1 dcache size for cpu");
180     }
181     if (pcc->l1_icache_size) {
182         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
183                                pcc->l1_icache_size)));
184     } else {
185         warn_report("Unknown L1 icache size for cpu");
186     }
187 
188     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
189     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
191     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
192     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
193 
194     if (env->spr_cb[SPR_PURR].oea_read) {
195         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
196     }
197 
198     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
199         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
200                            segs, sizeof(segs))));
201     }
202 
203     /* Advertise VMX/VSX (vector extensions) if available
204      *   0 / no property == no vector extensions
205      *   1               == VMX / Altivec available
206      *   2               == VSX available */
207     if (env->insns_flags & PPC_ALTIVEC) {
208         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
209 
210         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
211     }
212 
213     /* Advertise DFP (Decimal Floating Point) if available
214      *   0 / no property == no DFP
215      *   1               == DFP available */
216     if (env->insns_flags2 & PPC2_DFP) {
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
218     }
219 
220     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
221                                                       sizeof(page_sizes_prop));
222     if (page_sizes_prop_size) {
223         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
224                            page_sizes_prop, page_sizes_prop_size)));
225     }
226 
227     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
228                        pa_features, sizeof(pa_features))));
229 
230     /* Build interrupt servers properties */
231     for (i = 0; i < smt_threads; i++) {
232         servers_prop[i] = cpu_to_be32(pc->pir + i);
233     }
234     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235                        servers_prop, sizeof(servers_prop))));
236 }
237 
238 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
239                        uint32_t nr_threads)
240 {
241     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
242     char *name;
243     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
244     uint32_t irange[2], i, rsize;
245     uint64_t *reg;
246     int offset;
247 
248     irange[0] = cpu_to_be32(pir);
249     irange[1] = cpu_to_be32(nr_threads);
250 
251     rsize = sizeof(uint64_t) * 2 * nr_threads;
252     reg = g_malloc(rsize);
253     for (i = 0; i < nr_threads; i++) {
254         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
255         reg[i * 2 + 1] = cpu_to_be64(0x1000);
256     }
257 
258     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
259     offset = fdt_add_subnode(fdt, 0, name);
260     _FDT(offset);
261     g_free(name);
262 
263     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
264     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
265     _FDT((fdt_setprop_string(fdt, offset, "device_type",
266                               "PowerPC-External-Interrupt-Presentation")));
267     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
268     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
269                        irange, sizeof(irange))));
270     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
271     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
272     g_free(reg);
273 }
274 
275 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
276 {
277     const char *typename = pnv_chip_core_typename(chip);
278     size_t typesize = object_type_get_instance_size(typename);
279     int i;
280 
281     pnv_dt_xscom(chip, fdt, 0);
282 
283     for (i = 0; i < chip->nr_cores; i++) {
284         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
285 
286         pnv_dt_core(chip, pnv_core, fdt);
287 
288         /* Interrupt Control Presenters (ICP). One per core. */
289         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
290     }
291 
292     if (chip->ram_size) {
293         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
294     }
295 }
296 
297 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
298 {
299     const char *typename = pnv_chip_core_typename(chip);
300     size_t typesize = object_type_get_instance_size(typename);
301     int i;
302 
303     pnv_dt_xscom(chip, fdt, 0);
304 
305     for (i = 0; i < chip->nr_cores; i++) {
306         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
307 
308         pnv_dt_core(chip, pnv_core, fdt);
309     }
310 
311     if (chip->ram_size) {
312         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
313     }
314 
315     pnv_dt_lpc(chip, fdt, 0);
316 }
317 
318 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
319 {
320     uint32_t io_base = d->ioport_id;
321     uint32_t io_regs[] = {
322         cpu_to_be32(1),
323         cpu_to_be32(io_base),
324         cpu_to_be32(2)
325     };
326     char *name;
327     int node;
328 
329     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
330     node = fdt_add_subnode(fdt, lpc_off, name);
331     _FDT(node);
332     g_free(name);
333 
334     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
335     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
336 }
337 
338 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
339 {
340     const char compatible[] = "ns16550\0pnpPNP,501";
341     uint32_t io_base = d->ioport_id;
342     uint32_t io_regs[] = {
343         cpu_to_be32(1),
344         cpu_to_be32(io_base),
345         cpu_to_be32(8)
346     };
347     char *name;
348     int node;
349 
350     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
351     node = fdt_add_subnode(fdt, lpc_off, name);
352     _FDT(node);
353     g_free(name);
354 
355     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
356     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
357                       sizeof(compatible))));
358 
359     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
360     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
361     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
362     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
363                            fdt_get_phandle(fdt, lpc_off))));
364 
365     /* This is needed by Linux */
366     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
367 }
368 
369 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
370 {
371     const char compatible[] = "bt\0ipmi-bt";
372     uint32_t io_base;
373     uint32_t io_regs[] = {
374         cpu_to_be32(1),
375         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
376         cpu_to_be32(3)
377     };
378     uint32_t irq;
379     char *name;
380     int node;
381 
382     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
383     io_regs[1] = cpu_to_be32(io_base);
384 
385     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
386 
387     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
388     node = fdt_add_subnode(fdt, lpc_off, name);
389     _FDT(node);
390     g_free(name);
391 
392     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
393     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
394                       sizeof(compatible))));
395 
396     /* Mark it as reserved to avoid Linux trying to claim it */
397     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
400                            fdt_get_phandle(fdt, lpc_off))));
401 }
402 
403 typedef struct ForeachPopulateArgs {
404     void *fdt;
405     int offset;
406 } ForeachPopulateArgs;
407 
408 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
409 {
410     ForeachPopulateArgs *args = opaque;
411     ISADevice *d = ISA_DEVICE(dev);
412 
413     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
414         pnv_dt_rtc(d, args->fdt, args->offset);
415     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
416         pnv_dt_serial(d, args->fdt, args->offset);
417     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
418         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
419     } else {
420         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
421                      d->ioport_id);
422     }
423 
424     return 0;
425 }
426 
427 /* The default LPC bus of a multichip system is on chip 0. It's
428  * recognized by the firmware (skiboot) using a "primary" property.
429  */
430 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
431 {
432     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
433     ForeachPopulateArgs args = {
434         .fdt = fdt,
435         .offset = isa_offset,
436     };
437 
438     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
439 
440     /* ISA devices are not necessarily parented to the ISA bus so we
441      * can not use object_child_foreach() */
442     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
443                        &args);
444 }
445 
446 static void pnv_dt_power_mgt(void *fdt)
447 {
448     int off;
449 
450     off = fdt_add_subnode(fdt, 0, "ibm,opal");
451     off = fdt_add_subnode(fdt, off, "power-mgt");
452 
453     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
454 }
455 
456 static void *pnv_dt_create(MachineState *machine)
457 {
458     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
459     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
460     PnvMachineState *pnv = PNV_MACHINE(machine);
461     void *fdt;
462     char *buf;
463     int off;
464     int i;
465 
466     fdt = g_malloc0(FDT_MAX_SIZE);
467     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
468 
469     /* Root node */
470     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
471     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
472     _FDT((fdt_setprop_string(fdt, 0, "model",
473                              "IBM PowerNV (emulated by qemu)")));
474     if (pnv_is_power9(pnv)) {
475         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
476                           sizeof(plat_compat9))));
477     } else {
478         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
479                           sizeof(plat_compat8))));
480     }
481 
482 
483     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
484     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
485     if (qemu_uuid_set) {
486         _FDT((fdt_property_string(fdt, "system-id", buf)));
487     }
488     g_free(buf);
489 
490     off = fdt_add_subnode(fdt, 0, "chosen");
491     if (machine->kernel_cmdline) {
492         _FDT((fdt_setprop_string(fdt, off, "bootargs",
493                                  machine->kernel_cmdline)));
494     }
495 
496     if (pnv->initrd_size) {
497         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
498         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
499 
500         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
501                                &start_prop, sizeof(start_prop))));
502         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
503                                &end_prop, sizeof(end_prop))));
504     }
505 
506     /* Populate device tree for each chip */
507     for (i = 0; i < pnv->num_chips; i++) {
508         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
509     }
510 
511     /* Populate ISA devices on chip 0 */
512     pnv_dt_isa(pnv, fdt);
513 
514     if (pnv->bmc) {
515         pnv_dt_bmc_sensors(pnv->bmc, fdt);
516     }
517 
518     /* Create an extra node for power management on Power9 */
519     if (pnv_is_power9(pnv)) {
520         pnv_dt_power_mgt(fdt);
521     }
522 
523     return fdt;
524 }
525 
526 static void pnv_powerdown_notify(Notifier *n, void *opaque)
527 {
528     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
529 
530     if (pnv->bmc) {
531         pnv_bmc_powerdown(pnv->bmc);
532     }
533 }
534 
535 static void pnv_reset(MachineState *machine)
536 {
537     PnvMachineState *pnv = PNV_MACHINE(machine);
538     void *fdt;
539     Object *obj;
540 
541     qemu_devices_reset();
542 
543     /* OpenPOWER systems have a BMC, which can be defined on the
544      * command line with:
545      *
546      *   -device ipmi-bmc-sim,id=bmc0
547      *
548      * This is the internal simulator but it could also be an external
549      * BMC.
550      */
551     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
552     if (obj) {
553         pnv->bmc = IPMI_BMC(obj);
554     }
555 
556     fdt = pnv_dt_create(machine);
557 
558     /* Pack resulting tree */
559     _FDT((fdt_pack(fdt)));
560 
561     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
562     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
563 }
564 
565 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
566 {
567     Pnv8Chip *chip8 = PNV8_CHIP(chip);
568     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
569 }
570 
571 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
572 {
573     Pnv8Chip *chip8 = PNV8_CHIP(chip);
574     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
575 }
576 
577 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
578 {
579     Pnv9Chip *chip9 = PNV9_CHIP(chip);
580     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
581 }
582 
583 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
584 {
585     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
586 }
587 
588 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
589 {
590     Pnv8Chip *chip8 = PNV8_CHIP(chip);
591 
592     ics_pic_print_info(&chip8->psi.ics, mon);
593 }
594 
595 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
596 {
597     Pnv9Chip *chip9 = PNV9_CHIP(chip);
598 
599     pnv_xive_pic_print_info(&chip9->xive, mon);
600     pnv_psi_pic_print_info(&chip9->psi, mon);
601 }
602 
603 static void pnv_init(MachineState *machine)
604 {
605     PnvMachineState *pnv = PNV_MACHINE(machine);
606     MemoryRegion *ram;
607     char *fw_filename;
608     long fw_size;
609     int i;
610     char *chip_typename;
611 
612     /* allocate RAM */
613     if (machine->ram_size < (1 * GiB)) {
614         warn_report("skiboot may not work with < 1GB of RAM");
615     }
616 
617     ram = g_new(MemoryRegion, 1);
618     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
619                                          machine->ram_size);
620     memory_region_add_subregion(get_system_memory(), 0, ram);
621 
622     /* load skiboot firmware  */
623     if (bios_name == NULL) {
624         bios_name = FW_FILE_NAME;
625     }
626 
627     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
628     if (!fw_filename) {
629         error_report("Could not find OPAL firmware '%s'", bios_name);
630         exit(1);
631     }
632 
633     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
634     if (fw_size < 0) {
635         error_report("Could not load OPAL firmware '%s'", fw_filename);
636         exit(1);
637     }
638     g_free(fw_filename);
639 
640     /* load kernel */
641     if (machine->kernel_filename) {
642         long kernel_size;
643 
644         kernel_size = load_image_targphys(machine->kernel_filename,
645                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
646         if (kernel_size < 0) {
647             error_report("Could not load kernel '%s'",
648                          machine->kernel_filename);
649             exit(1);
650         }
651     }
652 
653     /* load initrd */
654     if (machine->initrd_filename) {
655         pnv->initrd_base = INITRD_LOAD_ADDR;
656         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
657                                   pnv->initrd_base, INITRD_MAX_SIZE);
658         if (pnv->initrd_size < 0) {
659             error_report("Could not load initial ram disk '%s'",
660                          machine->initrd_filename);
661             exit(1);
662         }
663     }
664 
665     /* Create the processor chips */
666     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
667     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
668                                     i, machine->cpu_type);
669     if (!object_class_by_name(chip_typename)) {
670         error_report("invalid CPU model '%.*s' for %s machine",
671                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
672         exit(1);
673     }
674 
675     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
676     for (i = 0; i < pnv->num_chips; i++) {
677         char chip_name[32];
678         Object *chip = object_new(chip_typename);
679 
680         pnv->chips[i] = PNV_CHIP(chip);
681 
682         /* TODO: put all the memory in one node on chip 0 until we find a
683          * way to specify different ranges for each chip
684          */
685         if (i == 0) {
686             object_property_set_int(chip, machine->ram_size, "ram-size",
687                                     &error_fatal);
688         }
689 
690         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
691         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
692         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
693                                 &error_fatal);
694         object_property_set_int(chip, machine->smp.cores,
695                                 "nr-cores", &error_fatal);
696         object_property_set_bool(chip, true, "realized", &error_fatal);
697     }
698     g_free(chip_typename);
699 
700     /* Instantiate ISA bus on chip 0 */
701     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
702 
703     /* Create serial port */
704     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
705 
706     /* Create an RTC ISA device too */
707     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
708 
709     /* OpenPOWER systems use a IPMI SEL Event message to notify the
710      * host to powerdown */
711     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
712     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
713 }
714 
715 /*
716  *    0:21  Reserved - Read as zeros
717  *   22:24  Chip ID
718  *   25:28  Core number
719  *   29:31  Thread ID
720  */
721 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
722 {
723     return (chip->chip_id << 7) | (core_id << 3);
724 }
725 
726 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
727                                         Error **errp)
728 {
729     Error *local_err = NULL;
730     Object *obj;
731     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
732 
733     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
734                      &local_err);
735     if (local_err) {
736         error_propagate(errp, local_err);
737         return;
738     }
739 
740     pnv_cpu->intc = obj;
741 }
742 
743 /*
744  *    0:48  Reserved - Read as zeroes
745  *   49:52  Node ID
746  *   53:55  Chip ID
747  *   56     Reserved - Read as zero
748  *   57:61  Core number
749  *   62:63  Thread ID
750  *
751  * We only care about the lower bits. uint32_t is fine for the moment.
752  */
753 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
754 {
755     return (chip->chip_id << 8) | (core_id << 2);
756 }
757 
758 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
759                                         Error **errp)
760 {
761     Pnv9Chip *chip9 = PNV9_CHIP(chip);
762     Error *local_err = NULL;
763     Object *obj;
764     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
765 
766     /*
767      * The core creates its interrupt presenter but the XIVE interrupt
768      * controller object is initialized afterwards. Hopefully, it's
769      * only used at runtime.
770      */
771     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
772     if (local_err) {
773         error_propagate(errp, local_err);
774         return;
775     }
776 
777     pnv_cpu->intc = obj;
778 }
779 
780 /* Allowed core identifiers on a POWER8 Processor Chip :
781  *
782  * <EX0 reserved>
783  *  EX1  - Venice only
784  *  EX2  - Venice only
785  *  EX3  - Venice only
786  *  EX4
787  *  EX5
788  *  EX6
789  * <EX7,8 reserved> <reserved>
790  *  EX9  - Venice only
791  *  EX10 - Venice only
792  *  EX11 - Venice only
793  *  EX12
794  *  EX13
795  *  EX14
796  * <EX15 reserved>
797  */
798 #define POWER8E_CORE_MASK  (0x7070ull)
799 #define POWER8_CORE_MASK   (0x7e7eull)
800 
801 /*
802  * POWER9 has 24 cores, ids starting at 0x0
803  */
804 #define POWER9_CORE_MASK   (0xffffffffffffffull)
805 
806 static void pnv_chip_power8_instance_init(Object *obj)
807 {
808     Pnv8Chip *chip8 = PNV8_CHIP(obj);
809 
810     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
811                             TYPE_PNV8_PSI, &error_abort, NULL);
812     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
813                                    OBJECT(qdev_get_machine()), &error_abort);
814 
815     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
816                             TYPE_PNV8_LPC, &error_abort, NULL);
817     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
818                                    OBJECT(&chip8->psi), &error_abort);
819 
820     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
821                             TYPE_PNV8_OCC, &error_abort, NULL);
822     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
823                                    OBJECT(&chip8->psi), &error_abort);
824 }
825 
826 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
827  {
828     PnvChip *chip = PNV_CHIP(chip8);
829     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
830     const char *typename = pnv_chip_core_typename(chip);
831     size_t typesize = object_type_get_instance_size(typename);
832     int i, j;
833     char *name;
834     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
835 
836     name = g_strdup_printf("icp-%x", chip->chip_id);
837     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
838     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
839     g_free(name);
840 
841     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
842 
843     /* Map the ICP registers for each thread */
844     for (i = 0; i < chip->nr_cores; i++) {
845         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
846         int core_hwid = CPU_CORE(pnv_core)->core_id;
847 
848         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
849             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
850             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
851 
852             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
853                                         &icp->mmio);
854         }
855     }
856 }
857 
858 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
859 {
860     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
861     PnvChip *chip = PNV_CHIP(dev);
862     Pnv8Chip *chip8 = PNV8_CHIP(dev);
863     Pnv8Psi *psi8 = &chip8->psi;
864     Error *local_err = NULL;
865 
866     /* XSCOM bridge is first */
867     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
868     if (local_err) {
869         error_propagate(errp, local_err);
870         return;
871     }
872     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
873 
874     pcc->parent_realize(dev, &local_err);
875     if (local_err) {
876         error_propagate(errp, local_err);
877         return;
878     }
879 
880     /* Processor Service Interface (PSI) Host Bridge */
881     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
882                             "bar", &error_fatal);
883     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
884     if (local_err) {
885         error_propagate(errp, local_err);
886         return;
887     }
888     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
889                             &PNV_PSI(psi8)->xscom_regs);
890 
891     /* Create LPC controller */
892     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
893                              &error_fatal);
894     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
895 
896     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
897                                             (uint64_t) PNV_XSCOM_BASE(chip),
898                                             PNV_XSCOM_LPC_BASE);
899 
900     /* Interrupt Management Area. This is the memory region holding
901      * all the Interrupt Control Presenter (ICP) registers */
902     pnv_chip_icp_realize(chip8, &local_err);
903     if (local_err) {
904         error_propagate(errp, local_err);
905         return;
906     }
907 
908     /* Create the simplified OCC model */
909     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
910     if (local_err) {
911         error_propagate(errp, local_err);
912         return;
913     }
914     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
915 }
916 
917 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
918 {
919     DeviceClass *dc = DEVICE_CLASS(klass);
920     PnvChipClass *k = PNV_CHIP_CLASS(klass);
921 
922     k->chip_type = PNV_CHIP_POWER8E;
923     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
924     k->cores_mask = POWER8E_CORE_MASK;
925     k->core_pir = pnv_chip_core_pir_p8;
926     k->intc_create = pnv_chip_power8_intc_create;
927     k->isa_create = pnv_chip_power8_isa_create;
928     k->dt_populate = pnv_chip_power8_dt_populate;
929     k->pic_print_info = pnv_chip_power8_pic_print_info;
930     dc->desc = "PowerNV Chip POWER8E";
931 
932     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
933                                     &k->parent_realize);
934 }
935 
936 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
937 {
938     DeviceClass *dc = DEVICE_CLASS(klass);
939     PnvChipClass *k = PNV_CHIP_CLASS(klass);
940 
941     k->chip_type = PNV_CHIP_POWER8;
942     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
943     k->cores_mask = POWER8_CORE_MASK;
944     k->core_pir = pnv_chip_core_pir_p8;
945     k->intc_create = pnv_chip_power8_intc_create;
946     k->isa_create = pnv_chip_power8_isa_create;
947     k->dt_populate = pnv_chip_power8_dt_populate;
948     k->pic_print_info = pnv_chip_power8_pic_print_info;
949     dc->desc = "PowerNV Chip POWER8";
950 
951     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
952                                     &k->parent_realize);
953 }
954 
955 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
956 {
957     DeviceClass *dc = DEVICE_CLASS(klass);
958     PnvChipClass *k = PNV_CHIP_CLASS(klass);
959 
960     k->chip_type = PNV_CHIP_POWER8NVL;
961     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
962     k->cores_mask = POWER8_CORE_MASK;
963     k->core_pir = pnv_chip_core_pir_p8;
964     k->intc_create = pnv_chip_power8_intc_create;
965     k->isa_create = pnv_chip_power8nvl_isa_create;
966     k->dt_populate = pnv_chip_power8_dt_populate;
967     k->pic_print_info = pnv_chip_power8_pic_print_info;
968     dc->desc = "PowerNV Chip POWER8NVL";
969 
970     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
971                                     &k->parent_realize);
972 }
973 
974 static void pnv_chip_power9_instance_init(Object *obj)
975 {
976     Pnv9Chip *chip9 = PNV9_CHIP(obj);
977 
978     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
979                             TYPE_PNV_XIVE, &error_abort, NULL);
980     object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
981                                    &error_abort);
982 
983     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
984                             TYPE_PNV9_PSI, &error_abort, NULL);
985     object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
986                                    &error_abort);
987 
988     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
989                             TYPE_PNV9_LPC, &error_abort, NULL);
990     object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
991                                    OBJECT(&chip9->psi), &error_abort);
992 
993     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
994                             TYPE_PNV9_OCC, &error_abort, NULL);
995     object_property_add_const_link(OBJECT(&chip9->occ), "psi",
996                                    OBJECT(&chip9->psi), &error_abort);
997 }
998 
999 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1000 {
1001     PnvChip *chip = PNV_CHIP(chip9);
1002     const char *typename = pnv_chip_core_typename(chip);
1003     size_t typesize = object_type_get_instance_size(typename);
1004     int i;
1005 
1006     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1007     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1008 
1009     for (i = 0; i < chip9->nr_quads; i++) {
1010         char eq_name[32];
1011         PnvQuad *eq = &chip9->quads[i];
1012         PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1013         int core_id = CPU_CORE(pnv_core)->core_id;
1014 
1015         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1016         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1017                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1018 
1019         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1020         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1021 
1022         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1023                                 &eq->xscom_regs);
1024     }
1025 }
1026 
1027 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1028 {
1029     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1030     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1031     PnvChip *chip = PNV_CHIP(dev);
1032     Pnv9Psi *psi9 = &chip9->psi;
1033     Error *local_err = NULL;
1034 
1035     /* XSCOM bridge is first */
1036     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1037     if (local_err) {
1038         error_propagate(errp, local_err);
1039         return;
1040     }
1041     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1042 
1043     pcc->parent_realize(dev, &local_err);
1044     if (local_err) {
1045         error_propagate(errp, local_err);
1046         return;
1047     }
1048 
1049     pnv_chip_quad_realize(chip9, &local_err);
1050     if (local_err) {
1051         error_propagate(errp, local_err);
1052         return;
1053     }
1054 
1055     /* XIVE interrupt controller (POWER9) */
1056     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1057                             "ic-bar", &error_fatal);
1058     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1059                             "vc-bar", &error_fatal);
1060     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1061                             "pc-bar", &error_fatal);
1062     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1063                             "tm-bar", &error_fatal);
1064     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1065                              &local_err);
1066     if (local_err) {
1067         error_propagate(errp, local_err);
1068         return;
1069     }
1070     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1071                             &chip9->xive.xscom_regs);
1072 
1073     /* Processor Service Interface (PSI) Host Bridge */
1074     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1075                             "bar", &error_fatal);
1076     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1077     if (local_err) {
1078         error_propagate(errp, local_err);
1079         return;
1080     }
1081     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1082                             &PNV_PSI(psi9)->xscom_regs);
1083 
1084     /* LPC */
1085     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1086     if (local_err) {
1087         error_propagate(errp, local_err);
1088         return;
1089     }
1090     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1091                                 &chip9->lpc.xscom_regs);
1092 
1093     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1094                                             (uint64_t) PNV9_LPCM_BASE(chip));
1095 
1096     /* Create the simplified OCC model */
1097     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1098     if (local_err) {
1099         error_propagate(errp, local_err);
1100         return;
1101     }
1102     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1103 }
1104 
1105 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1106 {
1107     DeviceClass *dc = DEVICE_CLASS(klass);
1108     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1109 
1110     k->chip_type = PNV_CHIP_POWER9;
1111     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1112     k->cores_mask = POWER9_CORE_MASK;
1113     k->core_pir = pnv_chip_core_pir_p9;
1114     k->intc_create = pnv_chip_power9_intc_create;
1115     k->isa_create = pnv_chip_power9_isa_create;
1116     k->dt_populate = pnv_chip_power9_dt_populate;
1117     k->pic_print_info = pnv_chip_power9_pic_print_info;
1118     dc->desc = "PowerNV Chip POWER9";
1119 
1120     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1121                                     &k->parent_realize);
1122 }
1123 
1124 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1125 {
1126     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1127     int cores_max;
1128 
1129     /*
1130      * No custom mask for this chip, let's use the default one from *
1131      * the chip class
1132      */
1133     if (!chip->cores_mask) {
1134         chip->cores_mask = pcc->cores_mask;
1135     }
1136 
1137     /* filter alien core ids ! some are reserved */
1138     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1139         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1140                    chip->cores_mask);
1141         return;
1142     }
1143     chip->cores_mask &= pcc->cores_mask;
1144 
1145     /* now that we have a sane layout, let check the number of cores */
1146     cores_max = ctpop64(chip->cores_mask);
1147     if (chip->nr_cores > cores_max) {
1148         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1149                    cores_max);
1150         return;
1151     }
1152 }
1153 
1154 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1155 {
1156     MachineState *ms = MACHINE(qdev_get_machine());
1157     Error *error = NULL;
1158     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1159     const char *typename = pnv_chip_core_typename(chip);
1160     size_t typesize = object_type_get_instance_size(typename);
1161     int i, core_hwid;
1162 
1163     if (!object_class_by_name(typename)) {
1164         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1165         return;
1166     }
1167 
1168     /* Cores */
1169     pnv_chip_core_sanitize(chip, &error);
1170     if (error) {
1171         error_propagate(errp, error);
1172         return;
1173     }
1174 
1175     chip->cores = g_malloc0(typesize * chip->nr_cores);
1176 
1177     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1178              && (i < chip->nr_cores); core_hwid++) {
1179         char core_name[32];
1180         void *pnv_core = chip->cores + i * typesize;
1181         uint64_t xscom_core_base;
1182 
1183         if (!(chip->cores_mask & (1ull << core_hwid))) {
1184             continue;
1185         }
1186 
1187         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1188         object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1189                                 typename, &error_fatal, NULL);
1190         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1191                                 &error_fatal);
1192         object_property_set_int(OBJECT(pnv_core), core_hwid,
1193                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1194         object_property_set_int(OBJECT(pnv_core),
1195                                 pcc->core_pir(chip, core_hwid),
1196                                 "pir", &error_fatal);
1197         object_property_add_const_link(OBJECT(pnv_core), "chip",
1198                                        OBJECT(chip), &error_fatal);
1199         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1200                                  &error_fatal);
1201 
1202         /* Each core has an XSCOM MMIO region */
1203         if (!pnv_chip_is_power9(chip)) {
1204             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1205         } else {
1206             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1207         }
1208 
1209         pnv_xscom_add_subregion(chip, xscom_core_base,
1210                                 &PNV_CORE(pnv_core)->xscom_regs);
1211         i++;
1212     }
1213 }
1214 
1215 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1216 {
1217     PnvChip *chip = PNV_CHIP(dev);
1218     Error *error = NULL;
1219 
1220     /* Cores */
1221     pnv_chip_core_realize(chip, &error);
1222     if (error) {
1223         error_propagate(errp, error);
1224         return;
1225     }
1226 }
1227 
1228 static Property pnv_chip_properties[] = {
1229     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1230     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1231     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1232     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1233     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1234     DEFINE_PROP_END_OF_LIST(),
1235 };
1236 
1237 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1238 {
1239     DeviceClass *dc = DEVICE_CLASS(klass);
1240 
1241     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1242     dc->realize = pnv_chip_realize;
1243     dc->props = pnv_chip_properties;
1244     dc->desc = "PowerNV Chip";
1245 }
1246 
1247 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1248 {
1249     PnvMachineState *pnv = PNV_MACHINE(xi);
1250     int i;
1251 
1252     for (i = 0; i < pnv->num_chips; i++) {
1253         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1254 
1255         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1256             return &chip8->psi.ics;
1257         }
1258     }
1259     return NULL;
1260 }
1261 
1262 static void pnv_ics_resend(XICSFabric *xi)
1263 {
1264     PnvMachineState *pnv = PNV_MACHINE(xi);
1265     int i;
1266 
1267     for (i = 0; i < pnv->num_chips; i++) {
1268         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1269         ics_resend(&chip8->psi.ics);
1270     }
1271 }
1272 
1273 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1274 {
1275     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1276 
1277     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1278 }
1279 
1280 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1281                                Monitor *mon)
1282 {
1283     PnvMachineState *pnv = PNV_MACHINE(obj);
1284     int i;
1285     CPUState *cs;
1286 
1287     CPU_FOREACH(cs) {
1288         PowerPCCPU *cpu = POWERPC_CPU(cs);
1289 
1290         if (pnv_chip_is_power9(pnv->chips[0])) {
1291             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1292         } else {
1293             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1294         }
1295     }
1296 
1297     for (i = 0; i < pnv->num_chips; i++) {
1298         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1299     }
1300 }
1301 
1302 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1303                               void *opaque, Error **errp)
1304 {
1305     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1306 }
1307 
1308 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1309                               void *opaque, Error **errp)
1310 {
1311     PnvMachineState *pnv = PNV_MACHINE(obj);
1312     uint32_t num_chips;
1313     Error *local_err = NULL;
1314 
1315     visit_type_uint32(v, name, &num_chips, &local_err);
1316     if (local_err) {
1317         error_propagate(errp, local_err);
1318         return;
1319     }
1320 
1321     /*
1322      * TODO: should we decide on how many chips we can create based
1323      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1324      */
1325     if (!is_power_of_2(num_chips) || num_chips > 4) {
1326         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1327         return;
1328     }
1329 
1330     pnv->num_chips = num_chips;
1331 }
1332 
1333 static void pnv_machine_instance_init(Object *obj)
1334 {
1335     PnvMachineState *pnv = PNV_MACHINE(obj);
1336     pnv->num_chips = 1;
1337 }
1338 
1339 static void pnv_machine_class_props_init(ObjectClass *oc)
1340 {
1341     object_class_property_add(oc, "num-chips", "uint32",
1342                               pnv_get_num_chips, pnv_set_num_chips,
1343                               NULL, NULL, NULL);
1344     object_class_property_set_description(oc, "num-chips",
1345                               "Specifies the number of processor chips",
1346                               NULL);
1347 }
1348 
1349 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1350 {
1351     MachineClass *mc = MACHINE_CLASS(oc);
1352     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1353     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1354 
1355     mc->desc = "IBM PowerNV (Non-Virtualized)";
1356     mc->init = pnv_init;
1357     mc->reset = pnv_reset;
1358     mc->max_cpus = MAX_CPUS;
1359     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1360     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1361                                       * storage */
1362     mc->no_parallel = 1;
1363     mc->default_boot_order = NULL;
1364     /*
1365      * RAM defaults to less than 2048 for 32-bit hosts, and large
1366      * enough to fit the maximum initrd size at it's load address
1367      */
1368     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1369     xic->icp_get = pnv_icp_get;
1370     xic->ics_get = pnv_ics_get;
1371     xic->ics_resend = pnv_ics_resend;
1372     ispc->print_info = pnv_pic_print_info;
1373 
1374     pnv_machine_class_props_init(oc);
1375 }
1376 
1377 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1378     {                                             \
1379         .name          = type,                    \
1380         .class_init    = class_initfn,            \
1381         .parent        = TYPE_PNV8_CHIP,          \
1382     }
1383 
1384 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1385     {                                             \
1386         .name          = type,                    \
1387         .class_init    = class_initfn,            \
1388         .parent        = TYPE_PNV9_CHIP,          \
1389     }
1390 
1391 static const TypeInfo types[] = {
1392     {
1393         .name          = TYPE_PNV_MACHINE,
1394         .parent        = TYPE_MACHINE,
1395         .instance_size = sizeof(PnvMachineState),
1396         .instance_init = pnv_machine_instance_init,
1397         .class_init    = pnv_machine_class_init,
1398         .interfaces = (InterfaceInfo[]) {
1399             { TYPE_XICS_FABRIC },
1400             { TYPE_INTERRUPT_STATS_PROVIDER },
1401             { },
1402         },
1403     },
1404     {
1405         .name          = TYPE_PNV_CHIP,
1406         .parent        = TYPE_SYS_BUS_DEVICE,
1407         .class_init    = pnv_chip_class_init,
1408         .instance_size = sizeof(PnvChip),
1409         .class_size    = sizeof(PnvChipClass),
1410         .abstract      = true,
1411     },
1412 
1413     /*
1414      * P9 chip and variants
1415      */
1416     {
1417         .name          = TYPE_PNV9_CHIP,
1418         .parent        = TYPE_PNV_CHIP,
1419         .instance_init = pnv_chip_power9_instance_init,
1420         .instance_size = sizeof(Pnv9Chip),
1421     },
1422     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1423 
1424     /*
1425      * P8 chip and variants
1426      */
1427     {
1428         .name          = TYPE_PNV8_CHIP,
1429         .parent        = TYPE_PNV_CHIP,
1430         .instance_init = pnv_chip_power8_instance_init,
1431         .instance_size = sizeof(Pnv8Chip),
1432     },
1433     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1434     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1435     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1436                           pnv_chip_power8nvl_class_init),
1437 };
1438 
1439 DEFINE_TYPES(types)
1440