xref: /openbmc/qemu/hw/ppc/pnv.c (revision 8625164a3866064da0e37aabef7cab40311fd929)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51 
52 #include "hw/isa/isa.h"
53 #include "hw/char/serial.h"
54 #include "hw/rtc/mc146818rtc.h"
55 
56 #include <libfdt.h>
57 
58 #define FDT_MAX_SIZE            (1 * MiB)
59 
60 #define FW_FILE_NAME            "skiboot.lid"
61 #define FW_LOAD_ADDR            0x0
62 #define FW_MAX_SIZE             (16 * MiB)
63 
64 #define KERNEL_LOAD_ADDR        0x20000000
65 #define KERNEL_MAX_SIZE         (128 * MiB)
66 #define INITRD_LOAD_ADDR        0x28000000
67 #define INITRD_MAX_SIZE         (128 * MiB)
68 
69 static const char *pnv_chip_core_typename(const PnvChip *o)
70 {
71     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
72     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
73     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
74     const char *core_type = object_class_get_name(object_class_by_name(s));
75     g_free(s);
76     return core_type;
77 }
78 
79 /*
80  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
81  *     4 * 4 sockets * 12 cores * 8 threads = 1536
82  * Let's make it 2^11
83  */
84 #define MAX_CPUS                2048
85 
86 /*
87  * Memory nodes are created by hostboot, one for each range of memory
88  * that has a different "affinity". In practice, it means one range
89  * per chip.
90  */
91 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
92 {
93     char *mem_name;
94     uint64_t mem_reg_property[2];
95     int off;
96 
97     mem_reg_property[0] = cpu_to_be64(start);
98     mem_reg_property[1] = cpu_to_be64(size);
99 
100     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
101     off = fdt_add_subnode(fdt, 0, mem_name);
102     g_free(mem_name);
103 
104     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
105     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
106                        sizeof(mem_reg_property))));
107     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
108 }
109 
110 static int get_cpus_node(void *fdt)
111 {
112     int cpus_offset = fdt_path_offset(fdt, "/cpus");
113 
114     if (cpus_offset < 0) {
115         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
116         if (cpus_offset) {
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
119         }
120     }
121     _FDT(cpus_offset);
122     return cpus_offset;
123 }
124 
125 /*
126  * The PowerNV cores (and threads) need to use real HW ids and not an
127  * incremental index like it has been done on other platforms. This HW
128  * id is stored in the CPU PIR, it is used to create cpu nodes in the
129  * device tree, used in XSCOM to address cores and in interrupt
130  * servers.
131  */
132 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
133 {
134     PowerPCCPU *cpu = pc->threads[0];
135     CPUState *cs = CPU(cpu);
136     DeviceClass *dc = DEVICE_GET_CLASS(cs);
137     int smt_threads = CPU_CORE(pc)->nr_threads;
138     CPUPPCState *env = &cpu->env;
139     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
140     uint32_t servers_prop[smt_threads];
141     int i;
142     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
143                        0xffffffff, 0xffffffff};
144     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
145     uint32_t cpufreq = 1000000000;
146     uint32_t page_sizes_prop[64];
147     size_t page_sizes_prop_size;
148     const uint8_t pa_features[] = { 24, 0,
149                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
150                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
151                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
152                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
158     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
159     _FDT(offset);
160     g_free(nodename);
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
165     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
166     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
174                             env->icache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
176                             env->icache_line_size)));
177 
178     if (pcc->l1_dcache_size) {
179         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
180                                pcc->l1_dcache_size)));
181     } else {
182         warn_report("Unknown L1 dcache size for cpu");
183     }
184     if (pcc->l1_icache_size) {
185         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
186                                pcc->l1_icache_size)));
187     } else {
188         warn_report("Unknown L1 icache size for cpu");
189     }
190 
191     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
194                            cpu->hash64_opts->slb_size)));
195     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
196     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
197 
198     if (ppc_has_spr(cpu, SPR_PURR)) {
199         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
200     }
201 
202     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
204                            segs, sizeof(segs))));
205     }
206 
207     /*
208      * Advertise VMX/VSX (vector extensions) if available
209      *   0 / no property == no vector extensions
210      *   1               == VMX / Altivec available
211      *   2               == VSX available
212      */
213     if (env->insns_flags & PPC_ALTIVEC) {
214         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
215 
216         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
217     }
218 
219     /*
220      * Advertise DFP (Decimal Floating Point) if available
221      *   0 / no property == no DFP
222      *   1               == DFP available
223      */
224     if (env->insns_flags2 & PPC2_DFP) {
225         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
226     }
227 
228     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
229                                                       sizeof(page_sizes_prop));
230     if (page_sizes_prop_size) {
231         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
232                            page_sizes_prop, page_sizes_prop_size)));
233     }
234 
235     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
236                        pa_features, sizeof(pa_features))));
237 
238     /* Build interrupt servers properties */
239     for (i = 0; i < smt_threads; i++) {
240         servers_prop[i] = cpu_to_be32(pc->pir + i);
241     }
242     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                        servers_prop, sizeof(servers_prop))));
244 }
245 
246 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
247                        uint32_t nr_threads)
248 {
249     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
250     char *name;
251     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
252     uint32_t irange[2], i, rsize;
253     uint64_t *reg;
254     int offset;
255 
256     irange[0] = cpu_to_be32(pir);
257     irange[1] = cpu_to_be32(nr_threads);
258 
259     rsize = sizeof(uint64_t) * 2 * nr_threads;
260     reg = g_malloc(rsize);
261     for (i = 0; i < nr_threads; i++) {
262         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
263         reg[i * 2 + 1] = cpu_to_be64(0x1000);
264     }
265 
266     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
267     offset = fdt_add_subnode(fdt, 0, name);
268     _FDT(offset);
269     g_free(name);
270 
271     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
272     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
273     _FDT((fdt_setprop_string(fdt, offset, "device_type",
274                               "PowerPC-External-Interrupt-Presentation")));
275     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
276     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
277                        irange, sizeof(irange))));
278     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
279     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
280     g_free(reg);
281 }
282 
283 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
284 {
285     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
286     int i;
287 
288     pnv_dt_xscom(chip, fdt, 0,
289                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
290                  cpu_to_be64(PNV_XSCOM_SIZE),
291                  compat, sizeof(compat));
292 
293     for (i = 0; i < chip->nr_cores; i++) {
294         PnvCore *pnv_core = chip->cores[i];
295 
296         pnv_dt_core(chip, pnv_core, fdt);
297 
298         /* Interrupt Control Presenters (ICP). One per core. */
299         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
300     }
301 
302     if (chip->ram_size) {
303         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
304     }
305 }
306 
307 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
308 {
309     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
310     int i;
311 
312     pnv_dt_xscom(chip, fdt, 0,
313                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
314                  cpu_to_be64(PNV9_XSCOM_SIZE),
315                  compat, sizeof(compat));
316 
317     for (i = 0; i < chip->nr_cores; i++) {
318         PnvCore *pnv_core = chip->cores[i];
319 
320         pnv_dt_core(chip, pnv_core, fdt);
321     }
322 
323     if (chip->ram_size) {
324         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
325     }
326 
327     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
328 }
329 
330 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
331 {
332     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
333     int i;
334 
335     pnv_dt_xscom(chip, fdt, 0,
336                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
337                  cpu_to_be64(PNV10_XSCOM_SIZE),
338                  compat, sizeof(compat));
339 
340     for (i = 0; i < chip->nr_cores; i++) {
341         PnvCore *pnv_core = chip->cores[i];
342 
343         pnv_dt_core(chip, pnv_core, fdt);
344     }
345 
346     if (chip->ram_size) {
347         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
348     }
349 
350     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
351 }
352 
353 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
354 {
355     uint32_t io_base = d->ioport_id;
356     uint32_t io_regs[] = {
357         cpu_to_be32(1),
358         cpu_to_be32(io_base),
359         cpu_to_be32(2)
360     };
361     char *name;
362     int node;
363 
364     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
365     node = fdt_add_subnode(fdt, lpc_off, name);
366     _FDT(node);
367     g_free(name);
368 
369     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
370     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
371 }
372 
373 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
374 {
375     const char compatible[] = "ns16550\0pnpPNP,501";
376     uint32_t io_base = d->ioport_id;
377     uint32_t io_regs[] = {
378         cpu_to_be32(1),
379         cpu_to_be32(io_base),
380         cpu_to_be32(8)
381     };
382     uint32_t irq;
383     char *name;
384     int node;
385 
386     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
387 
388     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
389     node = fdt_add_subnode(fdt, lpc_off, name);
390     _FDT(node);
391     g_free(name);
392 
393     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
394     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
395                       sizeof(compatible))));
396 
397     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
398     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
401                            fdt_get_phandle(fdt, lpc_off))));
402 
403     /* This is needed by Linux */
404     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
405 }
406 
407 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
408 {
409     const char compatible[] = "bt\0ipmi-bt";
410     uint32_t io_base;
411     uint32_t io_regs[] = {
412         cpu_to_be32(1),
413         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
414         cpu_to_be32(3)
415     };
416     uint32_t irq;
417     char *name;
418     int node;
419 
420     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
421     io_regs[1] = cpu_to_be32(io_base);
422 
423     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
424 
425     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
426     node = fdt_add_subnode(fdt, lpc_off, name);
427     _FDT(node);
428     g_free(name);
429 
430     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
431     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
432                       sizeof(compatible))));
433 
434     /* Mark it as reserved to avoid Linux trying to claim it */
435     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
436     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
437     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
438                            fdt_get_phandle(fdt, lpc_off))));
439 }
440 
441 typedef struct ForeachPopulateArgs {
442     void *fdt;
443     int offset;
444 } ForeachPopulateArgs;
445 
446 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
447 {
448     ForeachPopulateArgs *args = opaque;
449     ISADevice *d = ISA_DEVICE(dev);
450 
451     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
452         pnv_dt_rtc(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
454         pnv_dt_serial(d, args->fdt, args->offset);
455     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
456         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
457     } else {
458         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
459                      d->ioport_id);
460     }
461 
462     return 0;
463 }
464 
465 /*
466  * The default LPC bus of a multichip system is on chip 0. It's
467  * recognized by the firmware (skiboot) using a "primary" property.
468  */
469 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
470 {
471     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
472     ForeachPopulateArgs args = {
473         .fdt = fdt,
474         .offset = isa_offset,
475     };
476     uint32_t phandle;
477 
478     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
479 
480     phandle = qemu_fdt_alloc_phandle(fdt);
481     assert(phandle > 0);
482     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
483 
484     /*
485      * ISA devices are not necessarily parented to the ISA bus so we
486      * can not use object_child_foreach()
487      */
488     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
489                        &args);
490 }
491 
492 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
493 {
494     int off;
495 
496     off = fdt_add_subnode(fdt, 0, "ibm,opal");
497     off = fdt_add_subnode(fdt, off, "power-mgt");
498 
499     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
500 }
501 
502 static void *pnv_dt_create(MachineState *machine)
503 {
504     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
505     PnvMachineState *pnv = PNV_MACHINE(machine);
506     void *fdt;
507     char *buf;
508     int off;
509     int i;
510 
511     fdt = g_malloc0(FDT_MAX_SIZE);
512     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
513 
514     /* /qemu node */
515     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
516 
517     /* Root node */
518     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
519     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
520     _FDT((fdt_setprop_string(fdt, 0, "model",
521                              "IBM PowerNV (emulated by qemu)")));
522     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
523 
524     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
525     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
526     if (qemu_uuid_set) {
527         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
528     }
529     g_free(buf);
530 
531     off = fdt_add_subnode(fdt, 0, "chosen");
532     if (machine->kernel_cmdline) {
533         _FDT((fdt_setprop_string(fdt, off, "bootargs",
534                                  machine->kernel_cmdline)));
535     }
536 
537     if (pnv->initrd_size) {
538         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
539         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
540 
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
542                                &start_prop, sizeof(start_prop))));
543         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
544                                &end_prop, sizeof(end_prop))));
545     }
546 
547     /* Populate device tree for each chip */
548     for (i = 0; i < pnv->num_chips; i++) {
549         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
550     }
551 
552     /* Populate ISA devices on chip 0 */
553     pnv_dt_isa(pnv, fdt);
554 
555     if (pnv->bmc) {
556         pnv_dt_bmc_sensors(pnv->bmc, fdt);
557     }
558 
559     /* Create an extra node for power management on machines that support it */
560     if (pmc->dt_power_mgt) {
561         pmc->dt_power_mgt(pnv, fdt);
562     }
563 
564     return fdt;
565 }
566 
567 static void pnv_powerdown_notify(Notifier *n, void *opaque)
568 {
569     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
570 
571     if (pnv->bmc) {
572         pnv_bmc_powerdown(pnv->bmc);
573     }
574 }
575 
576 static void pnv_reset(MachineState *machine)
577 {
578     PnvMachineState *pnv = PNV_MACHINE(machine);
579     IPMIBmc *bmc;
580     void *fdt;
581 
582     qemu_devices_reset();
583 
584     /*
585      * The machine should provide by default an internal BMC simulator.
586      * If not, try to use the BMC device that was provided on the command
587      * line.
588      */
589     bmc = pnv_bmc_find(&error_fatal);
590     if (!pnv->bmc) {
591         if (!bmc) {
592             if (!qtest_enabled()) {
593                 warn_report("machine has no BMC device. Use '-device "
594                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
595                             "to define one");
596             }
597         } else {
598             pnv_bmc_set_pnor(bmc, pnv->pnor);
599             pnv->bmc = bmc;
600         }
601     }
602 
603     fdt = pnv_dt_create(machine);
604 
605     /* Pack resulting tree */
606     _FDT((fdt_pack(fdt)));
607 
608     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
609     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
610 
611     g_free(fdt);
612 }
613 
614 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
615 {
616     Pnv8Chip *chip8 = PNV8_CHIP(chip);
617     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
618 
619     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
620     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
621 }
622 
623 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
624 {
625     Pnv8Chip *chip8 = PNV8_CHIP(chip);
626     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
627 
628     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
629     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
630 }
631 
632 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
633 {
634     Pnv9Chip *chip9 = PNV9_CHIP(chip);
635     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
636 
637     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
638     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
639 }
640 
641 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
642 {
643     Pnv10Chip *chip10 = PNV10_CHIP(chip);
644     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
645 
646     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
647     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
648 }
649 
650 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
651 {
652     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
653 }
654 
655 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
656 {
657     Monitor *mon = opaque;
658     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
659 
660     if (phb3) {
661         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
662         ics_pic_print_info(&phb3->lsis, mon);
663     }
664     return 0;
665 }
666 
667 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
668 {
669     Pnv8Chip *chip8 = PNV8_CHIP(chip);
670 
671     ics_pic_print_info(&chip8->psi.ics, mon);
672     object_child_foreach(OBJECT(chip),
673                          pnv_chip_power8_pic_print_info_child, mon);
674 }
675 
676 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
677 {
678     Monitor *mon = opaque;
679     PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
680 
681     if (phb4) {
682         pnv_phb4_pic_print_info(phb4, mon);
683     }
684     return 0;
685 }
686 
687 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
688 {
689     Pnv9Chip *chip9 = PNV9_CHIP(chip);
690 
691     pnv_xive_pic_print_info(&chip9->xive, mon);
692     pnv_psi_pic_print_info(&chip9->psi, mon);
693 
694     object_child_foreach_recursive(OBJECT(chip),
695                          pnv_chip_power9_pic_print_info_child, mon);
696 }
697 
698 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
699                                                 uint32_t core_id)
700 {
701     return PNV_XSCOM_EX_BASE(core_id);
702 }
703 
704 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
705                                                 uint32_t core_id)
706 {
707     return PNV9_XSCOM_EC_BASE(core_id);
708 }
709 
710 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
711                                                  uint32_t core_id)
712 {
713     return PNV10_XSCOM_EC_BASE(core_id);
714 }
715 
716 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
717 {
718     PowerPCCPUClass *ppc_default =
719         POWERPC_CPU_CLASS(object_class_by_name(default_type));
720     PowerPCCPUClass *ppc =
721         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
722 
723     return ppc_default->pvr_match(ppc_default, ppc->pvr);
724 }
725 
726 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
727 {
728     ISADevice *dev = isa_new("isa-ipmi-bt");
729 
730     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
731     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
732     isa_realize_and_unref(dev, bus, &error_fatal);
733 }
734 
735 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
736 {
737     Pnv10Chip *chip10 = PNV10_CHIP(chip);
738 
739     pnv_xive2_pic_print_info(&chip10->xive, mon);
740     pnv_psi_pic_print_info(&chip10->psi, mon);
741 
742     object_child_foreach_recursive(OBJECT(chip),
743                          pnv_chip_power9_pic_print_info_child, mon);
744 }
745 
746 /* Always give the first 1GB to chip 0 else we won't boot */
747 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
748 {
749     MachineState *machine = MACHINE(pnv);
750     uint64_t ram_per_chip;
751 
752     assert(machine->ram_size >= 1 * GiB);
753 
754     ram_per_chip = machine->ram_size / pnv->num_chips;
755     if (ram_per_chip >= 1 * GiB) {
756         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
757     }
758 
759     assert(pnv->num_chips > 1);
760 
761     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
762     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
763 }
764 
765 static void pnv_init(MachineState *machine)
766 {
767     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
768     PnvMachineState *pnv = PNV_MACHINE(machine);
769     MachineClass *mc = MACHINE_GET_CLASS(machine);
770     char *fw_filename;
771     long fw_size;
772     uint64_t chip_ram_start = 0;
773     int i;
774     char *chip_typename;
775     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
776     DeviceState *dev;
777 
778     if (kvm_enabled()) {
779         error_report("The powernv machine does not work with KVM acceleration");
780         exit(EXIT_FAILURE);
781     }
782 
783     /* allocate RAM */
784     if (machine->ram_size < mc->default_ram_size) {
785         char *sz = size_to_str(mc->default_ram_size);
786         error_report("Invalid RAM size, should be bigger than %s", sz);
787         g_free(sz);
788         exit(EXIT_FAILURE);
789     }
790     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
791 
792     /*
793      * Create our simple PNOR device
794      */
795     dev = qdev_new(TYPE_PNV_PNOR);
796     if (pnor) {
797         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
798     }
799     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
800     pnv->pnor = PNV_PNOR(dev);
801 
802     /* load skiboot firmware  */
803     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
804     if (!fw_filename) {
805         error_report("Could not find OPAL firmware '%s'", bios_name);
806         exit(1);
807     }
808 
809     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
810     if (fw_size < 0) {
811         error_report("Could not load OPAL firmware '%s'", fw_filename);
812         exit(1);
813     }
814     g_free(fw_filename);
815 
816     /* load kernel */
817     if (machine->kernel_filename) {
818         long kernel_size;
819 
820         kernel_size = load_image_targphys(machine->kernel_filename,
821                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
822         if (kernel_size < 0) {
823             error_report("Could not load kernel '%s'",
824                          machine->kernel_filename);
825             exit(1);
826         }
827     }
828 
829     /* load initrd */
830     if (machine->initrd_filename) {
831         pnv->initrd_base = INITRD_LOAD_ADDR;
832         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
833                                   pnv->initrd_base, INITRD_MAX_SIZE);
834         if (pnv->initrd_size < 0) {
835             error_report("Could not load initial ram disk '%s'",
836                          machine->initrd_filename);
837             exit(1);
838         }
839     }
840 
841     /* MSIs are supported on this platform */
842     msi_nonbroken = true;
843 
844     /*
845      * Check compatibility of the specified CPU with the machine
846      * default.
847      */
848     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
849         error_report("invalid CPU model '%s' for %s machine",
850                      machine->cpu_type, mc->name);
851         exit(1);
852     }
853 
854     /* Create the processor chips */
855     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
856     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
857                                     i, machine->cpu_type);
858     if (!object_class_by_name(chip_typename)) {
859         error_report("invalid chip model '%.*s' for %s machine",
860                      i, machine->cpu_type, mc->name);
861         exit(1);
862     }
863 
864     pnv->num_chips =
865         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
866     /*
867      * TODO: should we decide on how many chips we can create based
868      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
869      */
870     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
871         error_report("invalid number of chips: '%d'", pnv->num_chips);
872         error_printf(
873             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
874         exit(1);
875     }
876 
877     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
878     for (i = 0; i < pnv->num_chips; i++) {
879         char chip_name[32];
880         Object *chip = OBJECT(qdev_new(chip_typename));
881         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
882 
883         pnv->chips[i] = PNV_CHIP(chip);
884 
885         /* Distribute RAM among the chips  */
886         object_property_set_int(chip, "ram-start", chip_ram_start,
887                                 &error_fatal);
888         object_property_set_int(chip, "ram-size", chip_ram_size,
889                                 &error_fatal);
890         chip_ram_start += chip_ram_size;
891 
892         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
893         object_property_add_child(OBJECT(pnv), chip_name, chip);
894         object_property_set_int(chip, "chip-id", i, &error_fatal);
895         object_property_set_int(chip, "nr-cores", machine->smp.cores,
896                                 &error_fatal);
897         object_property_set_int(chip, "nr-threads", machine->smp.threads,
898                                 &error_fatal);
899         /*
900          * The POWER8 machine use the XICS interrupt interface.
901          * Propagate the XICS fabric to the chip and its controllers.
902          */
903         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
904             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
905         }
906         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
907             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
908                                      &error_abort);
909         }
910         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
911     }
912     g_free(chip_typename);
913 
914     /* Instantiate ISA bus on chip 0 */
915     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
916 
917     /* Create serial port */
918     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
919 
920     /* Create an RTC ISA device too */
921     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
922 
923     /*
924      * Create the machine BMC simulator and the IPMI BT device for
925      * communication with the BMC
926      */
927     if (defaults_enabled()) {
928         pnv->bmc = pnv_bmc_create(pnv->pnor);
929         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
930     }
931 
932     /*
933      * The PNOR is mapped on the LPC FW address space by the BMC.
934      * Since we can not reach the remote BMC machine with LPC memops,
935      * map it always for now.
936      */
937     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
938                                 &pnv->pnor->mmio);
939 
940     /*
941      * OpenPOWER systems use a IPMI SEL Event message to notify the
942      * host to powerdown
943      */
944     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
945     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
946 }
947 
948 /*
949  *    0:21  Reserved - Read as zeros
950  *   22:24  Chip ID
951  *   25:28  Core number
952  *   29:31  Thread ID
953  */
954 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
955 {
956     return (chip->chip_id << 7) | (core_id << 3);
957 }
958 
959 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
960                                         Error **errp)
961 {
962     Pnv8Chip *chip8 = PNV8_CHIP(chip);
963     Error *local_err = NULL;
964     Object *obj;
965     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
966 
967     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
968     if (local_err) {
969         error_propagate(errp, local_err);
970         return;
971     }
972 
973     pnv_cpu->intc = obj;
974 }
975 
976 
977 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
978 {
979     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
980 
981     icp_reset(ICP(pnv_cpu->intc));
982 }
983 
984 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
985 {
986     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987 
988     icp_destroy(ICP(pnv_cpu->intc));
989     pnv_cpu->intc = NULL;
990 }
991 
992 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993                                             Monitor *mon)
994 {
995     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
996 }
997 
998 /*
999  *    0:48  Reserved - Read as zeroes
1000  *   49:52  Node ID
1001  *   53:55  Chip ID
1002  *   56     Reserved - Read as zero
1003  *   57:61  Core number
1004  *   62:63  Thread ID
1005  *
1006  * We only care about the lower bits. uint32_t is fine for the moment.
1007  */
1008 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1009 {
1010     return (chip->chip_id << 8) | (core_id << 2);
1011 }
1012 
1013 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1014 {
1015     return (chip->chip_id << 8) | (core_id << 2);
1016 }
1017 
1018 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1019                                         Error **errp)
1020 {
1021     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1022     Error *local_err = NULL;
1023     Object *obj;
1024     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1025 
1026     /*
1027      * The core creates its interrupt presenter but the XIVE interrupt
1028      * controller object is initialized afterwards. Hopefully, it's
1029      * only used at runtime.
1030      */
1031     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1032                            &local_err);
1033     if (local_err) {
1034         error_propagate(errp, local_err);
1035         return;
1036     }
1037 
1038     pnv_cpu->intc = obj;
1039 }
1040 
1041 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1042 {
1043     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1044 
1045     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1046 }
1047 
1048 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1049 {
1050     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1051 
1052     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1053     pnv_cpu->intc = NULL;
1054 }
1055 
1056 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1057                                             Monitor *mon)
1058 {
1059     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1060 }
1061 
1062 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1063                                         Error **errp)
1064 {
1065     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1066     Error *local_err = NULL;
1067     Object *obj;
1068     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1069 
1070     /*
1071      * The core creates its interrupt presenter but the XIVE2 interrupt
1072      * controller object is initialized afterwards. Hopefully, it's
1073      * only used at runtime.
1074      */
1075     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1076                            &local_err);
1077     if (local_err) {
1078         error_propagate(errp, local_err);
1079         return;
1080     }
1081 
1082     pnv_cpu->intc = obj;
1083 }
1084 
1085 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1086 {
1087     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1088 
1089     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1090 }
1091 
1092 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1093 {
1094     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1095 
1096     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1097     pnv_cpu->intc = NULL;
1098 }
1099 
1100 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1101                                              Monitor *mon)
1102 {
1103     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1104 }
1105 
1106 /*
1107  * Allowed core identifiers on a POWER8 Processor Chip :
1108  *
1109  * <EX0 reserved>
1110  *  EX1  - Venice only
1111  *  EX2  - Venice only
1112  *  EX3  - Venice only
1113  *  EX4
1114  *  EX5
1115  *  EX6
1116  * <EX7,8 reserved> <reserved>
1117  *  EX9  - Venice only
1118  *  EX10 - Venice only
1119  *  EX11 - Venice only
1120  *  EX12
1121  *  EX13
1122  *  EX14
1123  * <EX15 reserved>
1124  */
1125 #define POWER8E_CORE_MASK  (0x7070ull)
1126 #define POWER8_CORE_MASK   (0x7e7eull)
1127 
1128 /*
1129  * POWER9 has 24 cores, ids starting at 0x0
1130  */
1131 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1132 
1133 
1134 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1135 
1136 static void pnv_chip_power8_instance_init(Object *obj)
1137 {
1138     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1139     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1140     int i;
1141 
1142     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1143                              (Object **)&chip8->xics,
1144                              object_property_allow_set_link,
1145                              OBJ_PROP_LINK_STRONG);
1146 
1147     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1148 
1149     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1150 
1151     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1152 
1153     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1154 
1155     chip8->num_phbs = pcc->num_phbs;
1156 
1157     for (i = 0; i < chip8->num_phbs; i++) {
1158         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1159     }
1160 
1161 }
1162 
1163 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1164  {
1165     PnvChip *chip = PNV_CHIP(chip8);
1166     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1167     int i, j;
1168     char *name;
1169 
1170     name = g_strdup_printf("icp-%x", chip->chip_id);
1171     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1172     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1173     g_free(name);
1174 
1175     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1176 
1177     /* Map the ICP registers for each thread */
1178     for (i = 0; i < chip->nr_cores; i++) {
1179         PnvCore *pnv_core = chip->cores[i];
1180         int core_hwid = CPU_CORE(pnv_core)->core_id;
1181 
1182         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1183             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1184             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1185 
1186             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1187                                         &icp->mmio);
1188         }
1189     }
1190 }
1191 
1192 /* Attach a root port device */
1193 void pnv_phb_attach_root_port(PCIHostState *pci, const char *name, int index)
1194 {
1195     PCIDevice *root = pci_new(PCI_DEVFN(0, 0), name);
1196     g_autofree char *default_id = g_strdup_printf("%s[%d]", name, index);
1197     const char *dev_id = DEVICE(root)->id;
1198 
1199     object_property_add_child(OBJECT(pci->bus), dev_id ? dev_id : default_id,
1200                               OBJECT(root));
1201 
1202     pci_realize_and_unref(root, pci->bus, &error_fatal);
1203 }
1204 
1205 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1206 {
1207     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1208     PnvChip *chip = PNV_CHIP(dev);
1209     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1210     Pnv8Psi *psi8 = &chip8->psi;
1211     Error *local_err = NULL;
1212     int i;
1213 
1214     assert(chip8->xics);
1215 
1216     /* XSCOM bridge is first */
1217     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1218     if (local_err) {
1219         error_propagate(errp, local_err);
1220         return;
1221     }
1222     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1223 
1224     pcc->parent_realize(dev, &local_err);
1225     if (local_err) {
1226         error_propagate(errp, local_err);
1227         return;
1228     }
1229 
1230     /* Processor Service Interface (PSI) Host Bridge */
1231     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1232                             &error_fatal);
1233     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1234                              OBJECT(chip8->xics), &error_abort);
1235     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1236         return;
1237     }
1238     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1239                             &PNV_PSI(psi8)->xscom_regs);
1240 
1241     /* Create LPC controller */
1242     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1243     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1244 
1245     chip->fw_mr = &chip8->lpc.isa_fw;
1246     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1247                                             (uint64_t) PNV_XSCOM_BASE(chip),
1248                                             PNV_XSCOM_LPC_BASE);
1249 
1250     /*
1251      * Interrupt Management Area. This is the memory region holding
1252      * all the Interrupt Control Presenter (ICP) registers
1253      */
1254     pnv_chip_icp_realize(chip8, &local_err);
1255     if (local_err) {
1256         error_propagate(errp, local_err);
1257         return;
1258     }
1259 
1260     /* Create the simplified OCC model */
1261     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1262         return;
1263     }
1264     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1265     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1266                           qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1267 
1268     /* OCC SRAM model */
1269     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1270                                 &chip8->occ.sram_regs);
1271 
1272     /* HOMER */
1273     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1274                              &error_abort);
1275     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1276         return;
1277     }
1278     /* Homer Xscom region */
1279     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1280 
1281     /* Homer mmio region */
1282     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1283                                 &chip8->homer.regs);
1284 
1285     /* PHB3 controllers */
1286     for (i = 0; i < chip8->num_phbs; i++) {
1287         PnvPHB3 *phb = &chip8->phbs[i];
1288 
1289         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1290         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1291                                 &error_fatal);
1292         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1293                                  &error_fatal);
1294         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1295             return;
1296         }
1297     }
1298 }
1299 
1300 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1301 {
1302     addr &= (PNV_XSCOM_SIZE - 1);
1303     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1304 }
1305 
1306 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1307 {
1308     DeviceClass *dc = DEVICE_CLASS(klass);
1309     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1310 
1311     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1312     k->cores_mask = POWER8E_CORE_MASK;
1313     k->num_phbs = 3;
1314     k->core_pir = pnv_chip_core_pir_p8;
1315     k->intc_create = pnv_chip_power8_intc_create;
1316     k->intc_reset = pnv_chip_power8_intc_reset;
1317     k->intc_destroy = pnv_chip_power8_intc_destroy;
1318     k->intc_print_info = pnv_chip_power8_intc_print_info;
1319     k->isa_create = pnv_chip_power8_isa_create;
1320     k->dt_populate = pnv_chip_power8_dt_populate;
1321     k->pic_print_info = pnv_chip_power8_pic_print_info;
1322     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1323     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1324     dc->desc = "PowerNV Chip POWER8E";
1325 
1326     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1327                                     &k->parent_realize);
1328 }
1329 
1330 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1331 {
1332     DeviceClass *dc = DEVICE_CLASS(klass);
1333     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1334 
1335     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1336     k->cores_mask = POWER8_CORE_MASK;
1337     k->num_phbs = 3;
1338     k->core_pir = pnv_chip_core_pir_p8;
1339     k->intc_create = pnv_chip_power8_intc_create;
1340     k->intc_reset = pnv_chip_power8_intc_reset;
1341     k->intc_destroy = pnv_chip_power8_intc_destroy;
1342     k->intc_print_info = pnv_chip_power8_intc_print_info;
1343     k->isa_create = pnv_chip_power8_isa_create;
1344     k->dt_populate = pnv_chip_power8_dt_populate;
1345     k->pic_print_info = pnv_chip_power8_pic_print_info;
1346     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1347     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1348     dc->desc = "PowerNV Chip POWER8";
1349 
1350     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1351                                     &k->parent_realize);
1352 }
1353 
1354 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1355 {
1356     DeviceClass *dc = DEVICE_CLASS(klass);
1357     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1358 
1359     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1360     k->cores_mask = POWER8_CORE_MASK;
1361     k->num_phbs = 4;
1362     k->core_pir = pnv_chip_core_pir_p8;
1363     k->intc_create = pnv_chip_power8_intc_create;
1364     k->intc_reset = pnv_chip_power8_intc_reset;
1365     k->intc_destroy = pnv_chip_power8_intc_destroy;
1366     k->intc_print_info = pnv_chip_power8_intc_print_info;
1367     k->isa_create = pnv_chip_power8nvl_isa_create;
1368     k->dt_populate = pnv_chip_power8_dt_populate;
1369     k->pic_print_info = pnv_chip_power8_pic_print_info;
1370     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1371     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1372     dc->desc = "PowerNV Chip POWER8NVL";
1373 
1374     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1375                                     &k->parent_realize);
1376 }
1377 
1378 static void pnv_chip_power9_instance_init(Object *obj)
1379 {
1380     PnvChip *chip = PNV_CHIP(obj);
1381     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1382     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1383     int i;
1384 
1385     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1386     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1387                               "xive-fabric");
1388 
1389     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1390 
1391     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1392 
1393     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1394 
1395     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1396 
1397     /* Number of PECs is the chip default */
1398     chip->num_pecs = pcc->num_pecs;
1399 
1400     for (i = 0; i < chip->num_pecs; i++) {
1401         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1402                                 TYPE_PNV_PHB4_PEC);
1403     }
1404 }
1405 
1406 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1407                                       PnvCore *pnv_core)
1408 {
1409     char eq_name[32];
1410     int core_id = CPU_CORE(pnv_core)->core_id;
1411 
1412     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1413     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1414                                        sizeof(*eq), TYPE_PNV_QUAD,
1415                                        &error_fatal, NULL);
1416 
1417     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1418     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1419 }
1420 
1421 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1422 {
1423     PnvChip *chip = PNV_CHIP(chip9);
1424     int i;
1425 
1426     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1427     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1428 
1429     for (i = 0; i < chip9->nr_quads; i++) {
1430         PnvQuad *eq = &chip9->quads[i];
1431 
1432         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1433 
1434         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1435                                 &eq->xscom_regs);
1436     }
1437 }
1438 
1439 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1440 {
1441     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1442     int i;
1443 
1444     for (i = 0; i < chip->num_pecs; i++) {
1445         PnvPhb4PecState *pec = &chip9->pecs[i];
1446         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1447         uint32_t pec_nest_base;
1448         uint32_t pec_pci_base;
1449 
1450         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1451         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1452                                 &error_fatal);
1453         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1454                                  &error_fatal);
1455         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1456             return;
1457         }
1458 
1459         pec_nest_base = pecc->xscom_nest_base(pec);
1460         pec_pci_base = pecc->xscom_pci_base(pec);
1461 
1462         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1463         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1464     }
1465 }
1466 
1467 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1468 {
1469     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1470     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1471     PnvChip *chip = PNV_CHIP(dev);
1472     Pnv9Psi *psi9 = &chip9->psi;
1473     Error *local_err = NULL;
1474 
1475     /* XSCOM bridge is first */
1476     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1477     if (local_err) {
1478         error_propagate(errp, local_err);
1479         return;
1480     }
1481     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1482 
1483     pcc->parent_realize(dev, &local_err);
1484     if (local_err) {
1485         error_propagate(errp, local_err);
1486         return;
1487     }
1488 
1489     pnv_chip_quad_realize(chip9, &local_err);
1490     if (local_err) {
1491         error_propagate(errp, local_err);
1492         return;
1493     }
1494 
1495     /* XIVE interrupt controller (POWER9) */
1496     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1497                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1498     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1499                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1500     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1501                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1502     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1503                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1504     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1505                              &error_abort);
1506     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1507         return;
1508     }
1509     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1510                             &chip9->xive.xscom_regs);
1511 
1512     /* Processor Service Interface (PSI) Host Bridge */
1513     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1514                             &error_fatal);
1515     /* This is the only device with 4k ESB pages */
1516     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1517                             &error_fatal);
1518     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1519         return;
1520     }
1521     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1522                             &PNV_PSI(psi9)->xscom_regs);
1523 
1524     /* LPC */
1525     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1526         return;
1527     }
1528     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1529                                 &chip9->lpc.xscom_regs);
1530 
1531     chip->fw_mr = &chip9->lpc.isa_fw;
1532     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1533                                             (uint64_t) PNV9_LPCM_BASE(chip));
1534 
1535     /* Create the simplified OCC model */
1536     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1537         return;
1538     }
1539     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1540     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1541                               DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1542 
1543     /* OCC SRAM model */
1544     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1545                                 &chip9->occ.sram_regs);
1546 
1547     /* HOMER */
1548     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1549                              &error_abort);
1550     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1551         return;
1552     }
1553     /* Homer Xscom region */
1554     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1555 
1556     /* Homer mmio region */
1557     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1558                                 &chip9->homer.regs);
1559 
1560     /* PEC PHBs */
1561     pnv_chip_power9_pec_realize(chip, &local_err);
1562     if (local_err) {
1563         error_propagate(errp, local_err);
1564         return;
1565     }
1566 }
1567 
1568 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1569 {
1570     addr &= (PNV9_XSCOM_SIZE - 1);
1571     return addr >> 3;
1572 }
1573 
1574 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1575 {
1576     DeviceClass *dc = DEVICE_CLASS(klass);
1577     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1578 
1579     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1580     k->cores_mask = POWER9_CORE_MASK;
1581     k->core_pir = pnv_chip_core_pir_p9;
1582     k->intc_create = pnv_chip_power9_intc_create;
1583     k->intc_reset = pnv_chip_power9_intc_reset;
1584     k->intc_destroy = pnv_chip_power9_intc_destroy;
1585     k->intc_print_info = pnv_chip_power9_intc_print_info;
1586     k->isa_create = pnv_chip_power9_isa_create;
1587     k->dt_populate = pnv_chip_power9_dt_populate;
1588     k->pic_print_info = pnv_chip_power9_pic_print_info;
1589     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1590     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1591     dc->desc = "PowerNV Chip POWER9";
1592     k->num_pecs = PNV9_CHIP_MAX_PEC;
1593 
1594     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1595                                     &k->parent_realize);
1596 }
1597 
1598 static void pnv_chip_power10_instance_init(Object *obj)
1599 {
1600     PnvChip *chip = PNV_CHIP(obj);
1601     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1602     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1603     int i;
1604 
1605     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1606     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1607                               "xive-fabric");
1608     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1609     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1610     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1611     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1612 
1613     chip->num_pecs = pcc->num_pecs;
1614 
1615     for (i = 0; i < chip->num_pecs; i++) {
1616         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1617                                 TYPE_PNV_PHB5_PEC);
1618     }
1619 }
1620 
1621 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1622 {
1623     PnvChip *chip = PNV_CHIP(chip10);
1624     int i;
1625 
1626     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1627     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1628 
1629     for (i = 0; i < chip10->nr_quads; i++) {
1630         PnvQuad *eq = &chip10->quads[i];
1631 
1632         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1633 
1634         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1635                                 &eq->xscom_regs);
1636     }
1637 }
1638 
1639 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1640 {
1641     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1642     int i;
1643 
1644     for (i = 0; i < chip->num_pecs; i++) {
1645         PnvPhb4PecState *pec = &chip10->pecs[i];
1646         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1647         uint32_t pec_nest_base;
1648         uint32_t pec_pci_base;
1649 
1650         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1651         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1652                                 &error_fatal);
1653         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1654                                  &error_fatal);
1655         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1656             return;
1657         }
1658 
1659         pec_nest_base = pecc->xscom_nest_base(pec);
1660         pec_pci_base = pecc->xscom_pci_base(pec);
1661 
1662         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1663         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1664     }
1665 }
1666 
1667 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1668 {
1669     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1670     PnvChip *chip = PNV_CHIP(dev);
1671     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1672     Error *local_err = NULL;
1673 
1674     /* XSCOM bridge is first */
1675     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1676     if (local_err) {
1677         error_propagate(errp, local_err);
1678         return;
1679     }
1680     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1681 
1682     pcc->parent_realize(dev, &local_err);
1683     if (local_err) {
1684         error_propagate(errp, local_err);
1685         return;
1686     }
1687 
1688     pnv_chip_power10_quad_realize(chip10, &local_err);
1689     if (local_err) {
1690         error_propagate(errp, local_err);
1691         return;
1692     }
1693 
1694     /* XIVE2 interrupt controller (POWER10) */
1695     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1696                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1697     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1698                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1699     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1700                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1701     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1702                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1703     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1704                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1705     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1706                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1707     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1708                              &error_abort);
1709     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1710         return;
1711     }
1712     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1713                             &chip10->xive.xscom_regs);
1714 
1715     /* Processor Service Interface (PSI) Host Bridge */
1716     object_property_set_int(OBJECT(&chip10->psi), "bar",
1717                             PNV10_PSIHB_BASE(chip), &error_fatal);
1718     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1719     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1720                             &error_fatal);
1721     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1722         return;
1723     }
1724     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1725                             &PNV_PSI(&chip10->psi)->xscom_regs);
1726 
1727     /* LPC */
1728     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1729         return;
1730     }
1731     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1732                                 &chip10->lpc.xscom_regs);
1733 
1734     chip->fw_mr = &chip10->lpc.isa_fw;
1735     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1736                                             (uint64_t) PNV10_LPCM_BASE(chip));
1737 
1738     /* Create the simplified OCC model */
1739     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1740         return;
1741     }
1742     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1743                             &chip10->occ.xscom_regs);
1744     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1745                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1746 
1747     /* OCC SRAM model */
1748     memory_region_add_subregion(get_system_memory(),
1749                                 PNV10_OCC_SENSOR_BASE(chip),
1750                                 &chip10->occ.sram_regs);
1751 
1752     /* HOMER */
1753     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1754                              &error_abort);
1755     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1756         return;
1757     }
1758     /* Homer Xscom region */
1759     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1760                             &chip10->homer.pba_regs);
1761 
1762     /* Homer mmio region */
1763     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1764                                 &chip10->homer.regs);
1765 
1766     /* PHBs */
1767     pnv_chip_power10_phb_realize(chip, &local_err);
1768     if (local_err) {
1769         error_propagate(errp, local_err);
1770         return;
1771     }
1772 }
1773 
1774 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1775 {
1776     addr &= (PNV10_XSCOM_SIZE - 1);
1777     return addr >> 3;
1778 }
1779 
1780 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1781 {
1782     DeviceClass *dc = DEVICE_CLASS(klass);
1783     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1784 
1785     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1786     k->cores_mask = POWER10_CORE_MASK;
1787     k->core_pir = pnv_chip_core_pir_p10;
1788     k->intc_create = pnv_chip_power10_intc_create;
1789     k->intc_reset = pnv_chip_power10_intc_reset;
1790     k->intc_destroy = pnv_chip_power10_intc_destroy;
1791     k->intc_print_info = pnv_chip_power10_intc_print_info;
1792     k->isa_create = pnv_chip_power10_isa_create;
1793     k->dt_populate = pnv_chip_power10_dt_populate;
1794     k->pic_print_info = pnv_chip_power10_pic_print_info;
1795     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1796     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1797     dc->desc = "PowerNV Chip POWER10";
1798     k->num_pecs = PNV10_CHIP_MAX_PEC;
1799 
1800     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1801                                     &k->parent_realize);
1802 }
1803 
1804 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1805 {
1806     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1807     int cores_max;
1808 
1809     /*
1810      * No custom mask for this chip, let's use the default one from *
1811      * the chip class
1812      */
1813     if (!chip->cores_mask) {
1814         chip->cores_mask = pcc->cores_mask;
1815     }
1816 
1817     /* filter alien core ids ! some are reserved */
1818     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1819         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1820                    chip->cores_mask);
1821         return;
1822     }
1823     chip->cores_mask &= pcc->cores_mask;
1824 
1825     /* now that we have a sane layout, let check the number of cores */
1826     cores_max = ctpop64(chip->cores_mask);
1827     if (chip->nr_cores > cores_max) {
1828         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1829                    cores_max);
1830         return;
1831     }
1832 }
1833 
1834 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1835 {
1836     Error *error = NULL;
1837     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1838     const char *typename = pnv_chip_core_typename(chip);
1839     int i, core_hwid;
1840     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1841 
1842     if (!object_class_by_name(typename)) {
1843         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1844         return;
1845     }
1846 
1847     /* Cores */
1848     pnv_chip_core_sanitize(chip, &error);
1849     if (error) {
1850         error_propagate(errp, error);
1851         return;
1852     }
1853 
1854     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1855 
1856     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1857              && (i < chip->nr_cores); core_hwid++) {
1858         char core_name[32];
1859         PnvCore *pnv_core;
1860         uint64_t xscom_core_base;
1861 
1862         if (!(chip->cores_mask & (1ull << core_hwid))) {
1863             continue;
1864         }
1865 
1866         pnv_core = PNV_CORE(object_new(typename));
1867 
1868         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1869         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1870         chip->cores[i] = pnv_core;
1871         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1872                                 chip->nr_threads, &error_fatal);
1873         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1874                                 core_hwid, &error_fatal);
1875         object_property_set_int(OBJECT(pnv_core), "pir",
1876                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1877         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1878                                 &error_fatal);
1879         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1880                                  &error_abort);
1881         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1882 
1883         /* Each core has an XSCOM MMIO region */
1884         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1885 
1886         pnv_xscom_add_subregion(chip, xscom_core_base,
1887                                 &pnv_core->xscom_regs);
1888         i++;
1889     }
1890 }
1891 
1892 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1893 {
1894     PnvChip *chip = PNV_CHIP(dev);
1895     Error *error = NULL;
1896 
1897     /* Cores */
1898     pnv_chip_core_realize(chip, &error);
1899     if (error) {
1900         error_propagate(errp, error);
1901         return;
1902     }
1903 }
1904 
1905 static Property pnv_chip_properties[] = {
1906     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1907     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1908     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1909     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1910     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1911     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1912     DEFINE_PROP_END_OF_LIST(),
1913 };
1914 
1915 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1916 {
1917     DeviceClass *dc = DEVICE_CLASS(klass);
1918 
1919     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1920     dc->realize = pnv_chip_realize;
1921     device_class_set_props(dc, pnv_chip_properties);
1922     dc->desc = "PowerNV Chip";
1923 }
1924 
1925 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1926 {
1927     int i, j;
1928 
1929     for (i = 0; i < chip->nr_cores; i++) {
1930         PnvCore *pc = chip->cores[i];
1931         CPUCore *cc = CPU_CORE(pc);
1932 
1933         for (j = 0; j < cc->nr_threads; j++) {
1934             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1935                 return pc->threads[j];
1936             }
1937         }
1938     }
1939     return NULL;
1940 }
1941 
1942 typedef struct ForeachPhb3Args {
1943     int irq;
1944     ICSState *ics;
1945 } ForeachPhb3Args;
1946 
1947 static int pnv_ics_get_child(Object *child, void *opaque)
1948 {
1949     ForeachPhb3Args *args = opaque;
1950     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1951 
1952     if (phb3) {
1953         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1954             args->ics = &phb3->lsis;
1955         }
1956         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1957             args->ics = ICS(&phb3->msis);
1958         }
1959     }
1960     return args->ics ? 1 : 0;
1961 }
1962 
1963 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1964 {
1965     PnvMachineState *pnv = PNV_MACHINE(xi);
1966     ForeachPhb3Args args = { irq, NULL };
1967     int i;
1968 
1969     for (i = 0; i < pnv->num_chips; i++) {
1970         PnvChip *chip = pnv->chips[i];
1971         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1972 
1973         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1974             return &chip8->psi.ics;
1975         }
1976 
1977         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1978         if (args.ics) {
1979             return args.ics;
1980         }
1981     }
1982     return NULL;
1983 }
1984 
1985 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
1986 {
1987     int i;
1988 
1989     for (i = 0; i < pnv->num_chips; i++) {
1990         PnvChip *chip = pnv->chips[i];
1991         if (chip->chip_id == chip_id) {
1992             return chip;
1993         }
1994     }
1995     return NULL;
1996 }
1997 
1998 static int pnv_ics_resend_child(Object *child, void *opaque)
1999 {
2000     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
2001 
2002     if (phb3) {
2003         ics_resend(&phb3->lsis);
2004         ics_resend(ICS(&phb3->msis));
2005     }
2006     return 0;
2007 }
2008 
2009 static void pnv_ics_resend(XICSFabric *xi)
2010 {
2011     PnvMachineState *pnv = PNV_MACHINE(xi);
2012     int i;
2013 
2014     for (i = 0; i < pnv->num_chips; i++) {
2015         PnvChip *chip = pnv->chips[i];
2016         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2017 
2018         ics_resend(&chip8->psi.ics);
2019         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
2020     }
2021 }
2022 
2023 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2024 {
2025     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2026 
2027     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2028 }
2029 
2030 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2031                                Monitor *mon)
2032 {
2033     PnvMachineState *pnv = PNV_MACHINE(obj);
2034     int i;
2035     CPUState *cs;
2036 
2037     CPU_FOREACH(cs) {
2038         PowerPCCPU *cpu = POWERPC_CPU(cs);
2039 
2040         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2041         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2042                                                            mon);
2043     }
2044 
2045     for (i = 0; i < pnv->num_chips; i++) {
2046         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2047     }
2048 }
2049 
2050 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2051                          uint8_t nvt_blk, uint32_t nvt_idx,
2052                          bool cam_ignore, uint8_t priority,
2053                          uint32_t logic_serv,
2054                          XiveTCTXMatch *match)
2055 {
2056     PnvMachineState *pnv = PNV_MACHINE(xfb);
2057     int total_count = 0;
2058     int i;
2059 
2060     for (i = 0; i < pnv->num_chips; i++) {
2061         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2062         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2063         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2064         int count;
2065 
2066         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2067                                priority, logic_serv, match);
2068 
2069         if (count < 0) {
2070             return count;
2071         }
2072 
2073         total_count += count;
2074     }
2075 
2076     return total_count;
2077 }
2078 
2079 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2080                                 uint8_t nvt_blk, uint32_t nvt_idx,
2081                                 bool cam_ignore, uint8_t priority,
2082                                 uint32_t logic_serv,
2083                                 XiveTCTXMatch *match)
2084 {
2085     PnvMachineState *pnv = PNV_MACHINE(xfb);
2086     int total_count = 0;
2087     int i;
2088 
2089     for (i = 0; i < pnv->num_chips; i++) {
2090         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2091         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2092         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2093         int count;
2094 
2095         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2096                                priority, logic_serv, match);
2097 
2098         if (count < 0) {
2099             return count;
2100         }
2101 
2102         total_count += count;
2103     }
2104 
2105     return total_count;
2106 }
2107 
2108 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2109 {
2110     MachineClass *mc = MACHINE_CLASS(oc);
2111     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2112     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2113     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2114 
2115     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2116     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2117 
2118     xic->icp_get = pnv_icp_get;
2119     xic->ics_get = pnv_ics_get;
2120     xic->ics_resend = pnv_ics_resend;
2121 
2122     pmc->compat = compat;
2123     pmc->compat_size = sizeof(compat);
2124 }
2125 
2126 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2127 {
2128     MachineClass *mc = MACHINE_CLASS(oc);
2129     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2130     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2131     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2132 
2133     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2134     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
2135     xfc->match_nvt = pnv_match_nvt;
2136 
2137     mc->alias = "powernv";
2138 
2139     pmc->compat = compat;
2140     pmc->compat_size = sizeof(compat);
2141     pmc->dt_power_mgt = pnv_dt_power_mgt;
2142 }
2143 
2144 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2145 {
2146     MachineClass *mc = MACHINE_CLASS(oc);
2147     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2148     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2149     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2150 
2151     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2152     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2153 
2154     pmc->compat = compat;
2155     pmc->compat_size = sizeof(compat);
2156     pmc->dt_power_mgt = pnv_dt_power_mgt;
2157 
2158     xfc->match_nvt = pnv10_xive_match_nvt;
2159 }
2160 
2161 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2162 {
2163     PnvMachineState *pnv = PNV_MACHINE(obj);
2164 
2165     return !!pnv->fw_load_addr;
2166 }
2167 
2168 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2169 {
2170     PnvMachineState *pnv = PNV_MACHINE(obj);
2171 
2172     if (value) {
2173         pnv->fw_load_addr = 0x8000000;
2174     }
2175 }
2176 
2177 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2178 {
2179     PowerPCCPU *cpu = POWERPC_CPU(cs);
2180     CPUPPCState *env = &cpu->env;
2181 
2182     cpu_synchronize_state(cs);
2183     ppc_cpu_do_system_reset(cs);
2184     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2185         /*
2186          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2187          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2188          * (PPC_BIT(43)).
2189          */
2190         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2191             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2192             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2193         }
2194     } else {
2195         /*
2196          * For non-powersave system resets, SRR1[42:45] are defined to be
2197          * implementation-dependent. The POWER9 User Manual specifies that
2198          * an external (SCOM driven, which may come from a BMC nmi command or
2199          * another CPU requesting a NMI IPI) system reset exception should be
2200          * 0b0010 (PPC_BIT(44)).
2201          */
2202         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2203     }
2204 }
2205 
2206 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2207 {
2208     CPUState *cs;
2209 
2210     CPU_FOREACH(cs) {
2211         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2212     }
2213 }
2214 
2215 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2216 {
2217     MachineClass *mc = MACHINE_CLASS(oc);
2218     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2219     NMIClass *nc = NMI_CLASS(oc);
2220 
2221     mc->desc = "IBM PowerNV (Non-Virtualized)";
2222     mc->init = pnv_init;
2223     mc->reset = pnv_reset;
2224     mc->max_cpus = MAX_CPUS;
2225     /* Pnv provides a AHCI device for storage */
2226     mc->block_default_type = IF_IDE;
2227     mc->no_parallel = 1;
2228     mc->default_boot_order = NULL;
2229     /*
2230      * RAM defaults to less than 2048 for 32-bit hosts, and large
2231      * enough to fit the maximum initrd size at it's load address
2232      */
2233     mc->default_ram_size = 1 * GiB;
2234     mc->default_ram_id = "pnv.ram";
2235     ispc->print_info = pnv_pic_print_info;
2236     nc->nmi_monitor_handler = pnv_nmi;
2237 
2238     object_class_property_add_bool(oc, "hb-mode",
2239                                    pnv_machine_get_hb, pnv_machine_set_hb);
2240     object_class_property_set_description(oc, "hb-mode",
2241                               "Use a hostboot like boot loader");
2242 }
2243 
2244 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2245     {                                             \
2246         .name          = type,                    \
2247         .class_init    = class_initfn,            \
2248         .parent        = TYPE_PNV8_CHIP,          \
2249     }
2250 
2251 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2252     {                                             \
2253         .name          = type,                    \
2254         .class_init    = class_initfn,            \
2255         .parent        = TYPE_PNV9_CHIP,          \
2256     }
2257 
2258 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2259     {                                              \
2260         .name          = type,                     \
2261         .class_init    = class_initfn,             \
2262         .parent        = TYPE_PNV10_CHIP,          \
2263     }
2264 
2265 static const TypeInfo types[] = {
2266     {
2267         .name          = MACHINE_TYPE_NAME("powernv10"),
2268         .parent        = TYPE_PNV_MACHINE,
2269         .class_init    = pnv_machine_power10_class_init,
2270         .interfaces = (InterfaceInfo[]) {
2271             { TYPE_XIVE_FABRIC },
2272             { },
2273         },
2274     },
2275     {
2276         .name          = MACHINE_TYPE_NAME("powernv9"),
2277         .parent        = TYPE_PNV_MACHINE,
2278         .class_init    = pnv_machine_power9_class_init,
2279         .interfaces = (InterfaceInfo[]) {
2280             { TYPE_XIVE_FABRIC },
2281             { },
2282         },
2283     },
2284     {
2285         .name          = MACHINE_TYPE_NAME("powernv8"),
2286         .parent        = TYPE_PNV_MACHINE,
2287         .class_init    = pnv_machine_power8_class_init,
2288         .interfaces = (InterfaceInfo[]) {
2289             { TYPE_XICS_FABRIC },
2290             { },
2291         },
2292     },
2293     {
2294         .name          = TYPE_PNV_MACHINE,
2295         .parent        = TYPE_MACHINE,
2296         .abstract       = true,
2297         .instance_size = sizeof(PnvMachineState),
2298         .class_init    = pnv_machine_class_init,
2299         .class_size    = sizeof(PnvMachineClass),
2300         .interfaces = (InterfaceInfo[]) {
2301             { TYPE_INTERRUPT_STATS_PROVIDER },
2302             { TYPE_NMI },
2303             { },
2304         },
2305     },
2306     {
2307         .name          = TYPE_PNV_CHIP,
2308         .parent        = TYPE_SYS_BUS_DEVICE,
2309         .class_init    = pnv_chip_class_init,
2310         .instance_size = sizeof(PnvChip),
2311         .class_size    = sizeof(PnvChipClass),
2312         .abstract      = true,
2313     },
2314 
2315     /*
2316      * P10 chip and variants
2317      */
2318     {
2319         .name          = TYPE_PNV10_CHIP,
2320         .parent        = TYPE_PNV_CHIP,
2321         .instance_init = pnv_chip_power10_instance_init,
2322         .instance_size = sizeof(Pnv10Chip),
2323     },
2324     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2325 
2326     /*
2327      * P9 chip and variants
2328      */
2329     {
2330         .name          = TYPE_PNV9_CHIP,
2331         .parent        = TYPE_PNV_CHIP,
2332         .instance_init = pnv_chip_power9_instance_init,
2333         .instance_size = sizeof(Pnv9Chip),
2334     },
2335     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2336 
2337     /*
2338      * P8 chip and variants
2339      */
2340     {
2341         .name          = TYPE_PNV8_CHIP,
2342         .parent        = TYPE_PNV_CHIP,
2343         .instance_init = pnv_chip_power8_instance_init,
2344         .instance_size = sizeof(Pnv8Chip),
2345     },
2346     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2347     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2348     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2349                           pnv_chip_power8nvl_class_init),
2350 };
2351 
2352 DEFINE_TYPES(types)
2353